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Abdrad — In humans/Q, on-kinetics are noisy numerical signals thaitetfies pulmonary oxygen exchange kinetics at tet ofexercise. They are

empirically modelled as a sum of an offset and/elglaxponentials. The number of delayed exposentialthe order of the model, is commonly
supposed to be one for low-intensity exercisetamfibr high-intensity exercises. As no groundhthats ever been provided to validate these pesfulat
physiologists still need statistical methods tieeir hypothesis about the number of exporientizhey/O, on-kinetics especially in the case of high-

intensity exercises. Our objectives are first teldp accurate methods for estimating the paratiie model at a fixed order, and then, to p®po
statistical tests for selecting the appropriaterdrd this paper, we provide, on simulated Patfprmances of Simulated Annealing for estimatiogel
parameters and performances of Information Ciiterigelecting the order. These simulated Datgemierated with both single-exponential and double-
exponential models, and noised by white and Gaurssise. The performances are given at varioual 8ighoise Ratic3NR. Considering parameter
estimation, results show that the confidencedimfasd parameters are improved by increasingdRedbthe response to be fitted. Considering model
selection, results show that Information Critegeedlapted statistical criteria to select the nuafieegponentials.

Key words VO, on-kinetics, parametric modelling, parameter etim model selection, optimisation, stochastithads, general linear model,
simulated annealing, information criteria.

with Ay, the offsetp, the order of the modd,, tc, 7,
INTRODUCTION respectively the weight, the time delay, and te ti

In the context of biomedical signal processingdbaseonstant of the exponentia= 1, ...,0 andU, the unit
on Bayesian methods, this paper presents thebretica _ if t<O
results about modelling the oxygen upta¥€) on-  Step function (t)= Lif t>0

kinetics with empirical models. These results aconce

. The parameter set

of the model of ordeyis:

both the estimation of parameters for a given éabir Eq 2
model and the selection of its actual form in iefiset of &, = {Ab ’{An’tdm’ Tm}m:].,-~-,o} '
hypothesised models. In practice, the obtained sequences of numeritzal da

In humansV/O, on-kinetics are signals that reflecre noised by breathing irregularities and thesgy no
the pulmonary oxygen exchange kinetics at the ohsetignals have a Signal to Noise Raf8Ng relatively
exercise. Their study may provide insight in thiw. Parameter estimation, i.e. the estimatioafis
metabolic behaviour of muscular cells and may be uscurrently based on the optimisation of statisticiria
for the evaluation of the physical fitness of gestp19]. computed from these noisy numerical Data called
In order to provide help for the interpretationttiése “observations”. In the general context, the paremet
signals\VO, on-kinetics are currently characterised witigstimation of this kind of function presents sdvera

empirical models that are a weighted sum of awtoffgifficulties: _ _ .
and delayed exponentials [3, 10]; 1. The parametric functon (see Eg. 1) is not

[H g ] continuously differentiable.

; N 1o - 2. Fitting a sum of exponentials to numerical Data is
— - m - Eq.:

VOZ(t) A +;A“ 1-e U(t tdm) known to be an ill-conditioned problem [14] i.e.

slight fluctuations in the observed data can rasult
very large fluctuations in the estimated parameters
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Parameter estimation and order selection for arir@rapmodel ofVO2 on-kinetics

3. Constraints are imposed on the value of parameters METHODS
due to physiological considerations (for examplg:stimation problem and numerical Data
weighted terms must be positive). The breath-by-breath values VDZ are sampled

Considering\]O2 on-kinetics, the use of non-Iinearwi,[h a variable sampling period as the respiratory
regression methods based on Gradient-Des@} ( frequency changes due to breath-to-breath irrétigsiar
principle can be found in some papers [4, 5 & 10hnd also, due to the need for increasing the atenil

NeverthelessGD based methods are not perfectl ; :
adapted to the mathematical properties of thesnzeabg4 ow rate. VO, values can be viewed as a vector

mentioned exponential functions, and may impair theo, = [v02’1,~--,v02,N]T , sSampled over a time vector

estimation of the kinetic parameters. To estin@fe t = [tO"“'tN]T (see Fig. 1). Eady —t,, k=1, ...,
alternative approaches may be proposed. In t
following, we will present the stochastic optirritsat . : .
method we have implemented in order to optimise tglUe Of VO, is obtained at. VO, is supposed to
Likelihood function of the observations: the Sirteda incorporate an underlying physiological responeetfie

