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1. Introduction
Temperatures fluctuate continuously worldwide and 

severely affect plants [1]. Extreme crop production reduc-

tions are expected, threatening future food supply and 
security [2,3]. Any plant, however, responds to heat stress 
via multiple pathways and regulatory networks, requiring 
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Improving crop plants using biotechnological implications is a promising and modern approach compared to 
traditional methods. High-temperature exposure to the reproductive stage induces flower abortion and declines 
grain filling performance, leading to smaller grain production and low yield in lentil and other legumes. Thus, 
cloning effective candidate genes and their implication in temperature stress tolerance in lentil (Lens culinaris 
Medik.) using biotechnological tools is highly demandable. The 12-oxophytodienoic acid reductases (OPRs) 
are flavin mononucleotide-dependent oxidoreductases with vital roles in plants. They are members of the old 
yellow enzyme (OYE) family. These enzymes are involved in the octadecanoid pathway, which contributes 
to jasmonic acid biosynthesis and is essential in plant stress responses. Lentil is one of the vital legume crops 
affected by the temperature fluctuations caused by global warming. Therefore, in this study, the LcOPR1 gene 
was successfully cloned and isolated from lentils using RT-PCR to evaluate its functional responses in lentil 
under heat stress. The bioinformatics analysis revealed that the full-length cDNA of LcOPR1 was 1303 bp, 
containing an 1134 bp open reading frames (ORFs), encoding 377 amino acids with a predicted molecular 
weight of 41.63 and a theoretical isoelectric point of 5.61. Bioinformatics analyses revealed that the deduced 
LcOPR1 possesses considerable homology with other plant 12-oxophytodienoic acid reductases (OPRs). Phy-
logenetic tree analysis showed that LcOPR1 has an evolutionary relationship with other OPRs in different 
plant species of subgroup I, containing enzymes that are not required for jasmonic acid biosynthesis. The 
expression analysis of LcOPR1 indicated that this gene is upregulated in response to the heat-stress condition 
and during recovery in lentil. This study finding might be helpful to plant breeders and biotechnologists in 
LcOPR1 engineering and/or plant breeding programs in revealing the biological functions of LcOPR1 in len-
tils and the possibility of enhancing heat stress tolerance by overexpressing LcOPR1 in lentil and other legume 
plants under high temperature.
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coordination between several subcellular compartments 
[4–6]. Therefore, improving temperature stress (TS) tole-
rance in plants through boltechnological approach is high-
ly demandable in this context.

As vital crops worldwide, legumes are subjected to 
various biotic and abiotic stress conditions. However, the 
abiotic stresses severely affect legumes' adaptability and 
productivity [7,8]. Lentil is a vital cool-season legume 
crop that encounters numerous stresses and is known to be 
highly sensitive to rising temperatures [9–11]. Heat stress 
in this legume is associated with cellular membrane da-
mage, a significant reduction in relative leaf water content, 
and a substantial decrease in the chlorophyll concentration 
and fluorescence, resulting in a reduced photosynthetic 
rate [10,12]. Thus, understanding molecular mechanisms 
with the development of high temperature-tolerant geno-
type and temperature-resilient crops using a biotechnolo-
gical approach is highly desirable.

Jasmonates (jasmonic acid (JA), methyl jasmonate, 
12-Oxo-phytodienoic acid (OPDA), and related cyclo-
pentenones) are lipid-derived compounds that play a role 
in plant development signaling. They are also implicated 
in the responses to biotic and abiotic stresses [13–15]. Jas-
monate biosynthesis originates from releasing polyunsa-
turated fatty acids like linolenic or hexadecatrienoic acids 
from chloroplast-membrane lipids [16]. They are first 
oxygenated by 13 lipoxygenases (13-LOX) to produce 
their hydroperoxy derivatives. By the consecutive action 
of allene-oxide synthase and allene-oxide cyclase, the 
hydroperoxy-fatty acids are converted to the first cyclic 
intermediate of the pathway, i.e., 12-oxophytodienoic acid 
(OPDA). The subsequent reduction of the cyclopentenone 
ring of OPDA to the corresponding cyclopentanone is 
afforded by peroxisomal 12-OPDA reductase (OPR3) to 
yield OPC-8:0 (3-oxo-2-(2’-pentenyl)-cyclopentane1-oc-
tanoic acid. Finally, the alkanoic acid side chain of OPC-
8:0 is shortened in three cycles of β-oxidation, resulting in 
the formation of JA [17].

