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1. Introduction
Breast cancer is a global life-threatening issue with 

rising incidence [1, 2]. Due to the large degree of tumor 
heterogeneity, BC-related clinical outcomes vary amongst 
patients with different genetic subtypes or tumor features 
[3]. Multiple differentially expressed genes (DEGs) are 
responsible for the diverse molecular and cellular makeup 
of BC that collaborate to regulate cellular processes such 

as cell differentiation, proliferation, and death [3, 4]. 
Knowing more about the expression patterns of the va-
rious tumor-driving DEGs of the primary tumor would be 
beneficial, given that the primary tumor is removed during 
treatments and that clinical decisions regarding the BC 
patient would be based on analyses of the primary tumor 
according to its histology and genetic components [5].

Microarray technology offers a high-throughput geno-
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Breast cancer (BC) is a global health concern with a growing prevalence. Since BC is a heterogeneous cancer, 
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gesterone-mediated oocyte maturation and the NF-kappa B signaling system were upregulated DEGs' top 
deregulated signaling pathways. In contrast, pathways related to cancer and the cAMP signaling pathway were 
the most enriched terms for down-regulated genes. Next, Real-time PCR quantification of cAMP signaling 
cascade members ATP1A2, FXYD1, and ADCY3 was performed on 50 BC tumoral and non-tumoral tissues 
for validation. Results of meta-analyzed array data sets revealed DEGs representing BC gene signatures, and 
cAMP signaling pathway members as effective factors in BC. The results of our real-time PCR expression 
level determination for ATP1A2, FXYD1, and ADCY3 in breast tumor tissues relative to the normal margins 
contradicted our bioinformatics investigations, which found increased levels for these genes. Of these, only 
ATP1A2's expression levels were statistically significant. This study focused on identifying gene expression 
signatures that provide an invaluable source of evidence for BC-related underlying mechanisms to provide 
new therapeutic targets and biomarkers.
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mics tool for studying tumor-related expression patterns 
of multiple DEGs, providing insight into the genetic back-
ground, deriver mechanisms, and signaling pathways un-
derlying disease development [5, 6]. Microarray studies' 
transcriptomic results are less reproducible due to varia-
tions in validation techniques, analysis methods, plat-
forms, and sample collection and size [7]. To adress this 
problem, a series of statistical approaches using meta-ana-
lysis of microarray datasets have been used to discover 
sets of DEGs with robust expression signatures among 
tumors [8]. 

We conducted a meta-analysis on five BC microarray 
studies that compared the gene expression levels of breast 
tumor tissue with their matching normal margins and were 
published in the publicly accessible database Gene Ex-
pression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/). This was done considering the notion that integra-
ting the results of numerous separate yet related research 
would potentially increase the repeatability of the results. 
Data integration in meta-analysis enhances gene signa-
tures by increasing sample size, boosting statistical power, 
and eliminating biases from single experiments, resulting 
in robust and high-quality results [7]. In this regard, the 
NetworkAnalyst web platform (https://www.networkana-
lyst.ca) was used to integrate data from all the microar-
ray gene expression data sets for transcriptome profiling, 
meta-analysis, and visualization of gene networks [9].

The goals of gene expression research are identifica-
tion of molecular targets and determination of gene signa-
tures as molecular alterations in disease genomes [10]. 
Gene signatures show unique expression patterns filtered 
through thousands of genes to predict disease outcomes 
and allocate molecular targets. These predictions require 
validation and are essential for disease diagnosis [10]. 
Finding the fundamental intercellular signaling mecha-
nisms underpinning tumor progression is crucial [11]. The 
results of this study identified the cyclic adenosine mono-
phosphate (cAMP) signaling pathway as a significant mo-
lecular alteration in breast tumors. Cell growth, migration, 
and mobility are indeed a few of the tumorigenic-related 
pathways that cAMP, a second messenger, regulates [12]. 
This cascade exhibits tumor-promoting and tumor-sup-
pressive effects in various cancer types, requiring further 
investigation using clinical samples from BC patients [12].  

DEGs from the meta-analysis were investigated using 
enrichment analyses, KEGG pathway, GO, bioinformatics, 
and real-time PCR on clinical samples to identify critical 
molecular pathways, deregulated gene signatures, and dia-
gnostic biomarkers of BC. We performed bioinformatics 
validation on the hub genes. Also, clinical BC specimens 
were used for further validation of ATP1A2, FXYD1, and 
ADCY3 expression levels in breast tumors. These genes 
were among the top ten most significantly down-regulated 
genes, and to the best of our knowledge, the expression 
levels of these genes (ATP1A2, FXYD1, and ADCY3) had 
never been confirmed in BC clinical samples by real-time 
PCR.

2. Materials and Methods
2.1. Acquiring eligible microarray datasets related to 
breast tumor tissue compared with their self-matching 
normal adjacent tissues 

With the following phrases and their combination: 
"breast tumor tissue, breast adjacent normal tissue, pai-

red normal tissue, para tumor tissue, and gene expres-
sion profiling by array" as keywords, we systematically 
mined the National Center for Biotechnology Information 
(NCBI) GEO repository (http://www.ncbi.nlm.nih.gov/
geo/) to collect publicly accessible microarray expression 
profiling datasets by May 2022. We carefully followed the 
previously established inclusion and exclusion criteria to 
gather the eligible datasets; in particular, we compiled a 
set of case and control studies comparing untreated human 
breast tumor tissue to the nearby normal tissues. These 
studies also had comparable conditions with the attainable 
raw and processed data. Studies with diverging designs or 
non-human sample populations were disqualified. Then, 
for each particular dataset, we extracted the following 
information: (1) GEO accession number (GSE code), (2) 
platform (GPL), (3) sample type (GSM), (4) gene expres-
sion data, and (5) number of cases and controls.

2.2. Data curation, annotation, and batch effect remo-
val

For every individual data set, the gene expression 
matrix (GEM) as well as its related platform annotation 
files were retrieved and imported within the R statistical 
environment, using the "data.table" package's fread func-
tion [13]. Then, following Log2 transformation and data 
quality assessment through checking a uniform distribu-
tion among samples along with outlier identification with 
scanning boxplots, normalization of GEMs was conduc-
ted with the limma package’s normalizaQuantile function 
[14]. By manually merging the probe ID columns of plat-
form annotation files to the GEM table in R, the probe IDs 
were translated into the official gene symbols that corres-
pond to them. The average value was taken into account 
for further analysis in cases of gene duplication (or several 
rows reporting the expression levels of the same gene). 

Before data integration and meta-analysis with the 
NetworkAnalyst tool, batch effects (non-biological diffe-
rences) across our chosen 5 studies were corrected using 
ComBat techniques to identify true biological variances in 
the gene expression profiles. Empirical Bayes techniques 
are used in the ComBat approach to stabilize gene expres-
sion ratios with very high or very low ratios and stabilize 
gene variances by minimizing variances among all genes, 
possibly protecting their inference from data artifacts [15]. 
Principal component analysis (PCA) was used to examine 
sample clustering patterns before and after this normaliza-
tion as visual aids (Supplementary Data, Figure S1).

