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Introduction

Sensorineural hearing loss is very common and is 
mainly characterized by progressive development and a 
long course of disease (1,2). Sensorineural hearing loss is 
caused by impairment of cochlear hearing cells, auditory 
nerves, or neurons at all levels in the auditory conduction 
pathway, resulting in impairment of sound perception or 
nerve conduction, and eventually deafness (3). Studies 
suggested that excessive accumulation of reactive oxygen 
species (ROS) in cochlear cells and cell injury apoptosis 
are closely related to deafness (4). The reduction of ROS 
generation can effectively protect against cochlear hair 
cell damage (5). ROS can activate the release of mitogen-
activated protein kinase and its stress-activated protein 
kinase c-Jun N-terminal kinase (JNK), thus functioning in 
various cell activities (6,7). Studies confirmed that ROS/
JNK signaling is involved in mediating auditory cell apop-
tosis, so it can be used as a therapeutic target for deafness 
(8).

The protein family containing nucleotide binding do-
mains and leucine-rich repeats (NLRs) are a class of evo-
lutionarily conserved proteins with multiple biological 
functions (9). NLRX1, one of the NLRs, is widely detec-

ted in vertebrate muscles and heart and other tissues, and 
it belongs to mitochondrial function regulatory proteins 
(10). NLRX1 can promote the generation of ROS by ac-
ting on the complex of the mitochondrial respiratory chain, 
thereby activating signal pathways such as JNK (11). In 
addition, studies confirmed that NLRX1 participates in 
early multi-tumor diseases, mainly by regulating signal 
pathways related to tumor progression (12,13). NLRX1 
can activate Caspase-8 and induce apoptosis (14). In sum-
mary, NLRX1 can participate in physiological processes 
such as ROS response, impaired mitochondrial function, 
and apoptosis. However, it is rarely reported whether it is 
involved in the regulation of deafness caused by impaired 
cochlear hair cell function.

This study hypothesized that NLRX1 regulated apop-
tosis-related JNK pathways, thereby affecting cochlear 
hair cell survival. To verify it, C57BL/6 mice were used 
as research subjects to explore the expression of NLRX1 
in the cochlea of mice of different ages, and the mecha-
nism of NLRX1 expression on JNK pathway activation 
was analyzed with cochlear hair cells as subjects. It was 
hoped to provide the experimental basis for understanding 
the mechanism of hair cell damage in senile deafness.
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Materials and Methods

Experimental subjects
Newborn 15d-, 30d-, 90d-, and 270d-old wild-type 

C57BL/6 mice from Shanghai Jiesijie Laboratory Animal 
Co., LTD., were used. All mice were fed for one week with 
a free diet, the room temperature was 22-25 °C, the rela-
tive humidity was 55-60%, and the light was altered day 
and night for 12h/12h. Animal tests were carried out in 
accordance with the standards of practice established by 
the Animal Ethics Committee.

Cochlear hair cells (HEI-OC1) were cultured in Dul-
becco’s Modified Eagle’s Medium (DMEM) with high 
glucose containing 10% fetal bovine serum at 37°C and 
5% CO2. The cell culture medium was replaced regularly, 
and the cell growth state was observed. Cell passage was 
carried out when the convergence degree reached about 
80%.

Auditory brainstem response (ABR) test
Before the test, the mice were weighed and anesthe-

tized with 1% pentobarbital sodium (45 mg/kg) intraperi-
toneally injected. The mice were placed in a closed audio-
metry chamber with good sound insulation, and the elec-
trodes of the audiometry instrument were placed under the 
skin of the cranial top, right mastoid process, and thigh of 
the mice. The mice were given auditory stimulation (initial 
intensity was 90 dB, then decreased step by step with 5 
dB) to detect the lowest stimulus intensity, which was set 
as the auditory threshold.