Annealing 64 [9, 14]. In a recent paper [6], aOXygen exchanges occurting at the alveolar sitis)aph

comparison of the performances @@ method an@A  additive noisee, = [eo AREEN NN ]T

was presented on simulated Data with ground tndh & ' '

Rf,ecorresponds to the laps of time of a breathtanbl st

real Data. The model used was double exponerial, vop (ml.min™)
with 0 = 2 (see Eg. 1). The main conclusions of th ™
study were: ol
1. Compared t6&D, SAimproves the estimatiaf the
parameters in the case of simulated Data. .

2. In the case of real Dat8Aprovides lower Residual

Sum of SquarefRRS$ of the difference between the e

raw data and the model tHam.

3. The parameters of the second exponential ¢  #*7
estimated with low accuracy.

In this last paper [6], only one level BNRwas
studied (it was around 20 dB). In the present payser ‘ . . . ‘ .
provide performances &Aat variousSNR in the case e e e 5””tiae(s)
of o=1 and = 2, by using a new set of simulated Datt..
This study is done in order to complete the praviou ,
paper and to verify that the estimation accuradpef — SX€OSeS:

parameters of the second exponential is improveighat In the preS(_ent context, Bq. 1 is supposed to bescr
SNR@round 30 dB). this underlying/O, response. Then, itis possible to write

In the literature, step-increases in power froit lig vo, following the General Linear ModeGLM) of
moderate work rates (< 60%0, ., ) are considered to orgero, 0> 1 [14]

000~

Figure 1. Example ofyQ, on-kinetics of high intensity

be well described by the exponential model ofdwder 0 a3
(Eg. 1 witho= 1) while second-order model is used t&¥0, = Z Adnte =Ga, +¢e, a
describe transitions from light to higher work safe m=0

60% VO,...) [3] where VO,,.., representsthe Wwith G, =[g5,+,0,] anda, =[A,,-+, A]". The

maximum oxygen uptake of a subject. The choidaeof tvectorsg,,,m=0, 1, ...0, have a length & and can be

order of the model is sometimes argued by statistic T T

approaches based on an F test [3, 11]. NeverthetessMten g, = [1' 1] andg,, = [gm,l"”’gm,N] ,

ground truth has ever been provided to check the=1, ...,0 and

pertinence of these approaches. We recall that) whe 0if t, <td_

using empirical models, the simplest model that k=1 N

describes the data satisfactorily is sought. Thense mk = 1—ex;{—k_t¢"J ift >td.

purpose of the present paper is therefore to reiesa “ "

th_e q'uestk_)n of model.order selecti_on by test_mg;’d;tal . The estimation o, (see Eq. 2}t fixed orden from

criteria with appropriate properties: the inforimati

criteria (C). VO, is done classically by procedures that minimise th
RSShetween the experimental data points and the model
[3,4,5,6&11]i.e. the procedures are seardhirthe set

m
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of parameters that minimises the Euclidean nor@ ofa MC is sampled each iteration using a probabilistic
(see Eq. 3). This minimisation must be done wigh thransition kemnel that models the transition batwee

following physiological constraints on parameters: states. When sufficient iterations have been domgo
1. a,>0", sufficient states of the Chain have been sampted) t
2 td <. <td probability law of the states converges if thesitiamn
1S = o kernel has some properties [9, 12 & 17].
3. 0<p<--<1,. In our case, a state is defined by a gifeiset: from a

In the following, the nois&, = [eo'l,---,eoyN]T is  random initial setf, ,, a new set of parametefl§; is

supposed to be a realisation of a Gaussian wis@with  sampled each iteratiomf the algorithm. To estimatg,
varianceg, 6,02 for the model of ordex with SA the convergent probability law of the states abov

We provide now with the mathematical backgroundentioned must be chosen uniform on the sets of

for understanding our methods for estimating thelsino Parameters which provide global maxima of Eq. 5 and
parameters and the order of the model. zero elsewhere. To this el@hdoesn't optimise directly

the Likelihood function but an energy function bé t
Parameter estimation based on Simulated Anne&lity ( States, ie. the model parameter values, which is