The oxylipin 12-OPDA was first described and 
synthesized in 1978 [18]. For a long, 12-OPDA has been 
considered to act only as a JA precursor. However, accu-
mulating evidence points toward the involvement of 12-
OPDA in signaling functions in different developmental 
processes of plants, such as germination, seed dormancy, 
and embryogenesis [19]. Several publications elucidate 
the physiological role of 12-OPDA in wounding plant 
response [20–23]. In addition, it is becoming established 
that 12-OPDA functions independently as an effector in 
plant defense. In one such study, 12-OPDA enhanced the 
resistance of maize against corn leaf aphid Rhopalosiphum 
maidis [24]. In contrast, in another study, rice mutants lac-
king 12-OPDA seemed to have a varying defense against 
Magnaporthe oryzae. [25]. Moreover, 12-OPDA increased 
Arabidopsis resistance to various pathogens without JA/
JA-isoleucine (JA-Ile) [21,26]. Other research groups 
have also revealed the role of OPDA in ameliorating the 
accumulation of callose in host plants and limiting infec-
tion caused by pathogens [27,28]. In addition, subjecting 
Arabidopsis (wild-type ) to heat stress causes enhanced 
12-oxo-phytodienoic acid (OPDA) accumulation accom-
panying JA and a JA-Ile conjugate [29].

However, research has also been conducted on 12-
OPDA reductases (OPRs) and their role in plant develop-
ment and response to biotic and abiotic stressors [16,17]. 

Multiple genes encode this gene family, and its members 
can be grouped according to substrate specificity into 
OPRI and OPRII [30]. Members preferentially reduce cis-
(-) OPDA over cis-(+) OPDA belonging to class OPRI. 
At the same time, OPRII members are directly related to 
jasmonic acid biosynthesis (such as OPR3) since they ca-
talyze the reduction of cis-(+) OPDA [30]. Most recently, 
Chini et al. [31] identified an alternative pathway for JA 
synthesis that is peroxisomal OPR3-independent and en-
tails Arabidopsis OPR2 (OPRI member) in atopr3 mutant 
plants reducing 4,5-dihydro-JA in the cytoplasm.

OPR gene family has been thoroughly examined in the 
case of Arabidopsis, and their physiological role in alle-
viating photooxidative stress was suggested. In barley, the 
expression profile of two OPRI genes suggests their role 
in response and defense to abiotic stresses [32,33]. Addi-
tionally, it was discovered that AsOPR1 controls the deve-
lopment and production of nodules in Astragalus sinicus 
and influences endogenous JA metabolism[34]. Transcrip-
tome analysis performed by [35] in inbred lines of maize 
revealed differing responses to drought stress, where three 
members of the OPRI subgroup (ZmOPR1, 2, and 3) were 
found to be upregulated in maize roots when drought-
sensitive seedlings were subjected to water deficiency 
(drought) stress for 24, 48 and 72h. Furthermore, ZmOPR1 
and ZmOPR2 were upregulated when drought-tolerant 
seedlings were subjected to similar conditions. Moreover, 
in Arabidopsis thaliana and tomato, six and three genes 
were identified, respectively [36,37], 13 OPR genes were 
reported in the rice genome [38], six OPR genes were 
characterized in pea, the model legume [39], and 48 OPR 
genes were recently identified and described in wheat [40].

Plant defense against biotic and abiotic stresses is com-
plex. Hence, revealing the role of OPRI in this process 
is crucial to understanding the role of OPDA-related pa-
thways other than the JA biosynthesis pathway. However, 
information about this gene family in legumes is restricted 
to peas and alfalfa [39,41]. Thus, we believe that cloning 
and subsequent functional characterization of LcOPR1 
will explore a new avenue to legume breeders for develo-
ping temperature-tolerant lentil genotypes with high-tem-
perature resilient smart crop production. 

2. Materials and Methods
2.1. Plant material and heat stress treatment

Lentil (Lens culinaris Medik.) seeds were grown in pots 
containing soil/perlite mixture (3:1) under a controlled 
greenhouse environment. Three-week-old seedlings were 
subjected to 40 °C for 0, 0.5, 1, 2, 3, and 4h. Following 4 
h of heat stress (HS) treatment at 40 °C, lentil plants were 
allowed to recover HS at 22 °C for 2, 4, 24, and 48 h. The 
control and HS and HS-recovered plant samples were col-
lected, then quickly frozen with liquid N2 and kept at -80 
°C until further molecular analysis.