Immunofluorescence staining
Anesthetized with 1% pentobarbital sodium (45 mg/

kg) intraperitoneally injected, the mice were killed by 
neck dislocation, the cochlea tissue was harvested, and 
the oval window membrane, oval window membrane, 
and excess soft tissue were removed. Cochlear tissue was 
immersed in a 4% paraformaldehyde (PFA) solution and 
treated overnight at 4°C for tissue fixation. After being 
washed with phosphoric acid buffer, the cochlear tissues 
were immersed in a 10% ethylenediamine tetraacetic acid 
(EDTA) solution and treated with decalcification for three 
days until the tissues were transparent. The hair cells were 
then exposed completely under an anatomical microscope, 
and the basement membrane was taken as specimens. Af-
ter that, phosphoric acid buffer with 0.5% Triton X-100 
was applied to penetrate the tissues for 15 min, and the 
phosphoric acid buffer was washed. Then, poly (butylene 
terephthalate) (PBT) -1 solution was added, and tissue 
was sealed at 25°C for 1h, then added with 1:1,000 dilu-
ted NLRX1 primary antibody, then incubated overnight at 
4°C. After the primary antibody was discarded, the tissues 
were rinsed with poly (butylene succinate-co-terephtha-
late) (PBST) solution, and fluorescently labeled secon-
dary antibody and 4’,6-diamidino-2-phenylindole (DAPI) 
dye were added, which were incubated together at room 

temperature for 30min in the dark. Then, the tissues were 
rinsed with PBST, and Dako anti-quenching agent was 
added. The luminescence was examined by a fluorescence 
microscope in the dark.

Transfection of cells overexpressing/silencing NLRX1
After counting the HEI-OC1 cells, they were inocula-

ted into 6-well plates at 5×105 cells/well. After adherence, 
cells were washed with a serum-free cell medium. The 
Opti-MEM-diluted Lipofectamine 2000 reagent was ad-
ded for transfection of NLRX1 siRNA and overexpression 
of NLRX1 plasmid. The sequence of NLRX1 siRNA is 
5’-UCAAGAAGGAGAUAUGCUCAU-3’. The NLRX1 
expression sequence was amplified and connected to the 
expression vector pcDNA3.1 by T4 ligase. The NLRX1 
expression sequence was transformed into DH5α, and the 
plasmid was extracted after propagation. Subsequent cell 
tests were performed 48h after transfection.

RT fluorescence qPCR
Total RNA was extracted from mouse cochlea basal 

membrane tissues and HEI-OC1 cells according to the 
traditional Trizol reagent extraction method. Ultraviolet 
spectrophotometry and agarose gel electrophoresis were 
adopted for the determination of RNA concentration and 
purity. The RNA concentration was normalized to 300 ng/
μL, and the cDNA was reversely transcribed, referring to 
the cDNA reverse transcription kit (Taraka, Japan). Then, 
mRNA levels of target genes NLRX1 and β-actin were de-
tected with cDNA as the template in accordance with the 
RT fluorescent qPCR kit instructions (Taraka, Japan). Pri-
mers for quantitative detection of target genes are shown 
in Table 1. With β-actin gene was set as the internal refe-
rence, and the relative level of NLRX1 was detected via 
2-△△ct.

Cell proliferation viability detected by methyl tetrazo-
lium (MTT) assay

HEI-OC1 cells were inoculated into 96-well plates at 
5×103 cells/well. After cell adhesion, NLRX1 siRNA and 
overexpressed plasmid were transfected. After 24 hours of 
culture, cells were cleaned with phosphoric acid buffer, 100 
μL 0.5mg/ mL MTT reagent was used, and the cells were 
incubated in the dark for 4 hours. Then, the supernatant 
was discarded, and 100 μL dimethyl sulfoxide (DMSO) 
reagent was applied to the cells, which were incubated 
in an incubator for 15min. The absorbance of all wells 
of cells was measured at 570 nm via a microplate reader. 
The blank group (normal cells without any treatment) and 
the negative control group (only transfection reagent was 
added) were set to calculate the cell proliferation activity.