Bayesian methods are based on the fundameRigPortional to the Likelihood function. This energ
theorem proposed by Bayes. In the context of paiamefunction can be defined as (see Eq. 6):

estimation, Bayes' theorem can be written [14]: En(g,)=- Iog( p(80|v02, M 0)) Eq.7
Pl _P(v0)6,, M )P(6,M,)  £q 4 and hasa Gibbs distribution [14]
. vo,,M o) =
P(V02|Mo) :l _ En(eo) Eq.8
p(En(8,))=— ex
M, represents the Data model of order Z BT

P(Ho|vo M o) and P(90| M o) are the posterior WhereZ is a constant of normalisati@®),the Boltsmann’s

. _ . _ constant andl, the “temperatureSAconsists in sampling
robability and the prior probability o, , respectively, . . .
P b prior p ty &, P y 6, according to Eq. 8, with decreasing valués of

conditionally to the observation vecten,, and the Data

model of ordero. P(v02|90, Mo) is the well-known In the case o0, kinetics, p(€0|v02, M 0) can be

literally expressed whes (see Eq. 3) is supposed to be a
likelihood function L(Ho;voz) of the parameter sets at arealisgtionp of a W?\?te(: andq G)aussignpo (@nd then

fixed order o. P(V02||\/|0) is called the Bayesian independenty and identically distributed (ii.cjpise
[24]:

evidence of the observation vector.
(@|vo,,M, )0

Maximising the likelihood function at fixed ordera P Ea.9
well-known statistical criterion for estimating argmeter [ ; . Vo ](N*;ﬂ)) &
set called Maximum Likelihood criterioll(): |VO, VO, ~VO, Go(Go Go) G, vo,|
g, =argmax{L(4,;vo,)) Eq5 Jaele,"c,)

60 - - .

This criterion is known to be consistent, ie.sit i According to Eq. 6, 7 & 8, the states that maximise

asymptotically unbiased and the estimation variemas L (6,;V0,) are the states of lowest energies. Then,
to zero asymptofically (maximeal precision). Até@der, - minimising En(@,) providesML estimation ofg), . For

Plvo,[M o) is a constant value and H(Ho| M o) IS the special case= 0, the only possible states are the ones
supposed to be approximately uniform, we obtained:  that produce the global minima of the energy (spSE
L(HO;VOZ) =P go|\,02' M, Eq.6 Therefore, the Gibbs distribution B0 is the desired
convergent probability law above mentioned.
To iterateSA two main approaches exist in order to
sample a Markov Chain with transition kernel witels

This result is of importance as the posterior (iitya
is often easier to express literally than the dtrens of
Eq. 4. We present now the basiSéfthe algorithm we  5noyiate properties: the Metropolis-Hastingsridn
use for optimising/lL criterion. d the Gibbs sampler. To estim we use

SAbelongs to the set of stochastic global methods 31 _ _ P . _ o, o
optimisation. SA is stochastic as it is based on thdetropolis-Hastings algorithm (for implementatietess

simulation of a Markov ChaivV(C). Indeed a new state of Se€ Appendix). _
Now, let see how selecting an order.

1 a, > 0 means that all the elements of veetpare
strictly positive.
13
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Parameter estimation and order selection for arir@rapmodel ofVO2 on-kinetics

Order selection based on Information Criteria (IC) MATERIALS
In the present case, the general fort@ @ [2]: Data

|C(0) =-2log L(é *VO. )+ C(N)q g | +1) Eq.10 Simulated\/O, responses were generated in order to mimic first-
order and second-order exponential kinetics ovienea period of 8

Wheree is theML estimation off), at ordeo, |6, |, the  minutes. Foo= 1, the set of parameters was comparable td tisesby

cardinal of @, , andC(N) is a term which depends on ﬂw#‘,‘?ﬁé&%& u}}%hﬂ;ﬂl&@ﬁg&%ﬁg Szcond

size of the observations. The valudtt a given order component of Eq. 1 either delays the attainmensteidy state or makes

corresponds to the opposite of the optimal value @b, increase inexorably until the end of the exefaisentivo, _ is

logLikelihood function with an added penalisationeached) (3, 4 & 5]. Therefore, both kinds of tirarse were simulated.