2.3. Data Network-based Meta-analysis 
The gene expression meta-analysis on datasets related 

to the breast tumor tissue compared to normal marginal 
tissues (mentioned in Table 3) was carried out using the 
NetworkAnalyst 3.0 web tool (https://www.networka-
nalyst.ca), which is an online comprehensive meta-ana-
lysis and gene expression profiling platform [9]. After 
uploading all the individual annotated and normalized 
(preprocessed) datasets, we proceeded to the next step, 
which was to conduct ComBat normalization and PCA 
visualization for data integrity check. To extract differen-
tially expressed genes (DEGs) from individual studies 
based on the Limma algorithm, NetworkAnalyst performs 
a Benjamini-Hochberg procedure and a moderated t-test 
resulting in an adjusted P-value (an adjusted P-value ofless 
than 0.05 was considered statistically significant). Since 
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of the relapse-free survival (RFS) in 4929 samples of all 
breast cancer subtypes: relapse-free survival (RSF), split 
patient by median, follow-up threshold (all), censored at 
threshold (checked), invert HR values below 1 (not chec-
ked), compute median over entire database (false) and 
probe set option (user selected probe set). With the KM-
plotter, the validation of the survival prognosis is facilita-
ted by the evaluation of the correlation between the level 
of mRNA expression and survival in samples of 21 tumor 
types, including breast cancer [22].

 To provide an in silico-analysis validation for the rela-
tive expression levels of nine hub genes as well as three 
selected genes from the cAMP signaling pathway in breast 
invasive carcinoma tumor tissues vs. normal ones, we ex-
plored an online web portal named UALCAN (https://ual-
can.path.uab.edu/). This tool provides transcriptomic data, 
including the Cancer Genome Atlas (TCGA), to enable the 
evaluation of the relative expression level of genes in 33 
tumors, including breast tumors [23]. 

2.7. Patients and Clinical Specimens 
We collected fifty pairs of breast tumor tissue speci-

mens and their matching normal marginal tissues from 
patients diagnosed with BC who underwent surgery in 
Alzahra Hospital, Tabriz, Iran, from 2020 to 2022.

Following the protocols of Tabriz University of Me-
dical Sciences Ethical Committee under the Ethics code 
of IR.TBZMED.REC.1400.1061, from newly diagnosed 
BC patients who gave us informed consent and had not 
undergone surgery or chemotherapy, tumor samples were 
excised and collected. From each BC patient, at least two 
samples were obtained, one tumor tissue and one to three 
distant marginal normal tissues (lateral, medial, and distal 
normal margins of the same tumor tissue). The procedure 
involved surgical dissection of breast tumor tissue and its 
corresponding distant pair from the same woman as the 
control sample in surgery, followed by freezing and sto-
rage at -80°C until further analysis. From each sample, 
one section was stained with Hematoxylin and Eosin for 
tumor cell presence confirmation. Table 1 shows the clini-
cal pathological characteristics of BC patients who entered 
this study.

2.8. Quantitative Polymerase Chain Reaction (qPCR) 
Expression Assay

The tissues were cut into smaller pieces and then ho-
mogenized with liquid nitrogen, then RNA extraction with 
TRIzol reagent (GeneAll) was followed. The quality and 
concentration of extracted RNAs were examined with the 
NanoDrop spectrometer (Thermo Scientific, USA) and gel 
electrophoresis. Lastly, by adding 50μl RNase-free water, 
purified RNAs were diluted and stored at -80°C. For the 
synthesis of complementary DNA (cDNA) according to 
the instructions of a first strand cDNA Reverse Trans-
criptase kit (KIAGENE FANAVAR, Iran), reverse trans-
criptase enzyme and buffer mix containing dNTPs were 
mixed. After that, a PCR cycle in the PCR Mastercycler 
Nexus - PCR Thermal Cycler machine (Eppendorf Mas-
tercycler® Nexus, Germany) was performed according to 
the kit manufacturer's protocol as follows: 10 min at 25 
°C, 60 min at 47°C and 5 the last minute at 85°C to inac-
tivate the enzyme.

To perform Real-time PCR to amplify the selected 
genes, cDNAs, specifically designed primers for ATP1A2, 

one of the meta-analysis approaches is combining effect 
size (ES), the integration of the results from combinable 
and comparable studies through which more biologically 
coherent results can be provided [16], we conducted the 
meta-analysis across breast tumor tissue and margin tissue 
to have DEGs among all independent data sets, procee-
ding with combining ES estimation, submitting the ran-
dom effect size modeling (REM) statistical analysis. REM 
was chosen over fixed effect size modeling (FEM) since 
REM takes cross-study heterogeneity into account [17]. 
Using the Pattern extractor tool from NetworkAnalyst, a 
heatmap of all the DEGs and a volcano plot visualization 
of all the DEGs from meta-analysis results were provided.

2.4. Network-based Protein-protein interaction (PPI) 
network construction and Hub gene detection 

STRING (The Search Tool for the Retrieval of Interac-
ting Genes) tool in the NetworkAnalyst application was 
applied to retrieve regulatory and functional networks of 
interactions among proteins, also known as protein-pro-
tein interactions (PPI) [18]. Briefly, gene symbols for up-
regulated and down-regulated DEGs were uploaded to 
NetworkAnalyst's gene list input, with the highest confi-
dence score cut-off and zero-order interaction option in 
PPI STRING. Hub genes, highly interconnected genes, 
were identified using NetworkAnalyst's hub explorer using 
degree and betweenness network centrality measures. 
Betweenness centrality measures the number of shortest 
pathes through nodes, while Degree centrality measures 
the number of connections between nodes. [19]. 

2.5. Signaling Pathway and Functional Enrichment 
Analysis

To explore highly enriched functions and pathways of 
the shared gene sets in breast tumors, Gene Ontology (GO) 
and KEGG pathway analyses were conducted on EnrichR 
online platform (http://amp.pharm.mssm.edu/Enrichr/) 
[20]. To get the list of significantly enriched annotations 
and pathways in EnrichR, we separately uploaded the offi-
cial gene symbols of 318 down-regulated DEGs and 392 
up-regulated DEGs to this web-based software, and then 
we subjected the DEGs to GO and KEGG pathway ana-
lyses. The enriched terms in GO and KEGG pathway ana-
lyses with a P-value < 0.05 were considered statistically 
significant. The GO annotation (‘the latest version: GO-
2023’) provides information on the links between gene 
products and molecular functions (MF), biological process 
(BP), as well as cellular component (CC) type also, with 
performing a KEGG pathway analysis (‘the latest version: 
KEGG-2021’), comes a better knowledge about the signa-
ling cascades that shared deregulated gene sets in BT vs 
BNT take part in [21]. According to their P-value, the top 
10 KEGG pathway and GO terms were sorted, and selec-
tion was based on a P-value < 0.05. 

2.6. Expression and Survival Analysis of Hub Genes 
and the Selected Genes from cAMP Signaling Using 
KM-plotter and UALCAN

The nine discovered hub genes and three genes rela-
ted to the cAMP signaling cascade were subjected to sur-
vival analysis with Kaplan-Meier plotter (KM plotter) 
(http://kmplot .com/analysis/), a publicly available online 
software to evaluate their clinical prognostic significance.  
The following parameters were applied for determination 
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FXYD1, ADCY3 genes, and GAPDH as the endogenous 
reference gene for normalization of the real-time PCR data 
(Table 2 presents Primer sequences and their PCR product 
lengths) were used besides amplicon SYBR Green master 
mix (SMOBIO, Taiwan). We performed all the Real-Time 
PCR reactions with The Rotor-Gene Q (Qiagen, USA) 
machine in a 36-well plate in duplicate. The following 
cycling temperature condition was used: one initial hold 
step of 10 min at 95°C for template denature and enzyme 
activation for all the four genes, and the other three steps 
for every gene were 40 cycles as follows: for ATP1A2, 
FXYD1, and GAPDH 15 secs at 95°C, 30 secs at 60°C, 
and 30 secs at 72°C, for ADCY3 15 sec at 95°C, 30 secs 
at 62°C, and 30 secs at 72°C. Ultimately, for each gene, 
using the 2-ΔΔCT and 2-ΔCT methods, the average Ct 
was normalized to the control reference gene followed by 
a fold change (FC) calculation.