Western blot
The basal membrane tissues of mouse cochlea and 

HEI-OC1 cells were taken, and RIPA protein lysate was 
added for tissue homogenization. Quantitative detection 

Gene Primer sequence (5’→3’) Length (bp)

NLRX1
F: TAGGGCCTTTATCCGTTACCA

134
R: TAAACCACTCGGTGAGGTTCC

β-actin
F: ATGACCCAAGCCGAGAAGG

228
R: TGCAATGACGTGAGGAACACT

Table 1. Primers for quantitative detection of target genes.
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NLRX1 immunofluorescence staining of the mouse co-
chlea

Immunofluorescence staining was used to examine the 
difference in NLRX1 expression in cochlear basement 
membrane tissues of mice of different ages, and the results 
were shown in Figure 2. There was no positive expression 
of NLXR1 in the cochlear hair cells of 15d-old mice. A 
small amount of positive expression of NLRX1 was seen 
in the cochlear hair cells of 30d-old mice, mainly with 
strong red fluorescent staining. The expression of NLRX1 
in 90d-old mice increased slightly, and hair cell loss appea-
red. The positive expression of NLRX1 in 270d-old mice 
further increased, the fluorescence signal was strong, and 
they showed a neat and dense arrangement trend.

Changes in NLRX1 level in the mouse cochlea
The expression level of NLRX1 in cochlea tissues of 

mice of different ages was discussed, and the number of 
NLRX1 positive cells is shown in Figure 3. As the age 
of mice increased, the expression level of NLRX1 in the 
cochlea tended to increase gradually. After comparison, 
NLRX1 mRNA and protein levels of 30d-, 90d-, and 
270d-old mice were substantially greater than those of 
15d-old mice (P<0.05). NLRX1 mRNA and protein levels 
and the number of positively stained cells in 90d-old mice 
were substantially greater than those of 30d- and 270d-old 
mice (P<0.05). The NLRX1 mRNA and protein levels and 

was implemented to detect the concentration of extracted 
protein by referring to the bicinchoninic acid (BCA) kit, 
and a standard curve was drawn. The 10% separated glue 
and 6% concentrated glue were prepared, and the proteins 
were heated with boiling water for 10min for denature. 
Then, proteins were electrophoretized at 80V-120V for 
30 min and 60 min, respectively. polyvinylidene fluoride 
(PVDF) membrane was used for protein transmembrane 
processing, and then the proteins were soaked in a bloc-
king solution containing 5% skim milk powder, and sea-
led at 25°C for 1h. TBST solution was added for cleaning. 
Rabbit anti-NLRX1 (1:1,000), rabbit anti-JNK (1:1,000), 
rabbit anti-p-JNK (1:1,000), mouse anti-Bcl-2 (1:1,000), 
rabbit anti-Bax (1:1,000), rabbit anti-Caspase-3 (1:1,000), 
and mouse anti-β -actin primary antibody (1:1,000) were 
added, and overnight incubation was at 4°C. TBST solu-
tion was used for cleaning, horseradish peroxidase labeled 
secondary antibody was applied, and the cells were incu-
bated at room temperature under dark conditions for 2h. 
ECL luminescence detection kit was used to detect the 
luminescence reaction from light, and then developed in a 
gel imager. With β-actin gene as the internal reference, the 
gray value of target band was detected by ImageJ.

Statistical analysis
SPSS 19.0 was employed, and all experimental data 

were represented by means ± SD. Differences between 
groups were compared using a single-factor ANOVA pro-
cedure. P<0.05 was considered statistically considerable.

Results

In vivo animal test results

Mouse ABR audiometry results
The differences between the ABR audiometry results of 

15d, 30d, 90d, and 270d newborn mice were illustrated in 
Figure 1. As the audiometry frequency (8 kHz - 32 kHz) 
increased gradually, the hearing threshold of mice of dif-
ferent ages showed a gradually increasing trend. Under 24 
kHz and 32 kHz frequency stimulation, the hearing thres-
hold of 90d-old mice was dramatically superior to that of 
15d- and 30d-old mice (P<0.05). Under the stimulation 
of different listening frequencies, the hearing threshold of 
270d-old mice was dramatically superior to that of other-
day-old mice (P<0.05).

Figure 3. Comparison of NLRX1 expression in cochlea tissues of 
mice of different ages. Note: A. Difference in NLRX1 mRNA ex-
pression; B. The average number of NLRX1 positive staining cells; 
C. Western blot strips; D. Difference in NLRX1 protein expression. 
aP<0.05 vs. 15d- age; bP<0.05 vs. 30d- age; cP<0.05 vs. 90d- age.