he first set of parameters leads to a steadyostatéhe duration of the
=+
C( )09| 1) This penalisation in the minimisation exercisery, = 1500/, = 20001t = 15, , = 25,4, = 6001cy = 180, and

procedure againstshould prevent over parameterisation, = 80; the second set uses a ligrelue in order to simulate a dritt in
as it becomes higher when the order of the modéb, over the entire duration of exerciég= 15004, = 20001d; = 15,
increases. In our conteX€ seem appropriate as theys =25A,=6001d, =180, and; = 320.

provide a model which represents a compromise éatwe N order to test the sensiivity of parameter efitim and order

selection methods against noise, the 3 referemetiegivwere noised with
a model with low complexity and the fully desodptof different levels of white and Gaussian noise.dvigus articles [10 & 15],

the Data. Thisis the bas_is for fitting an emplmedel 0 this noise has been frequently quantiied by tiafficient of variation
Data as it has been previously recalled in intit@siuc (C\2%) of the breath-by-breath data ie. the ratio deetvihe standard

From the definition given in Eq. 10, the ordercliele ~ deviation of the/O, fiuctuations and the magnitude of the response:
betweero = 1 and = 2 usindC (see Eg. 10) is done by g, Eq.14
the following procedure: CV% =100x% T '

1 CompUIeel with SA Four values a€\W@6 were used: 20, 15, 10 and 5. These differelt leve

A i of signalto-noise ratidS\NR may be expressed in a more conventional

2 CompUIeez with SA unity (i.e. in decibel, dB) by the following forracil
3. ComputeIC(l) and IC(Z). N ,
4. 6=argminIC(o). Z (Vozk B eovk)

0=12 SNR; = -10log,, *+— Eq. 15

We now provide the literal form & in the case of z e 2

GLM and white and Gaussian assumption for noise. The °
likelihood function Can be expressed as follows: The numerator and the denominator of Eq. 15 reptiseenergy of

_ the signal without noise and the energy of theen@ise Eg. 3),
L(H Voz) P |_|k—:|_ ( k) Eq.11 respectively. For each value@o, 40 stochastic vectors of noise were

Using the IO Jdikelinood function. the reviOusgenerated per set of parameters in order to rhieniwhdition of repetitive
9 9- ’ P exercise testing. So, we had 160 simulated respaitse =1 and 320

equ"imon becomes: simulated responses with=2 (80 perC\Wo). Table 1 provides the
LL\&.:vo ) = |o§x|3(é )) correspondence values betwe% andSNRg obtained on the whole
2 © Eq.12 simulated Data.
~ pas 2 N '
_(lodae,o )+1+ |OleT))E Table 1. Values of meaSNRg againstC\@% for simulated
Data witho= 1 (model with 1 exponential) ane 2 (models
. 1 & with 2 exponentials).
aspla, )= exp-—2¢_| k=1,..N Vb SNRs
' 25 2 20, o=1 20 1805
e ’ _ 15 2052
Order selection usingC can finally be written as 10 24,04
follows (see Eg. 10 & 12): 5 30,06
o . ~A 2 Eq13 ©72 20 18,93
6=argminNlogd,,” + C(N)(]HO| +1) : 1 2141
0=12 _ 10 24,96
as we removed all constant values of Eq. 12 idEJo 5 3096
estimate in the case d/O, kinetics, we use a particular Statisical Analysis
IC called @iC with In order to evaluate the performances of the pe¥aamimation at

_ _ variousSNR each simulated response was modelled with thel order
C(N ) - Cwﬂ (N ) =N g Iog(log(N )) ,0<f<118]. corresponding to the ground truth. Then, for eadmpeter, the sensitivity

: ; oA of estimation was evaluated by two classical iadice
In the partResults and Discussiowe will discuss the 1. The biast) as an index of accuracy of the esimationthiisnean

choice of an appropriate valugiiising simulated Data. of the estimation errors, i.e. the mean differbateeen the reference
value and the estimates.