2.9. Statistical Analysis 
To perform the meta-analysis in NetworkAnalyst 3.0, 

a random effects model (REM) with a significance level 
of <0.05 was applied to the effect size (ES) combination. 
ES is defined as a standardized difference between means 
of groups divided by the standard deviation concerning 
both direction and magnitude of gene expression quantity. 
DEGs were determined using a P-value < 0.05. For func-
tional enrichment and pathway analysis, a hypergeometric 
test with a threshold of P-value of < 0.05 was considered 
statistically significant. In the survival plots generated by 
the KM-plotter database, hazard ratio (HR (with the cor-
responding confidence intervals)), log-rank, P-value, and 
median survivals were assessed and a log-rank p-value 

less than 0.05 was considered statistically significant.
 Real-time PCR expression analyzes were performed 

in duplicate and a paired Student's t test was used to cal-
culate the relative expression of selected genes in breast 
tumor tissue compared to normal tissue using the delta Ct 
method..

R studio (4.1.3), REST (2009), and GraphPad Prism 
(version 6, San Diego, CA) software were used in this stu-
dy. Survival analysis evaluation of hub genes by Kaplan–
Meier plot was performed to obtain RFS curves. Throu-
ghout this study, a P-value < 0.05 was the significance 
threshold.

3. Results 
3.1. Selected Data Sets for The Meta-Analysis

Five studies were considered for our meta-analy-
sis (GEO accession numbers: GSE70947, GSE70905, 
GSE10780, GSE29044, and GSE42568), due to the high 
quality of the metadata and compliance with the inclusion 
criteria (Table 3). 414 BC tumor mRNA expression pro-
files were downloaded to identify common transcription 
signatures, along with 391 non-tumorous adjacent tissues, 
as controls. Table 3 provides detailed descriptions of da-
tasets, including accession numbers, platforms, sample 
types, and study types. GSE70947 and GSE70905 were 
subseries of GSE70951, involving expression profiling on 
paired breast adenocarcinoma and normal tissues using dif-
ferent Agilent platforms and samples. The other three gene 
sets were performed on the Affymetrix platform (GPL570, 
Affymetrix Human Genome U133 Plus 2.0 Array). We op-
ted for studies that included over 50 samples, fresh frozen 
ones, and single-channel platforms. Only case/control stu-

Characteristic Number percentage%
Age 50 ≤ 38 76

50 > 12 24

History of family cancer
Positive 18 36
Negative 14 28

NA 18 36

History of abortion
Positive 15 30
Negative 17 34

NA 17 34

Status of menopause
Positive 4 8
Negative 44 88

NA 2 4

Table 1. Baseline clinical characteristics of the 50 Breast cancer patients.

Gene name Primer 
type Primer sequence Primer 

length
PCR product length (base 

pair)
ATP1A2 Forward GATCATTGTGCCCACTTACCCT 22

149
ATP1A2 Reverse CATTCCCAGTGCCTTCTAAGCC 22
FXYD1 Forward TGGGCATCCTCATCGTGCT 19

88
FXYD1 Reverse GTTCCCTCCTCTTCATCGGGTT 22
ADCY3 Forward GGTATTGAGTGTCTGCGTTTCCT 23

114
ADCY3 Reverse CATATACGTGCTGCCAATGGTTTT 24
GAPDH Forward AAGGTGAAGGTCGGAGTCAAC 21

102
GAPDH Reverse GGGGTCATTGATGGCAACAA 20

Table 2. Real-time PCR specific forward and reverse primer sequences.
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dies in breast tumor tissues compared with their respective 
normal margins or in breast tumor biopsies compared with 
normal biopsies were utilized. Using the online web-based 
platform NetworkAnalyst 3.0 (https://www.networkana-
lyst.ca/), the downstream data analysis was carried out in 
two stages: first, individual analysis to confirm the qua-
lity of datasets, and second, the meta-analysis to examine 
the expected differences in gene expression levels among 
all five data sets. The workflow of the present research is 
summarized in Figure 1, and more specific information on 
each data set, including the GEO accession code number 
(GSE), Platform (GPL), and Number of Samples, is pro-
vided in Table 3.

3.2. Batch Effect Adjustment 
The ComBat method, a statistical option available in 

NetworkAnalyst, was used to solve problems related to 
non-biological conditions such as multi-platform studies 
with different samples and high levels of variability in 
laboratories. 

Visualization of PCA plots indicated that before batch 
effect adjustment, the clustering pattern of Tumor samples 
vs. Normal samples from each data set were not as well 
distributed and intermixed as they were after batch effect 
adjustment (Supplementary Data, Figure S1). 

 
3.3. Meta-Analysis Results of Shared DEGs Across 
Multiple Data-sets of Breast Tumor Tissue Compared 
to Their Corresponding Normal Adjacent Tissues

On NetworkAnalyst, the uploaded annotated and pre-
processed datasets underwent a ComBat normalization, 
combining ES estimation and REM statistical analysis to 

detect the DEGs between breast tumor tissue and their cor-
responding normal tissues. When the total 1806 detected 
DEGs in the meta-analysis went under the statistical cri-
teria (adjusted P-value < 0.05), the number of genes that 

GEO accession code number 
(GSE) Platform (GPL)

Number 
of 

Samples

Number of each Sample type
Experiment 
description

Publication 
Year and 
countryBreast tumor 

tissue
Marginal 

normal tissue

GSE70951: 
A 

SuperSeries 
composing 

of the 
following 
SubSeries

GSE70905
Agilent-014850 Whole 

Human Genome 
Microarray 4x44K 

G4112F (GPL4133)
94 47 47

Age and estrogen-
dependent 

inflammation 
in breast 

adenocarcinoma and 
normal breast tissue 

[cohort_1]

2015-USA

GSE70947 Agilent-028004 
SurePrint G3 Human 

GE 8x60K Microarray 
(GPL13607)

296 148 148

Age and estrogen-
dependent 

inflammation 
in breast 

adenocarcinoma and 
normal breast tissue 

[cohort_2

2015-USA

GSE10780
[HG-U133_Plus_2] 
Affymetrix Human 

Genome U133 Plus 2.0 
Array (GPL570)

185 42 143

Proliferative 
genes dominate 
malignancy-risk 
gene signature in 

histologically-normal 
breast tissue

2008-USA

GSE29044
[HG-U133_Plus_2] 
Affymetrix Human 

Genome U133 Plus 2.0 
Array (GPL570)

109 73 36

Expression data from 
breast tumors in 

different age-specific 
cohorts and for 

different sequentional 
disease stages

2011-Saudi 
Arabia

GSE42568
[HG-U133_Plus_2] 
Affymetrix Human 

Genome U133 Plus 2.0 
Array (GPL570)

121 104 17 Breast Cancer Gene 
Expression Analysis 2012-Ireland

Table 3. Characteristics of microarray datasets included in the meta-analysis of breast tumor tissue vs. marginal normal tissue.