2.2. Cloning of LcOPR gene cloning and bioinforma-
tics analysis

RNA isolation from lentil plants and cDNA synthesis 
were done with Spectrum™ Plant Total RNA Kit (Sigma-
Aldrich, USA) and PrimeScript™ RT Master Mix (Takara, 
Japan). A pair of gene-specific primers Table 1 represents 
the primer details which were synthesized based on the 
contig sequence of Lens culinaris OPR gene (l.culinaris_
csfl_reftransV1_0021166) available from Cool Season 
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(l.culinaris_csfl_reftransV1_0021166) accessible from 
Cool Season Food Legume Genome Database given 
above. Sequencing results indicated that LcOPR cDNA of 
full length was 1303 bp, comprising an 1134 bp ORF with 
a 96-bp 5′ UTR and 73-bp 3′ UTR (Figure 1). This gene 
was designated LcOPR1 and deposited in the GenBank 
(GenBank accession no. MH491550). The LcOPR1 ORF 
encodes a protein of 377 amino acids. Analysis of deduced 
protein using the ProtParam tool showed that LcOPR1 has 
a predicted molecular weight of 41.63 and a theoretical 
isoelectric point of 5.61.

Three online tools, namely CELLO, TargetP, and 
ProtComp, were used to predict LcOPR1 subcellular lo-
calization. The results revealed that LcOPR1 was located 
in the cytoplasm, indicating the lack of any known organ-
elle-localization signals in LcOPR1. However, this protein 
targeting prediction of LcOPR1 should be further explored 
in vivo. OPR isozymes can be found in either the peroxi-
some or the cytoplasm. 

The results of the NCBI BLAST search indicated that 
LcOPR1 had high sequence similarity percentages with 
homologous proteins of the OPRI group, such as MtOPR1 
in Medicago truncatula (93%), GmOPR1 in Glycine max 

Food Legume Genome Database (https://www.coolsea-
sonfoodlegume.org). Further, we performed PCR to am-
plify the coding sequence of LcOPR using cDNA from 
heat-stressed lentil plants. The amplified PCR product was 
cloned using pGEM-T Easy vector (Promega, USA) and 
then sequenced.

ORF finder of NCBI (http://www.ncbi.nlm.nih.gov/
gorf/gorf.htm) was employed to study LcOPR nucleic acid 
sequence, and ExPASy was used to translate LcOPR ORF 
(http://web.expasy.org/translate/). The expected isoelec-
tric point and the molecular weight of the deduced LcOPR 
protein were obtained using ProtParam (http://web.expasy.
org/protparam/). Prediction of protein subcellular localiza-
tion was performed using TargetP 2.0 (http://www.cbs.dtu.
dk/services/TargetP/), CELLO (http://cello.life.nctu.edu.
tw/), and ProtComp 9.0 onlintool(http://linux1.softberry.
com/berry.phtml?topic=protcompplandgroup=programsa
ndsubgroup=proloc) were used to predict subcellular loca-
lization of protein. Conserved domains of LcOPR protein 
were predicted using http://www.ncbi.nlm.nih.gov/Struc-
ture/cdd/wrpsb.cgi [42].

Homologs of the LcOPR protein from different plant 
species were retrieved by NCBI BLAST search, and the 
Clustal-Omega program [43] was employed to execute 
multiple sequence alignments. The dendrogram was 
constructed using MEGA 7.0 [44] software, where the 
neighbor-joining method with a bootstrap value of 1000 
replicates was applied.

2.3. LcOPR1 Gene Expression Analysis
The changes in LcOPR1 expression under diverse 

stress treatments were evaluated using quantitative qRT-
PCR using KAPA SYBR® FAST qPCR Kit (KAPA BIO, 
USA). Primers used in qRT-PCR were designed using 
Primer3 software [45] and are listed in Table 1. The am-
plification of the LcOPR1 gene was performed using a 
q-RT PCR system (CFX-96™). The LcOPR1 gene was 
amplified based on the program used previously[46]. The 
qRT-PCR data were normalized using the LcRPL2 (ribo-
somal protein L2) gene (GeneBank accession number: 
YP_009141575), which is the most stable reference gene 
in lentils under abiotic stresses and among different deve-
lopmental stages [47]. 

2.4. Statistical analysis
The observation was repeated three times, and a two-

tailed t-test (p ≤ 0.05) was used to calculate the data.