14
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2. The standard deviation of the estimation er@rs ) as anindexof  Concerning the performances of the parameter
the predision of the estimation. estimation for the double exponential modet(2), a
_ Inorderto evaluate order selection performartwesiausSNReach  direct comparison of the present resulS\at= 20% is
signal was fited with both modets< 1 anch = 2). Then, the sensitvity yossible with the results of our previous study £6]
of order selection was evaluated by expressing: d q I fid - al forh
1. The percentage of correct order selection foirtingated responses tren towar_ S a smaller . contidence Interval tomeac
generated with the single exponential model. parameter is observed in the present study. As an
2. The percentage of correct order selection foirtdated responses example, the confidence intervals#480 versu1800
generated with the double exponential model. mIO,.min® for Ay, +110 versug183 s fortd, and+400

These percentages were expressed depending evettef hoise .
andthe level of versust1470 s forz in the present study compared to

the previous one, respectively. This may be dubeto
RESULTSAND DISCUSSON fact that the present simulated data contain dtving
Performances of SA more samples than the signals of the previous.study
Fig. 2 and Fig. 3 provide results of estimation As we hypothesised in our previous study, the
performances for model with= 1, and for models with present results demonstrate that an improvem&ni
0 = 2, respectively. These figures show biases 8@l 9largely reduces the confidence intervals of thmated
confidence intervals of the data for each paraméter parameters. Unfortunately, the confidence interfeals
lower C\Wb (higher isSNRg — see Tab. 1), the higher thehe second-exponential parametefs, (b and 1)
confidence for each parameter. Equivalent perfaregan remain excessively large even at the higBe#R(i.e.
are obtained fofy, tdy and ;; whatever the model order C\WWo= 5). As an example, the confidence intervals
andC\Wa6. At CWho = 5 compared t€\Wh = 20, the remains att57 miQ.min® for A, (i.e. £10% of the
confidence intervals a6 versus25 miQ.min for A, reference magnitude}19 s fortd, (i.e. #10% of the
(i.e. about+0.35% versustl.0% of the reference reference magnitude) at@l s forz (i.e.+47% of the
magnitude), andt1.5 s versus7.5 s fortd; andr; (i.e. reference magnitude, in average). Therefore, ithits |
about+7.5% versus:35% of the respective referencéhe interpretation of these parameters. \We suppase
times), respectively. In accordance with our previothe different shapes 6O, response influence the
paper [6], these resuits reinforce the need forimg  confidence intervals of the estimated parametense M
the SNRof the raw data before modelligD, kinetics. precisely, one of both sets of reference parameters
This could be done by improving the algorithms Wsed employed to simulate data |ea&eoz to increase
compute breath-by-breaffO, data [7]. linearly rather than asymptotically over the eserci
Concerning the performances of the parametddration corresponding to the second-exponential
estimation for the single exponential modek=(1), a component. Then, the/z ratio may be seen as a good
direct comparison is possible with the resultsighitzti  approximation of the slope of a linear functiorcdbing
by Lamara & al. [10] as their methodology forthis increase iVO,. As infinity of values for both
generating simulated data is identical to ours. The . . o
difference between both studies concems the dsﬁmaparameters may pronuce this rafio, this k'nd_/@Z
algorithm: SAin the present one; a non-linear algorithrime course tends to increase the confidence st/
based on Gradient descent method in the study 1§ Second-exponential parameters.
Lamarra et al. [10] (and their study only testeel th _
estimation oftd, and 7). Although we originally Modelorder selection . .
developed SA for parameter estimation of double Fig- 4 and 5 show the evolution, against t#bénd
exponential model [6], this comparison shows, & thSNR Of percentages of correct model order seleation f
case of a single exponential model, $Atcompared to Models witho = 1 ando = 2, respectively. The first
a GD method, tends to improve the parametdpformation brought by these figures is that tighdis,
confidences: a6 = 20, the 95% confidence intervalthe lower the obtained order of the model. Conseigue
of tdy and 7, is about:10 s withGD method while it is  When using the single-exponential model as theerefe
reduced to about6 s withSA At C\Wb = 5, the 95% response, 100% of correct model order selection is
confidence interval df}; andz is aboutt4 s withGD ~ obtained for 5 > 0.15;, when using the double-
method while it is reduced to abatlt5 s withSA We  €Xponential model as the reference response, 160% o
hypothesise that this improvement in parametPTect model order selection is obtaineger0.3. In a
estimation is due to the fact ti@#is more adapted to 9eneral context, a range Bfvalues equalled to [0.15,
the mathematical properties of the functions to K3l allows us to select the correct model ordexteter
optimised (i.e. the exponential functions — sd@ESNR(G<CWO<20).
introduction).