Fig. 1. Workflow of this Study: step by step summarization of meta-
analysis on eligible breast cancer related microarray datasets. The first 
step was to identify relevant studies in the GEO database using the 
correct keywords such as “breast tumor tissue” and “breast adjacent 
normal tissue”. The microarray datasets were then preprocessed to be 
meta-analyzed using the NetworkAnalyst tool. After the acquisition 
of DEGs, enrichment analysis and data validation were performed. 
The complete process of depicted workflow has been described in the 
passage. Abbreviations: GEO, Gene Expression Omnibus. DEGs, dif-
ferentially expressed genes.
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were screened out decreased to a total of 710 DEGs, of 
which 392 significantly overexpressed and 318 signifi-
cantly underexpressed (adjusted P-value 0.05),  (Supple-
mentary Table 1 presents the DEGs from meta-analysis 
before and after considering the significance criteria). As 
presented in Table 4, Ubiquitin Like With PHD And Ring 
Finger Domains 1 (UHRF1), Enhancer Of Zeste 2 Poly-
comb Repressive Complex 2 (EZH2), Collagen Type X 
Alpha 1 Chain (COL10A1), and Centrosomal Protein 55 
(CEP55) were the top significantly overexpressed and LIM 
Domain Binding 2 (LDB2), Heat Shock Protein Family B 
(Small) Member 2 (HSPB2), Glycine-N-Acyltransferase 
(GLYAT), Activin A Receptor Type 1C (ACVR1C), XYD 
Domain Containing Ion Transport Regulator 1 (FXYD1), 
and ATPase Na+/K+ Transporting Subunit Alpha 2 (AT-
P1A2) were the top significantly down-regulated genes. 
The volcano plot in Figure 2. depicts the 392 significantly 
up-expressed DEGs and 319 significantly underexpressed 
DEGs among all the 1806 detected genes from the meta-
analysis results. All the up- and down-regulated DEGs 
are presented in a heatmap and a volcano plot (Figure. 2 
and Figure 3; Figure S2 in Supplementary Data). Both the 
volcano plot and heatmap figures were provided using the 
Pattern extractor tool from NetworkAnalyst. 

3.4. Hub Genes Detected by Network-based Meta-Ana-
lysis 

The STRING tool in the NetworkAnalyst website was 
used to build the PPI network of the 710 up-regulated and 

down-expressed DEGs to understand the intricate connec-
tivity among them.  The zero-order network resulted in 
the large PPI network of all DEGs containing 126 nodes 
and 202 connecting edges. The force atlas layout was cho-

Entrez 
ID

Official Gene 
Symbol Gene Name Combined ES Adjusted 

P-Value
Top 10 Upregulated genes in Breast tumor tissues vs normal margin 

29128 UHRF1 Ubiquitin Like With PHD And Ring Finger Domains 1 2.0512 0.0018432
2146 EZH2 Enhancer Of Zeste 2 Polycomb Repressive Complex 2 1.9804 0.0044593
1300 COL10A1 Collagen Type X Alpha 1 Chain 1.9471 0.017245
55165 CEP55 Centrosomal Protein 55 1.8293 0.00019237
259266 ASPM Assembly Factor For Spindle Microtubules 1.8039 0.0023289
3161 HMMR Hyaluronan Mediated Motility Receptor 1.8 0.00016609
22974 TPX2 TPX2 Microtubule Nucleation Factor 1.7984 0.0038085
4751 NEK2 NIMA Related Kinase 2 1.7533 0.01807
9833 MELK Maternal Embryonic Leucine Zipper Kinase 1.7472 0.00085722
9787 DLGAP5 DLG Associated Protein 5 1.6548 0.00082827

Entrez 
ID

Official Gene 
Symbol Gene Name Combined ES Adjusted 

P-Value

Top 10 downregulated genes in Breast tumor tissues vs normal margin tissues
9079 LDB2 LIM Domain Binding 2 -1.7922 8.09E-12
3316 HSPB2 Heat Shock Protein Family B (Small) Member 2 -1.7549 0.00071315
10249 GLYAT Glycine-N-Acyltransferase -1.714 0.0022982
130399 ACVR1C Activin A Receptor Type 1C -1.6853 0.0019864
5348 FXYD1 XYD Domain Containing Ion Transport Regulator 1 -1.5962 0.026828
477 ATP1A2 ATPase Na+/K+ Transporting Subunit Alpha 2 -1.5941 0.0056164
9068 ANGPTL1 Angiopoietin Like 1 -1.5899 0.0063236
55273 TMEM100 Transmembrane Protein 100 -1.5866 1.55E-07
91851 CHRDL1 Chordin Like 1 -1.5671 0.004083
2908 NR3C1 Nuclear Receptor Subfamily 3 Group C Member 1 -1.5599 0.00047106

Table 4. Top 20 over- and under-expressed DEGs identified in the meta-analysis of breast tumor tissues vs. normal margin tissues. The ranking 
of DEGs were based on the combined effect size (ES). Abbreviations: DEGs, differentially expressed genes; ES, effect size.

Fig. 2. The volcano plot illustration of DEGs in breast tumor tissue 
in comparison to adjacent normal tissue in BC patients. Among the 
total number of 1806 detected shred genes from the meta-analyzed 
microarray data sets, 392 genes were significantly upregulated and 
318 genes were significantly downregulated. The X- and Y-axis repre-
sent the log2-fold change (FC), -log10 adjusted p-value respectively. 
Abbreviations: differentially expressed genes, DEGs; BC, breast can-
cer; fold change, FC.
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sen for a better visualization of the PPI network (Figure 
4.). Ranked by degree, the top 10 hub genes were as fol-
lows: PLK1, CCNB1, AURKA, ASPM, FYN, MCM2, JUN, 
KIF2C, KIF23, and RFC3 and Table 5 presents list of top 
ten hub genes based on network topology scores. The top 
three most highly ranked DEGs among hub genes were 
PLK1 (Polo Like Kinase 1) with CombinedES of 1.0228 
and an adjusted P-value of 0.045837, AURKA (Aurora 
Kinase A) with CombinedES of 1.3904 and an adjusted 
P-value of 0.030324 and CCNB1 (Cyclin B1) with Com-
binedES of 1.6326 and an adjusted P-value of 0.0022068 
(Supplementary Table 2: the complete list of nodes in the 
PPI network). 

3.5. Functional Enrichment Annotation for Identifi-
cation of Augmented Pathways and Gene Ontologies 
(GO)

Utilizing EnrichR online software, GO and KEGG pa-
thway analyses were carried out to investigate the enriched 
GO keywords in the three BP, CC, and MF categories and 
to identify the significant signaling cascades connected 
to either down-expressed or up-expressed gene sets inde-
pendently. Thus, the gene lists of 392 up-regulated gene 
groups and 318 down-regulated gene groups were subjec-
ted to GO and KEGG pathway extraction (Figure 5.shows 
GO and KEGG pathway analysis of the up-regulated 
genes and Figure 6. shows the same analysis of the down-
expressed genes).   