Figure 1. Comparison of ABR hearing test results in mice of different 
ages. Note: aP<0.05 vs. 15d- age; bP<0.05 vs. 30d- age; cP<0.05 vs. 
90d- age.

Figure 2. Immunofluorescence staining of NLRX1 in mice of dif-
ferent ages. Note: the microscope magnification was ×400; the red 
fluorescence was stained by NLRX1; the blue fluorescence was stai-
ned by DAPI; the green fluorescence was stained by Parvalbumin.
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the number of positive staining cells were the largest in 
90-day-old mice.

Detection of JNK pathway activation and apoptosis in 
mouse cochlear basement membrane

In Figure 4, as the age of the mice increased, the ex-
pression levels of p-JNK, Bax, and Caspase-3 proteins 
in the cochlear basement membrane showed a gradual 
increasing trend, and the expression of Bcl-2 showed a 
gradual decrease trend. Among them, the target gene pro-
tein level in 270d-old mice was the highest in p-JNK, Bax, 
and Caspase-3 and the lowest in Bcl-2. After comparison, 
the protein level of the target gene suggested no drastic 
differences between 15d- and 30d-old mice (P >0.05). The 
p-JNK, Bax, and Caspase-3 protein levels in mice aged 
90d and 270d were dramatically higher versus that of 15d 
and 30d (P <0.05), while the Bcl-2 level was lower. Pro-
tein levels of p-JNK, Bax, and Caspase-3 in 270d-old mice 
were dramatically superior to that of 90d-old (P <0.05), 
while the Bcl-2 was lower.

In vitro cell test results

Detection of NLRX1 expression in HEI-OC1 cells
Real-time fluorescent quantitative PCR and western 

blot detected the differences of NLRX1 in HEI-OC1 cells 
after different treatments. Figure 5 shows no considerable 
difference in NLRX1 level in the cells of the control group 
and negative control group (P >0.05). NLRX1 in the cells 
of the overexpressed group was dramatically superior to 
that of the other groups (P<0.05). NLRX1 in the silenced 
group was substantially inferior to other groups (P <0.05).

Effect of NLRX1 on HEI-OC1 cell proliferation
The differences in the proliferation activity of HEI-

OC1 cells in each group were shown in Figure 6. The cell 
proliferation activity after overexpression of NLRX1 was 
dramatically superior to the Ctrl group, negative control 
group, and silenced NLRX1 group (P<0.05). After the si-
lencing of NLRX1, the cell proliferation activity increased 
substantially and was dramatically superior to the overex-
pressed NLRX1 group (P<0.05). Moreover, it was slight-
ly inferior to the control group and the negative control 
group, involving no considerable differences (P>0.05).

Effect of NLRX1 on JNK pathway activation and 
apoptosis in HEI-OC1 cells

Figure 7 shows that p-JNK, Bax, and Caspase-3 pro-
tein levels in the overexpression NLRX1 group were the 

Figure 6. Comparison of the proliferation activity of HEI-OE1 cells 
with different treatments. Note: Ctrl means the control group; NC 
means the negative control group; OE means the overexpression 
NLRX1 group; DE means the silenced NLRX1 group. aP<0.05 vs. 
15d- age; bP<0.05 vs. 30d- age; cP<0.05 vs. 90d- age.

Figure 7. Comparison of the proliferation activity of HEI-OE1 cells 
with different treatments. Note: Ctrl means the control group; NC 
means the negative control group; OE means the overexpression 
NLRX1 group; DE means the silenced NLRX1 group. A. Western blot 
strips; B. Differences of phosphorylated proteins in JNK pathway; C. 
Bcl-2 protein expression difference; D. Bax protein expression diffe-
rence; E. Caspase-3 protein expression difference. aP<0.05 vs. 15d- 
age; bP<0.05 vs. 30d- age; cP<0.05 vs. 90d- age.