15
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In the literature, different penalisation ten@@N) have led investigators to erroneous results iniquev
(see Eqg. 10 & 13) than the formulation we usptC( studies.

using C,, (N)=N”log(log(N)), 0 <B< 1) have
been proposed. The main penalisations found_in

Table2. Model order selection results using F test.

literature are: C\Wh 0=1 0=2 average
L. Cyc(N)=2, AkdikelC (AIC)[1] P ®  ws 100 o
— : 10 % 100 975
2. C_B|_<:(N) Iog(N), BayesianlC (BIC) [18] or 5 o5 100 %655
Minimum Description Length (MDL) [16]. P=0,025 20 25 100 96,25
15 0 100 %
: 10 975 100 98,75
AboutgJC, Scan be chosen betwei, andGw.[13]: 5 e 10 975
B = loglog(N) <f<l-B,. =f.  Ea16 P=00L 20 975 100 98,75
oglN) Eow o w
Let's notice that it is also possible to comple and 5 975 100 9875
BIC from @JC. Indeed, two values gB allow the
compftrjtatiog of( ’t\ll’\()a penalisations AC (Bxc) andBIC CONCLUSION
om ;
(o) % The first conclusion of the present paper is iiagn
B = log(2) - logloglog(N) Eq17a Using SA the confidence of the estimated kinetic
Ae Iog(N) parameters, for exponential models descrit)iﬂ@2
_log Iog(N) —loglog Iog(N) o 17 kinetics 6 = 1, 2), is proportional to thBNRof the fitted
Bac = Iog(N) & VO, response. Nevertheless, conceming the second-

WhenN > 15, B, < Bac < B <Bou- Fig. 4 order model, the confidence intervals of the second
! min max * "

— exponential parameters remain excessively ladew
and 5 show the effect of these penalisation valadise their interpretation. This may be due to the diffier
model order selection. It appears that:

~ ~ A _ ~ _ tested shapes MO, res onses, and then further studies
0AIC 2 c)BIC 2 0% (IB - :Bmin) 2 O% (IB - :Bmax) Eq. X P 2 P

with &c the estimated order using a givéh This are needed in order to precise which shapes(®y

hierarchy was predictable because the higher #gSPONSe lead to confidence intervals small erouigh
penalisation, the lower the complexity of the setec interpreted. _ _
model. From these differei@, only two are appropriate D€ Second conclusion of the present paper ihat
to select the correct model order in the preseatBiC ~ Selection of the model order € 1, 2) usindC needs to

and gJC with 3= B because both are included in th&!Se an appropriate penalisation term 1.65 aalue
range [0.15, 0.3]. C%(N) in the range [0.15, 0.3] in order to obtain

These resiilts clearly show that the selectioneof o094 of correct model order selection. Comparggivel

model order (and so the choice of the adaptgek approach based on an F test and previouslyrused
penalisation term in order to describ, kinetics physiological studies leads to an overestimatiothef

appropriately) is a complex mathematical probleniiodel order. This questions the validity of some
Therefore, this questions the validity of anotimistical ~ Previous published resuits.

approach used in previous physiological studiethor

same goal [3, 11]. This method retains the secaiwi-o APPENDI X

model if the decreaseRESs sufficient to offset the loss ] ]

in degrees of freedom associated with the incread@iplementation of SAthe case of 0 2

number of model parameters as determined by an F fo  Initialisation:

Table 2 shows the percentages of correct modal orde © !~ 0,T=To .

selection against bot€\%% and the order of the © Sample an initial state
reference model, using this method. It is well epua S, = [tdlo, leo,tdZ’O,TZ’O]T that defines a
that it reacts like Information Criteria incorpangtsmall
B values and penalisation terms: comparable resslts
obtained with 0 8 < 0.1. Then, this approach tends to from s, using a least-squares estimation of
overestimate the model order whateS&tRand may a,,a, = (G OT Go) 1 GOT vo,.