The latest GO (‘GO-2023) had three domains of onto-
logies: molecular function (MF), cellular component (CC), 
and biological process (BP) (Figures 5. and 6., a more de-
tailed table of GO related to up-/down-expressed gene sets 
are provided in Supplementary Table 3). The top enriched 
terms of three GO categories were Protein Serine/Threo-
nine Kinase Activity (MF), Intracellular Membrane-Boun-
ded Organelle (CC) and Regulation Of Cell Cycle (BP) for 

Fig. 3. (A) Heatmap of top 50 up-and down-regulated genes in all 
the data sets. (B) Heatmap of all 1806 genes resulted from the meta-
analysis of all the microarray studies. Since the resulting picture was 
too big, the gene names that are presented on the right side of these 
heatmaps look blurred. The picture with the actual size is provided in 
the Supplementary Data  file, Figure S2.

Fig. 4. Network-based analysis of the 710 DEGs in the meta-ana-
lysis. Detected hub genes via “Zero-order” protein-protein interac-
tion network analysis of meta-analysis results of shred DEGs among 
breast tumor tissues relative to their corresponding normal tissues of 
BC patients. We used the Forced atlas layout of the subnetwork1. The 
bigger the node size in this figure, the higher the degree of the gene 
among all the hub genes of the resulting node table. Abbreviations: 
differentially expressed genes, DEGs; breast cancer, BC

Fig. 5. KEGG pathway and GO analysis related to Up-regulated 
DEGs: A) Enriched KEGG pathways, B) Enriched biological pro-
cesses, C) Enriched cellular components, and D) Enriched Molecular 
functions in GO analysis results. Abbreviations: KEGG, Kyoto ency-
clopedia of genes and genomes; GO, gene ontology; BP, biological 
processes; CC, cellular components; MF, molecular functions.

Fig. 6. KEGG pathway and GO analyses related to Down-regu-
lated DEGs: A) Enriched KEGG pathways, B) Enriched biological 
processes, C) Enriched cellular components, and D) Enriched Mole-
cular functions in GO analysis results. Abbreviations: KEGG, Kyoto 
encyclopedia of genes and genomes; GO, gene ontology; BP, biolo-
gical processes; CC, cellular components; MF, molecular functions.
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up-regulated genes and Voltage-Gated Sodium Channel 
Activity (MF), Collagen-Containing Extracellular Matrix 
(CC) and Negative Regulation Of Transcription By RNA 
Polymerase II (BP) for down-regulated genes.

For up-expressed genes the KEGG survey on EnrichR 
showed the most significant signaling pathway as Pro-
gesterone-mediated oocyte maturation and NF-kappa B 
signaling pathway (Figure 5A, Table 6), while for down-
expressed genes pathways in cancer as well as cAMP si-
gnaling pathway were the most significantly enriched ones 
(Figure 6A, Table 7).

At this stage of our bioinformatics survey, to validate 
novel genes involved in breast tumor pathogenesis, we 
chose three genes from the cAMP signaling pathway for 
further validation by Real-time PCR since two DEGs from 
this pathway (ATP1A2 and FXYD1) were among the top 
10 down-regulated genes and a previous microarray study 
had shown a significant down-regulation for ATP1A2 gene 
in breast cancer [24]. ADCY3 was chosen as a candidate 
gene because it is involved in two major dysregulated pa-
thways, including cancer pathways and the cAMP signa-
ling pathway.

Entrez ID Gene Full name Degree Betweenness CombinedES Adjusted 
P-Value

5347 PLK1 Polo Like Kinase 1 16 1047.25 1.0228 0.045837
891 CCNB1 Cyclin B1 15 3538.5 1.6326 0.002207
6790 AURKA Aurora Kinase A 12 328.37 1.3904 0.030324

259266 ASPM Assembly Factor For Spindle Microtubules 11 161.47 1.8039 0.0023289

2534 FYN FYN Proto-Oncogene, Src Family Tyrosine 
Kinase 10 2119.25 -0.88733 0.0074117

4171 MCM2 Minichromosome Maintenance Complex 
Component 2 9 997.73 1.5123 0.00040627

3725 JUN Jun Proto-Oncogene 9 780.39 -0.90239 0.015019
11004 KIF2C Kinesin Family Member 2C 9 105.4 1.5954 0.0036374
5983 RFC3 Replication Factor C Subunit 3 8 376 0.66208 0.001243

Table 5. The node table of hub genes with the dergree of 8 or more from the network-based meta-analysis resulted DEGs. 

Term P-value Adjusted 
P-value Odds Ratio Combined 

Score Genes

Progesterone-
mediated oocyte 
maturation

7.86E-04 0.118400207 4.419384058 31.59471528 STK10;CCNB1;FZR1;RPS6KA1;PLK1;PKMYT
1;AURKA;MAPK13

NF-kappa B 
signaling pathway 0.001016311 0.118400207 4.234375 29.18151747 BCL2A1;PLAU;BLNK;TRAF1;CCL19;MYD88

;TNFSF13B;RELB

Cell cycle 0.003101988 0.202574821 3.500718391 20.21914101 CCNB1;FZR1;ESPL1;CHEK1;PLK1;PKMYT1;
E2F5;MCM2

Nitrogen metabolism 0.004141963 0.202574821 10.79360999 59.22006374 CA12;CA2;CA9

Transcriptional 
misregulation in 
cancer

0.004721678 0.202574821 2.79414303 14.96428713 LDB1;BCL2A1;PLAU;MMP3;ASPSCR1;ITGB
7;TRAF1;PBX1;MEN1;BAIAP3

DNA replication 0.005216519 0.202574821 6.306701031 33.14754736 PRIM2;RFC3;DNA2;MCM2

Proteoglycans in 
cancer 0.007397742 0.24623913 2.606121627 12.78714541 COL1A1;VAV3;PLAU;CASP3;RPS6KB2;PLAU

R;PTPN6;NUDT16L1;THBS1;MAPK13

Lipid and 
atherosclerosis 0.010155576 0.277032376 2.477716767 11.37205688 VAV3;CASP3;CCL5;MMP3;OLR1;TLR6;IKBK

E;ABCG1;MYD88;MAPK13

ABC transporters 0.01150034 0.277032376 4.920040231 21.96984263 ABCD3;ABCC5;TAP1;ABCG1

Table 6. The obtained table from KEGG pathway analysis of the up-expressed DEGs results of the meta-analysis.

Fig. 7. KM plots based on relapse-free survival plots of 9 hub 
genes in patients with BC. Relapse-free survival (RFS) analysis 
of the following genes by low and high expression levels in BC 
patients: patients A) PLK1, B) CCNB1, C) AURCA, D) ASPM, 
E) FYN, F) MCM2, G) JUN, H) KIF2C, I) RFC3. For these genes 
higher expression is showen with a red line in the plot and the lower 
expression is showen with a black line in the plot. Abbreviations: KM 
plot, Kaplan-Meier plot; BC, breast cancer; HR (95% CI), hazard ra-
tio (the corresponding 95% confidence intervals).
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3.6. Survival Analysis on KM Plotter and Expression 
Validation on UALCAN for Hub genes and ATP1A2, 
FXYD1, and ADCY3 genes belonging to the cAMP Si-
gnaling