3. Results 
3.1. Confirmation of LcOPR1 cloned gene 

The cDNA of putative LcOPR was amplified by RT-
PCR using a pair of specific primers synthesized based 
on contig sequence information of lentil OPR gene 

Fig. 1. cDNA sequence of LcOPR1 and its deduced amino acid 
sequence. A single-letter code designates amino acids under the 
middle nucleotide of each codon. The start codon is underlined, and 
an asterisk marks the stop codon.

Purpose Primer name Sequence (5′–3′)
cDNA cloning LcOPR-F TCCCACAGTAATTGAAGGTCTCC

LcOPR-R CACATATTGCTGAGCTGACACA
qRT-PCR qLcOPR-F GGAGACTCTAACCCTCAAGCTT

qLcOPR-R AAGCTACCAAATCTGCACCATC
qLcOPR2-F ACAGCATCATTGTGGTAAAGGG
qLcOPR2-R TGTGTGCATTTCGATTAGGGTC

Table 1. List of primers used in the present study.
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(90%), PsOPR1 in Pisum sativum (83), SlOPR1 in Sola-
num lycopersicum (83%), AtOPR1 in Arabidopsis thali-
ana (80%), ZmOPR1 in Zea mays (80%), and OsOPR1 in 
Oryza sativa (78%). The present homology analysis indi-
cated that LcOPR1 belongs to the OPR gene family. Mul-
tiple sequence alignment was performed with LcOPR1 
and another OPRI protein member, including AtOPR1, 
GmOPR1, and MtOPR1. The results showed the presence 
of conserved residues responsible for binding substrate 
and flavin mononucleotide (FMN) (Figure 2).

To explore the evolutionary divergence of LcOPR1 
compared to other OPR proteins, a phylogenetic tree 
(dendrogram) was designed using the LcOPR1 protein 
sequence and 39 other OPR proteins from different plant 
species (Figure 3). The dendrogram showed that these pro-
teins are divided into subgroups, subgroup I and subgroup 
II. In the present investigation, LcOPR1 was clustered in 
subgroup I. Thus, LcOPR1 may not be required for JA 
biosynthesis. However, since an alternative pathway of JA 
biosynthesis through a peroxisomal OPR3-independent 
pathway has been described recently in Arabidopsis [31], 
this assumption remains to be tested in the cytosolic LcO-
PR1. LcOPR1 was most closely related to OPRs of Medi-
cago truncatula and Glycine max, both of which belong to 
the Fabaceae family.

3.2. Expression patterns of LcOPR1 gene 
The expression pattern of the LcOPR1 gene indicated 

it responded after 0.5 h exposure to heat (40 °C), and the 
highest expression was observed at 3h (Fig. 4). However, 
the gene expression was gradually declined following a 
consecutive reduction of temperature with time intervals 
(Fig. 4). Compared to the untreated control, the expression 
level of LcOPR1 increased to 5.4-fold after 1 h under the 
HS condition. Then, the expression steadily increased with 
an increase in the treatment time and reached the expres-
sion peak of 17.7-fold at 3 h, then slightly dropped after-

ward at 4 h (Figure 4). Therefore, the observed enhanced 
LcOPR1 expression is expected to cope with the improved 
level of reactive carbonyls produced due to heat-stress-
associated oxidative damage. After moving heat-stressed 
seedlings to room temperature for a 48 h recovery period, 
the expression levels of LcOPR1 were relatively high at 
2 and 4 h of recovery treatment. They scored 13.2 and 
11.3-fold over untreated control, respectively. On the oth-
er hand, LcOPR1 expression dropped at 24 and 48 h of 
recovery and reached 2.2-fold at the end of the recovery 
treatment (Figure 4). This result suggested that activation 
of LcOPR1 genes gradually declined due to the reduction 
of temperature in lentil. 

4. Discussion
This study implies that LcOPR1 was successfully clo-

Fig. 2. Multiple sequence alignment of lentil LcOPR1 (MH491550) 
with related OPR proteins from Arabidopsis (AtOPR1, AAM65337), 
Soybean (GmOPR1, XP_006581134.1), and barrel clover (MtOPR1, 
XP_013462297.1). A gray background indicates the conserved FMN 
binding sites. The putative conserved residues implicated in the bind-
ing of substrates are depicted with triangles.

Fig. 3. Neighbour-Joining phylogenetic tree of OPR proteins from dif-
ferent plant species. The phylogenetic tree was created using MEGA 
7.0 with 1000 bootstrap replicates.