matrix G, (see Eq. 3)f, , is then computed

16
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0 Resamples, until all the elements df, are Estimated RSS can be directly computed as the sum
posttive, according to physiological constraint§f the elements d&, .
(see  Method&stimation problem and  The decreasing scheme of i.e. the annealing
numerical Dat schedule, is of importance. If it is sufficienttyn, the
o ’ td_ _ convergence to the global minimum is insured. Of
Gro,.0 {AOO {A“O m0 mO}m 12} course, it is impossible to decreaBeuntl 0 and
* Stepl: _ annealing schedules that guarantee convergence are
0 Produce a new state using a randofftractable because they take a huge amount of time
perturbationg: S, =S, +¢. This is the reason we stop the algorithm to a noimm
o Compute G ; and tempe'raturé' min rgached in a'ﬁnlte number of |te'rat|ons.
) To estimated, with SAalgorithm, the configuration of
T B T
= (Gp Gp) G, vo,. B, To, Twn the temperature decreasing scheme, the
0 Resamples, from s, until all the elements of sample laws of initial state and state propésa) are
a,, are positive. described in the following:
0 Then, make the state proposal B= equal to the inverse of the power of
G = {A"' P ’{A"' o T, "}m=12} for Eq. 8 in the case= 2.
O,i41 « T,=01andT,,, =0,000001in order to have
* Step2: coherent values for

VO,,p

Compute the acceptance raio= min{:L r} with p(En(H\,0 p)) B [{_ En(H )— En(6’\,%i )J
BT

_plEnle, , )6, .

6.5, ) p{EN\@,

~ plEnle,, ..,

Tisthe transmon kernel

T(

6,

VO,, P

) ' and so, forr (seestep 2of the algorithm).
» Tis decreased with a geometric annealing schedule:

T. = A'T,. The number of iteratioris,, has been
) 2 p(Tm p) chosen equal to 1500000 and

vo2

T

VO, i

since we assume unlform probablllty laws for time

delays.

Stated, ;,, has a probabilityr to be equal td), ,
and 1 to be equaltd, ; . So,

6] .> o) - oxf )|

max
» sample laws: for the time valuéd;, andtd,, we use
uniform laws of the formtd, ~Uj,

min vvalmax] !

I=1,2, and for scale parametems, and 7,,

if r =21, uniform laws for logarithm [14]:
a=1landf,;,, =6, ,. 0 if 7, <valy,

Else p(ri) = /(7 log(Valyay/vahyn)) if Valy, <7 < val,
sample a realisatior of a random variable 0 if 7, >val,,
X ~Ujoy where X ~U/, ) signifies that | =1 2. Then, for the initial Statg Val, andvakey
X follows a continuous uniform law oa p). values for each parameter are:
If x<a, 0 td,,:val,=-50 and/ake= 50.

Goivs = o p 0 Ty Vahin= Tin ANAVahex= Trnae
Else Ho i+1 Ho,i : (0] tdZ,O s Vakhin= tdl,O anadval sy =thax
e Step3: cyal | — -

FT>Tos 0 Typ:Vakin= Ty antVakex= Tex
Decreasd.i =i+ 1. Returnto step 1. andfors,:

Else T =T

HenceéA?0 obtainedg, is estimated as follows:

e, =vo,-G_a,

o td; o - i tch; - 2,5 < -50yakn = 50,
elsevaly, = td,; — 25,
if tdy; + 2,5 > 50yal = 50,

6, = 6,; and stop the iterations.

17
Copyright© 2006C.M.B. Edition
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elseval = tdl,i +25.

0 Tyt 7y =20 < Tpyy , Vahin= T
elseval, = 7,; — 20,
if 7,; +20> 7, Vakex= Trax
elsevale=7,; +20.

0 td, ,:if tdh -5 <tdyp, Vak, =tchy,

elsevaly, =tdh; — 5,
if t0h; + 5 St Vaknax =t
elseval=1td; + 5.

0 T7,,:if 1, —20<7, ,,Vakin="Tp
elsevalk, = 5; — 20,
if 7,,+20> 7, Vakex= Trax
elseval = 5; + 20.
These values have been chosen to obtain cohe
values of acceptance ratio, to visit many stateheat

beginning of iterations and to converge at the @nd
iterations.
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Figure 4. Percentages of correct model order selectiohdwitnulated responses vatr 1. The percentages are expressed as a furficidfro(or

SNRg see Tab. 1) and ftvalues varying from O to abgit.,.
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