To confirm the association of hub genes with gene ex-
pression levels of ATP1A2, FXYD1 and ADCY3 and BC 
prognosis, we performed a survival analysis on the KM-
plotter gene chip database [Breast] [25].  This analysis 
showed that high expression of PLK1, CCNB1, AURKA, 
ASPM, MCM2, KIF2C, and RFC3 among the hub genes 
was significantly (log-rank P <0.05) associated with poo-
rer RFS in BC patients, while the lower expression of FYN 
had the same effect in BC patients (figure 7A to 7I). Fur-
thermore, there was an association between shorter survi-
val time and lower expression levels for ATP1A2, FXYD1, 
and ADCY3 in BC patients (Figure 9A to 9C). The compu-
tation of HR and 95% confidence values was done auto-
matically by the website. A narrower confidence interval 
report indicates a more precise survival possibility at eve-
ry time point [26]. The hub genes and three selected genes 
of the cAMP signaling pathway were verified through data 
mining with the help from the UALCAN database. The 
agreement between the expression levels of these genes 
was confirmed by the BC TCGA scores and DEG scores 
on the meta-analyzed microarray data in this study. The 
expression levels of PLK1, CCNB1, AURKA, ASPM, 
MCM2, KIF2C, and RFC3 had significant up-regulation. 
In cantrast, FYN and JUN had significant down-expression 
in primary tumor compared to normal tissues in patients 
with breast invasive carcinoma (BRCA) (Figures 8A to 8I). 
The TCGA results for ATP1A2, FXYD1, and ADCY3 also 
showed significant down-regulation in BRCA patients, 
similar to the results from the meta-analyzed studies and 
list of DEGs from our study (Figures 9D to 9F). P-value < 
0.05 was considered statistically significant.

3.7. Real-Time PCR Validation of Selected DEGs 
3.7.1. ATP1A2 had a significantly increased level in 
breast tumor tissues

The results of paired T-test analysis revealed that the 

expression level of ATP1A2 was significantly increased in 
the breast tumor tissues compared with their normal mar-
ginal tissues (p-value = 0.016 and FC = 3.038 ) (Figure 10 
A).

3.7.2. ADCY3 and FXYD1 had non-significant increased 
levels in breast tumor tissues

ADCY3 and FXYD1, although they had increased ex-
pression levels between breast tumor tissues and their cor-
responding normal tissues, the results were non-significant 
(FOR FXYD1: p-value = 0.654, and FC = 1.205 for and 
ADCY3: p-value = 0.300, and FC = 1.637) (Figure 10B 
and 10C respectively).

4. Discussion 
In recent years, BC has accounted for the highest inci-

dence of new female cancer cases, so targeting the pro-
gress of this disease seems urgent [27]. BC is a heteroge-

Term P-value Adjusted 
P-value Odds Ratio Combined 

Score Genes

Pathways in 
cancer 1.48E-06 3.63E-04 3.233552321 43.41420024

CEBPA;CAMK2D;ROCK2;LAMA4;PTGER3;LAM
A3;ADCY3;GLI2;EDNRB;PIM1;ABL1;BDKRB2;IL
15RA;JUN;GSTM2;TCF7L1;ZBTB16;PTCH1;VEGF

C;LAMB1;GSTA4;PPARG;IL6ST;MET;CRK

cAMP signaling 
pathway 9.99E-06 0.001228333 4.441115164 51.13625212

JUN;CAMK2D;NPR1;ROCK2;PTCH1;PTGER3;AD
CY3;ATP1A2;PPP1CB;PDE10A;FXYD1;PPP1R1B;

CNGA1;RAPGEF3

Focal adhesion 9.48E-05 0.007775813 4.044610437 37.46707297 PPP1CB;JUN;CAV2;ROCK2;PDGFD;LAMA4;LAM
A3;VEGFC;FYN;LAMB1;CRK;MET

Adherens 
junction 1.34E-04 0.008229519 6.89417203 61.53635001 TCF7L1;FER;CSNK2A2;SNAI2;FYN;WASF1;MET

Osteoclast 
differentiation 1.99E-04 0.009794702 4.829027481 41.15204174 SOCS3;CYLD;PPP3CA;JUN;CALCR;FOSB;PPARG

;FYN;MAP2K6

cGMP-PKG 
signaling pathway 3.51E-04 0.014405337 4.037761601 32.11525976 PPP1CB;PPP3CA;EDNRB;NPR1;ROCK2;BDKRB2;

CNGA1;ADCY3;PDE5A;ATP1A2

Complement 
and coagulation 

cascades
4.11E-04 0.014445018 5.657020364 44.10680952 PROCR;C1QA;CFH;CFI;BDKRB2;SERPING1;C4

BPA

Table 7. The obtained table from KEGG pathway analysis of the down-expressed DEGs results of the meta-analysis.

Fig. 8. UALCAN-based relative expression of 9 hub genes in pa-
tients with BC. In these plots, the blue box shows the relative expres-
sion of the related gene in normal breast tissues and the red box shows 
the relative expression of the related gene in tumor tissues. A) PLK1, 
B) CCNB1, C) AURCA, D) ASPM, E) FYN, F) MCM2, G) JUN, 
H) KIF2C, I) RFC3. Abbreviation: BC, breast cancer; BRCA, Breast 
invasive carcinoma; TCGA, the cancer genome atlas. ***P-value < 
0.0001.



25

ATP1A2, FXYD1, and ADCY3 expression in breast cancer.          Cell. Mol. Biol. 2024, 70(11): 16-30

neous group of diseases with divergences at the genomic, 
transcriptomic and epigenomic levels that explain the pro-
perties of tumor cell characteristics associated with the cli-
nical outcome of the disease, including therapy resistance 
[28]. High-throughput technologies, such as microarrays, 
provide a better understanding of tumor characteristics by 
providing a platform to identify tumor transcriptome pro-
files [29]. One of the suggested methodologies that could 
discriminate breast tumor tissue from normal tissue is to 
detect robust DEG signatures that have addressable dere-
gulations in breast tumor tissues [8]. A variety of statistical 
techniques are used in meta-analysis to produce a robust 
and reproducible signature of DEGs. Since gene expres-
sion profiling increases the likelihood of discovering the 
core molecular architecture and signaling pathways that 
explain the oncogenic characteristics of BC, we did a me-
ta-analysis on five publicly accessible microarray studies 
in this study to understand BC at the molecular level. [30].

Microarray studies enable the parallel measurement 

of gene expression levels on the whole genome breadth 
to improve our knowledge of cancer biology, treatment, 
and prognosis [31]. Gene expression profiles aid in opti-
mal patient treatment selection based on disease severity, 
like molecular subtyping in breast cancer [32]. Despite the 
implications, these studies face hurdles like small sample 
size, data reproducibility, cross-platform comparisons, 
and statistical issues [31]. Meta-analysis integrates results 
from comparable studies using advanced statistical metho-
dology, increasing observation count for statistical power 
in studies with similar design and purpose. In all, the 
sample size in our meta-analysis amounted to 805 breast 
tumor tissue samples and normal margins. We performed 
the meta-analysis on the NetworkAnalyst platform, which 
provides the ComBat normalization option as well as the 
REM method as a combining effect model that takes into 
account the cross-study heterogeneity that creats a robust 
gene signature of breast tumor tissue.