Fig. 4. Relative expression levels of LcOPR1 in response to heat 
stress (HS) and during recovery. qRT-PCR assay was performed to 
examine the expression of LcOPR1 in three-week-old seedlings sub-
jected to HS at 40 °C for 0, 0.5, 1, 2, 3, and 4h (black bars). After 4 
h of treatment at 40 °C, lentil plants were allowed to recover at room 
temperature for 2, 4, 24, and 48 h (white bars). The qRT-PCR data 
were normalized using the LcRPL2 (ribosomal protein L2) gene, and 
a ratio proportional to the untreated seedlings was indicated at each 
time point, set at 1.
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ned, and the gene was fully active in response to tempe-
rature stress in lentil. Thus, the clone's efficiency is ap-
parent and encourages us to apply deep biotechnological 
application in lentil and other legumes. Plant OPRs were 
first isolated in Arabidopsis and tomato [36,48], and many 
OPR genes have since been identified and characterized 
in different crop species [32,39,49–51]. Strassner et al. 
[36] demonstrated that OPRI proteins from Arabidopsis 
and tomato are cytoplasmic, whereas OPRII members, in 
contrast, possess C-terminal peroxisomal targeting signals 
and are therefore targeted to peroxisomes. OPR proteins 
are known to noncovalently bind FMN as cofactors [52], 
which NADPH reduces, indicating that these proteins are 
flavin-dependent oxidoreductases. Since NADPH reduces 
FMN, indicating that OPR proteins are flavin-dependent 
oxidoreductases. The phylogenetic tree illustrated that 
these proteins could be divided into two subgroups, in 
which cluster analysis classified subgroups I and II. Mem-
bers of the OPRI subgroup are more likely to be involved 
in eliminating cis-(-) OPDA than cis-(+) OPDA. Previous 
received have revealed that OPR family members are ca-
tegorized into 2 subgroups (OPRI and OPRII) according 
to their different preferences for stereoisomers of OPDA, 
and each subset contains members of both monocot and 
dicot plants [30,36,49,50,53]. Subgroup members of OPRI 
are preferentially involved in reducing cis-(-) OPDA than 
cis-(+) OPDA. Compared, cis-(+) OPDA are catalyzed by 
OPRII subgroup members and are directly related to jas-
monic acid biosynthesis [30]. 

Heat stress is a major abiotic factor limiting legume 
growth and productivity [54]. The severity and impacts of 
heat stress are expected to exaggerate with climate change 
[55]. Therefore, exploring gene expression patterns of 
defense genes would help understand the molecular res-
ponses of plants to heat stress and aims to develop heat-
resilient crops. Heat stress stimulates the accumulation 
of reactive oxygen species (ROS). Uncontrolled produc-
tion of ROS mediates non-enzymatic lipid peroxidation, 
accumulating an array of lipid peroxide-derived α and 
β-unsaturated reactive carbonyls [56]. Plants have deve-
loped a detoxifying system against toxic reactive carbo-
nyl, consisting of aldehyde dehydrogenase, aldo-keto 
reductase, and aldehyde reductase [57]. The expression 
pattern and function of 12-oxophytodienoic acid reductase 
(OPR) family genes are promising. In the same study, it 
was explored that OPR3 triggers the reduction of the long 
spectrum of electrophilic species (ES) that leads to the 
reactivation of glutathione and ascorbate, and OPR3 was 
also capable of generating ascorbate. Several lines of evi-
dence have indicated that proteins of the OPRI subgroup 
reduce the double bonds in α and β-unsaturated carbo-
nyl compounds [58,59]. In our current study in lentil, the 
considerable upregulation pattern of the LcOPR1 gene un-
der heat stress indicates that LcOPR1 is a temperature-res-
ponsive gene. Further, it suggested that the LcOPR1gene 
was fully active lentil under temperature stimuli that effec-
tively balanced plants' redox homeostasis and heat stress 
tolerance. This insight will help us understand molecular 
mechanisms that lead to heat-resilient crop development.

5. Conclusions
This study implies a biotechnological insight into LcO-

PR1 mediating lentil plants' temperature tolerance. Suc-
cessful cloning and functional characterization of the LcO-

PR1 gene in lentil seedlings under heat stress suggest that 
the LcOPR1 is a temperature-responsive candidate gene 
fully active in response to temperature in lentil. This in-
sight might be helpful to plant biotechnologists and lentil 
breeders for enhancing temperature tolerance in lentil and 
producing sustainable and smart lentil production under 
high-temperature conditions. 
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