Figure 5. Comparison of NLRX1 expression in HEI-OE1 cells with 
different treatments.Note: Ctrl means the control group; NC means 
the negative control group; OE means the overexpression NLRX1 
group; DE means the silenced NLRX1 group. A. Western blot strips; 
B. NLRX1 protein expression difference; C. NLRX1 mRNA ex-
pression difference. aP<0.05 vs. Ctrl group; bP<0.05 vs. NC group; 
cP<0.05 vs. OE group.

Figure 4. Comparison of the JNK pathway and apoptosis-related 
protein expression in cochlea tissues of mice of different ages. Note: 
A. Western blot strips; B. Differences of phosphorylated proteins in 
JNK pathway; C. Bcl-2 protein expression difference; D. Bax protein 
expression difference; E. Caspase-3 protein expression difference. 
aP<0.05 vs. 15d- age; bP<0.05 vs. 30d- age; cP<0.05 vs. 90-day age.
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highest, the Bcl-2 was the lowest, and the levels were 
substantially different from other groups (P<0.05). Howe-
ver, no great differences were indicated among the control 
group, the negative control group, and the silenced NLRX1 
group (P>0.05).

Discussion

Due to the natural upward decay, the cochlear hair 
cells also decay and disappear, which is in line with the 
phenomenon of human presbycusis (15). Without manual 
intervention, C57BL/6 mice can also develop spontaneous 
presbycusis. It is close to the naturally occurring human 
presbycusis disease, so it is one of the ideal animal models 
for studying presbycusis (16,17). The ABR held that as the 
age of C57BL/6 mice increased, the hearing threshold also 
showed a gradually increasing trend, indicating that the 
elderly mice had a hearing impairment.

Furthermore, NLRX1 in mouse cochlear hair cells was 
explored. It turned out that NLRX1 was mainly expressed 
in mouse cochlear hair cells, and the expression level 
increased and then decreased with the growth and deve-
lopment of mice. Among them, 90-day-old mice had the 
highest expression. This may be due to the loss of cochlear 
hair cells in 270-day-old mice, so the expression level of 
NLRX1 decreased. Studies confirmed that NLRX1 can 
regulate cell apoptosis by activating the JNK signaling 
pathway (18,19). Bax and caspase-3 are pro-apoptotic fac-
tors, while Bcl-2 is an anti-apoptotic factor, which jointly 
regulates the process of cell apoptosis (20-22). As the 
age of mice increased, the phosphorylation level of JNK 
and protein levels of Bax and Caspase-3 in the cochlea 
tissue showed a gradually increasing trend. However, the 
expression of Bcl-2 showed a trend of down-regulation, 
indicating that as the age of the mice increased, the mouse 
cochlear hair cells underwent obvious apoptosis (23).

The effects of overexpression and silencing of NLRX1 
on the proliferation of cochlear hair cell HEI-OE1 and 
activation of the JNK pathway were analyzed. It was re-
vealed that NLRX1 can inhibit cell proliferation activity, 
and increase p-JNK, Bax, and Caspase-3 protein in the 
cell while inhibiting the Bcl-2 protein. When NLRX1 was 
silenced, the expression level of the target gene protein 
in HEI-OE1 cells changed substantially. The increase of 
p-JNK expression level indicated that NLRX1 caused the 
phosphorylation level of JNK, which in turn activated the 
signal pathway. The elevated levels of Bax and caspase-3 
indicated that NLRX1 can promote dependent apoptosis 
(24). Therefore, NLRX1 can inhibit proliferation and pro-
mote apoptosis by activating the JNK apoptosis signaling 
pathway (25).

This study revealed that NLRX1 can enhance the acti-
vation of the JNK signaling, thereby promoting cochlear 
basement membrane hair cell apoptosis, inhibiting pro-
liferation, and promoting the process of deafness. The 
phased role of NLRX1 in regulating the function of mouse 
cochlear hair cells was also explored via in vivo and in 
vitro experiments. However, whether NLRX1 plays a role 
in hair cell damage caused by other common deafness fac-
tors requires further preparation of NLRX1 knockout mice 
for verification. In conclusion, this work provides experi-
mental evidence for exploring the therapeutic targets of 
sensorineural hearing loss.
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