Under the significance cut-off of adjusted P-value < 
0.05, 710 (392 significantly up-regulated and 318 signi-
ficantly down-regulated) DEGs were identified after per-
forming the meta-analysis on the five microarray studies 
across breast tumor tissues relative to normal margin tis-
sues. The top 10 up-regulated DEGs are UHRF1, EZH2, 
COL10A1, CEP55, ASPM, HMMR, TPX2, NEK2, MELK 
and, DLGAP5, and the top 10 down-regulated DEGs are 
LDB2, HSPB2, GLYAT, ACVR1C, FXYD1, ATP1A2, AN-
GPTL1, TMEM100, CHRDL1 and, NR3C1. As brought in 
Table 4, among up-regulated DEGs, Ubiquitin Like With 
PHD And Ring Finger Domains 1 (UHRF1) showed the 
highest combined ES (2.0512). Previous studies have 
shown pro-invasion and pro-migration roles for this gene 
since UHRF1 promoted BC cell proliferation, shortening 
the G1 phase and stimulating tumor vessel formation [33]. 
UHRF1 is an epigenetic regulator and its overexpression 
has been demonstrated in many malignancies, including 
BC [34]. Consistent with our study, overexpression of 
Enhancer Of Zeste 2 Polycomb Repressive Complex 2 
(EZH2) in BC has been reported in a microarray analy-
sis that has introduced this gene as a marker of neoplas-
tic transformation and aggressiveness of BC cells [35]. 
EZH2 exhibits increased expression levels, particularly 
in advanced stages of BC. This gene is a subunit of his-
tone methyltransferase enzyme in the polycomb repressive 
complex 2 (PRC2) [25] and it has been introduced as a bio-
marker of long-term metastatic risk, predicting metastasis 
in women with familial early-stage BC [36]. Up-regula-
ted levels of Collagen Type X Alpha 1 Chain (COL10A1) 
(combinedES: 1.9471 ) reported in our study were in line 
with another study that reported its overexpression in all 
BC subtypes [37]. Higher expression levels of COL10A1 
predict a poor prognosis and tumor promotion in BC [38]. 
This gene was also introduced as a target for BC therapy 
and inhibition of this gene, curbed the cell migration pro-
perties of BC cells [38]. Centrosomal Protein 55 (CEP55) 
which showed a significantly elevated level in our study 
(combinedES: 1.8293), was introduced as a tumorigenic 
and genome destabilizing factor in an in vivo BC study 
[39]. Abnormal spindle-like microcephaly-associated 
(ASPM) gene was among both up-regulated (combinedES: 
1.8039) and detected hub genes in a bioinformatics study 
related to BC. Its expression correlated with advanced 
grades of tumors, as it was found to be an up-regulate hub 
gene in this study as well [40]. ASPM encodes a spindle 

Fig. 9. KM plots based on relapse-free survival plots and UAL-
CAN-based TCGA validation of three selected genes from the 
cAMP signaling pathway in patients with BC. Relapse-free sur-
vival (RFS) analysis of the following genes by low and high ex-
pression levels in BC patients: A) ATP1A2, B) FXYD1, C) ADCY3. 
UALCAN-based relative expression in normal tissues and breast 
cancer tissues: D) ATP1A2, E) FXYD1, F) ADCY3. Abbreviations: 
KM plot, Kaplan-Meier plot; BC, breast cancer, HR (95% CI), hazard 
ratio (the corresponding 95% confidence intervals). ***P-value < 
0.0001.

Fig. 10. Relative mRNA expression in breast tumor tissue (Tu-
mor) shown in grey color vs. their matching nearby normal tissue 
(Margin) samples shown in black color, of BC patients. A) AT-
P1A2 expression level in tumor tissues and normal adjacent tissues, 
B) FXYD1 expression level in tumor tissues and normal adjacent tis-
sues, and C) ADCY3 expression level in tumor tissues and normal 
adjacent tissues. * P-value < 0.05.
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protein is important for mitotic spindle function during 
cell replication [41]. Overexpression of HMMR,  TPX2, 
MELK, NEK2, and DLGAP5 was also shown in BC-rela-
ted studies [42-46].

Among the down-regulated DEGs in this study, LIM 
Domain Binding 2 (LDB2, also called CLIM1) showed the 
lowest expression level in tumor vs. margin of BC tissues 
(combinedES: -1.7922). LDB2 functions as a transcriptio-
nal regulatory factor that negatively affects tumor growth 
and migration in liver cancer and in BC cells, negatively 
affects the function of estrogen receptor-alpha (ER α) [47]. 
ER α controls signaling pathways that strongly influence 
the oncogenesis in mammary cells. Heat Shock Protein 
Family B (Small) Member 2 (HSPB2) is a member of the 
HSPs family that contributes to the maintenance of pro-
teome functionality and is an ubiquitous ATP-independent 
chaperone [48]. Strong down-regulation of this gene was 
also observed in all subtypes (luminal A, luminal B, ba-
sal, Her2 enriched) of BC concordant with our study that 
showed a combinedES equal to -1.7549 [49]. Consistent 
with this result, down-expressed levels of HSPB2 breast 
tumors vs. adjacent non-tumoral breast tissues were signi-
ficant, and independent of the clinicopathological factors, 
higher expression of this gene indicates poor prognosis 
and relapse for BC patients [48]. Glycine N-acyltransfe-
rase (GLYAT), encoding an enzyme that produces coen-
zyme A (acyl-CoA) and acyl glycine, has down-regulated 
in BC tissues and cell lines, and its knockdown increased 
the proliferation rates in vivo and in vitro. The down-re-
gulations of this gene induced PI3K/AKT/Snail pathway-
related epithelial-mesenchymal transition (EMT), and 
an association of lower expression of GLYAT with poor 
prognosis for BC patients [50]. The expression levels of 
the top 10 up- and down-regulated genes in this study 
were not consistent with the results of the meta-analysis 
and were similar to the results of the UALCAN-derived 
TCGA expression levels of the DEGs (Supplementary 
Data, Table S1). 

The list of DEGs underwent network-based meta-
analysis to detect the hub genes. Among the resulting 
hub genes, there was a link between Polo Like Kinase 1 
(PLK1) and Aurora Kinase A (AURKA) in cell cycle pro-
gression through entering mitosis and assembly of spindle 
[51]. Both of these genes had significantly higher expres-
sion levels in breast tumor tissues in our meta-analysis of 
this study and other studies on BC [52]. In TNBC, targe-
ting PLK1 by BI-2536, a selective inhibitor for this pro-
tein, is introduced as a warranted targeted therapy [53]. 
Cyclin B1 (CCNB1) was also introduced as a promising 
biomarker for ER+ BC prognosis, a target for BC preven-
tion and reversion of therapy resistance [54]. It was shown 
that inhibition of CCNB1 decreases the proliferation of the 
cells, arrests the cells in the G2/M phase, and opposes the 
EMT mechanism [55]. The Assembly Factor For Spindle 
Microtubules (ASPM), encoded by primary microcephaly 
5 (MCPH5), plays an essential role in ensuring spindle 
position during mitosis and controlling DNA replication 
and has been associated with a poor prognosis in BC [40]. 
FYN Proto-Oncogene, Src Family Tyrosine Kinase (FYN) 
is a member of the Src family of kinases (SFKs) which 
in our study showed significant down-regulation (combi-
nedES -0.88733), has indicated an overexpression in BC, 
as well as promotion of migration, invasion, and prolifera-
tion in BC cell, lines [56]. Members of this family include 

Src, FYN, and YES that play essential roles in several si-
gnaling pathways such as cell proliferation [57]. Other hub 
genes including MCM2, KIF2C and RFC3 also showed 
increased expression in BC [58, 59]. Jun Proto-Onco-
gene (JUN) encodes the c-Jun transcription factor, which 
plays an essential role in tumor metastasis and showed de-
creased expression in this study (combinesES: -0.90239). 
This gene can play tumor suppressor and oncogenic roles 
in cancer [60]. 

KM-plotter analysis was performed on the hub genes 
to determine their prognostic value. Relapse-free survival 
(RFS) KM-plotter showed a significantly lower survival 
probability  of patients with increased expression levels 
of PLK1, CCNB1, AURKA, ASPM, MCM2, KIF2C, and 
RFC3 but decreased levels of FYN had the same effect 
in BC patients. We also performed a comparison of gene 
expression levels between tumor and normal tissues of the 
BC dataset using TCGA analysis in the UALCAN data-
base. The results were consistent with our survey.

In this study, we conducted GO and KEGG pathway 
analysis to unveil the deregulated molecular functions and 
signaling pathways underlying BC tumorigenesis. The re-
sults of GO and KEGG pathway analysis were consistent 
for both up-regulated and down-regulated DEGs. KEGG 
pathway analysis the DEGs of the up-regulated list indi-
cated that Progesterone-mediated oocyte maturation, NF-
kappa B signaling pathway, and Cell cycle signaling pa-
thways were associated with the pathogenesis of BC. This 
result was consistent with another study on BC [61]. Pro-
gesterone is essential in BC carcinogenesis and induces 
cellular proliferation in the mammary epithelium in the 
presence of estrogen [62].  When we explored the KEGG 
signaling pathways for down-expressed DEGs the results 
included Pathways in cancer, cAMP signaling pathway, 
Focal adhesion, and Adherence junction. The expression 
of members of these signaling pathways showed reduced 
levels and these genes are related to the connections of tu-
mor cells with each other. They  may represent the entering 
of the tumor into an invasive mode into a definitive metas-
tasis. A study on BC showed that activation of the cAMP 
signaling pathway leads to inhibition of BC cell migration 
[63]. cAMP is a second messenger acting as an important 
mediator of several cellular functions including cellular 
proliferation, migration, and invasion [64]. Interestin-
gly, Estrogen hormones have been shown to increase the 
cAMP levels, as well as their direct interaction with chro-
mosomes; as a result, estrogen hormone-mediated changes 
in gene expression levels may involve the activation of 
cAMP [65].  Because it is an important but not extensively 
studied signaling pathway, we selected three genes from 
the cAMP signaling pathway for further investigation in 
clinical BC specimens. The other genes involved in the 
GO and KEGG pathways should be investigated in more 
detail in the future.

ATP1A2, FXYD1, and ADCY3 were all members of the 
three major down-regulated signaling cascades, whose ex-
pression levels have not been previously examined in cli-
nical BC samples. According to the meta-analysis results, 
all three genes were significantly down-regulated in breast 
tumors (combenedESs for ATP1A2, -1.5941; FXYD1, 
-1.5962; ADCY3, -0.52862). Comparison of TCGA expres-
sion level between breast tumors and normal tissue also 
showed significant down-expression based on UALCAN-
Web. KM plotter analysis of these genes showed signifi-
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cantly increased recurrence-free survival in patients with 
increased expression of these genes. Further microarray 
expression level determination for ATP1A2 also showed 
significant down-regulation in BC, but ATP1A1 (coding 
α1 subunit) showed increased expression [24]. 

In contrast to our bioinformatics studies, after per-
forming real-time PCR expression level determination 
for ATP1A2, FXYD1 and ADCY3 in breast tumor tissues 
compared to the normal margins, we observed increased 
levels for these genes, where only the expression levels 
of ATP1A2 reached statistical significance. ATP1A2 gene 
encodes the α2-subunit of the Na+/K+ ATPase (NKA) that 
is a member of p-class pumps. NKA is a hetero-oligome-
ric protein that is composed of three sub-units (α, β, and 
γ). The α and β subunits are catalytic, and the γ subunit 
consists of the FXYD family (FXYD1-7) [66]. ADCY3 
catalysis is involved in the production of cAMP, a mem-
brane-associated protein. Its overexpression has a tumo-
rigenesis function in gastric cancer, but we couldn’t find 
any study on the function and expression levels of this 
gene in BC [67].

Not only does NKA act as an ionic pump, but it also 
acts as a signal transducer and membrane receptor [66]. 
FXYD1 encodes phospholamban (PLM) protein that inte-
racts with and regulates NKAs [68]. A review study repor-
ted an association of NKA with diverse cellular functions 
like proliferation and survival as well as cell death. This 
pump is also involved in cell adhesion and cellular inva-
sion [66]. When there is deregulation of the α, β, and γ 
subunits of the NKAs, cell adhesion decreases and cell 
migration increases [66].

So, since different studies have reported diverse and 
sometimes opposite functions for this protein, the contrast 
that we noted in this study might be because the up-re-
gulated pathways induced cell proliferation and down-ex-
pressed pathways showed a lowering in the cellular adhe-
sion, in our study with samples of BC patients, the inva-
sive function of NKA was activated. We speculate that the 
contrast between our bioinformatics and clinical samples 
expression level determination is due to the differences in 
the stages and sampling conditions of our study from the 
ones of microarray surveys. 

This study, like any other, has several strengths and 
limitations, and its acknowledgment would shed light on 
future studies. First, dataset and platform heterogeneity 
and confounding factors might have skewed our statistical 
analysis. To solve this issue, we performed batch effect 
correction by normalization for each data set well as be-
fore performing the meta-analysis on NetwokAnlyst, and 
we had common platforms for three data sets (GSE10780, 
GSE29044 and GSE42568) and the other two were sub-
series of a more extensive study (GSE70905, GSE70947). 
Second, the sample size for meta-analysis was not adequate 
since we examined the expression levels of thousands of 
genes. Due to the heterogeneity of BC subtypes, a better 
approach to the detect DEGs for BC patients should also 
consider the subtypes of this disease. It is worth mentio-
ning that another limitation of the sampling subject would 
be the notion that ethnicity is an important confounding 
factor in this study. Also for our real-time PCR valida-
tion experiments, we only studied the expression levels of 
three genes on a small sample size for BC patients. Third, 
our bioinformatics results from the meta-analyzed DEGs 
were consistent with the TCGA results, but the expression 

levels of ATP1A2, FXYD1, and ADCY3 had discordance 
levels in samples from BC patients. Last but not least, we 
did not provide more experimental studies for our survey 
due to the limitations in financial and laboratory equip-
ment. We suggest more extensive experimental studies on 
this subject, especially on the NKA protein function in BC. 

5. Conclusions
Taken together this study reported an integrative meta-

analysis on five microarray data sets related to BC, compa-
ring the mRNA levels of shared DEGs among these studies 
using the NetworkAnalyst online tool. The list of DEGs 
obtained from the meta-analysis underwent PPI, hub gene 
detection, GO, and pathway analysis to gain more insight 
into the primary molecular factors affecting BC pathoge-
nesis. cAMP signaling pathway was among the most 
significantly deregulated pathways related to the down-
expressed DEGs, and the expression levels of three mem-
bers of this cascade were surveyed in BC patients' derived 
tumor tissues relative to their corresponding normal ones. 
The hub genes were also under survival and expression 
analysis in BC patients through a bioinformatics database 
named UALCAN. To the best of our knowledge, this study 
was the first to identify the expression level of the selec-
ted three DEGs from the cAMP signaling pathway, namely 
ATP1A2, FXYD1 and ADCY3. This project also provided 
the other signaling pathways, PPIs, gene ontology terms 
and a list of DEGs for future biomarker determination and 
prognostic studies.
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