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1.	 Introduction
Cancer is a prevalent disease that has a significant fi-

nancial impact on healthcare. It is characterized by aber-
rant cell proliferation brought on by genetic mutations, 
leading to the development of malignant tumors [1]. Can-
cer is one of the top two causes of death before the age of 
70 in 112 of 183 countries [2]. According to projections, 
there were 1,958,310 new cancer cases and 609,820 can-
cer-related deaths in the United States in 2023. Notably, 
the incidence of prostate cancer increased by 3% on an 
annualized basis from 2014 to 2019, reversing a two-de-
cade decline. This change resulted in an additional 99,000 
new cases; otherwise, male incidence trends were more 
favorable than female incidence trends [3]. Cancer treat-
ment has been transformed by the development of targeted 
therapies [4].

The Moloney murine leukemia (PIM) kinases are a 
subset of serine/threonine kinases that include three iso-
forms: PIM-1, PIM-2, and PIM-3. These kinases have 
been shown to be important in enhancing hematopoietic 
cell proliferation in response to growth factors and cyto-
kines [5, 6]. Notably, abnormally elevated PIM kinase 
levels have been linked to the onset of cancer in transgenic 

animal models [7] and play a multifaceted role in carci-
nogenesis, including activities such as multiple myeloma 
proliferation promotion, facilitation of anti-apoptotic pro-
cesses, cell cycle modulation, and bone destruction media-
tion [8, 9]. PIM-1 overexpression has been observed in 
various cancers [10-14]. Notably, the absence of apparent 
abnormalities in PIM-1 kinase-deficient animals empha-
sizes its suitability as a prime target for developing novel 
anticancer therapeutics [15]. Furthermore, PIM-1 contri-
butes to drug resistance mediation by phosphorylating and 
stabilizing drug efflux transporters such as P-glycoprotein 
and breast cancer resistance protein [16, 17], emphasizing 
the critical need for the development of effective PIM-1 
inhibitors.

The implications of PIM kinases in key cancer-rela-
ted processes have spurred vigorous exploration for small 
molecule inhibitors that act via ATP competition to deve-
lop novel targeted therapies for oncological conditions. 
Despite their commendable biochemical efficacy, most 
PIM-1 inhibitors have fallen short of becoming clinically 
relevant anticancer agents owing to suboptimal pharmaco-
logical properties [18-20]. PIM-1 inhibitors have sparked 
considerable interest in recent years, owing primarily to 
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their therapeutic potential in the context of cancer. The rate 
of discovery of novel PIM inhibitors has increased noti-
ceably, highlighting the critical need for a new generation 
of potent compounds with the necessary pharmacological 
profiles, which have the potential to pave the way for the 
development of PIM kinase inhibitors effective against 
cancers. 

In silico methodologies have become essential in phar-
macological discovery, facilitating the accurate identifica-
tion and targeting of therapeutic proteins. These methods 
facilitate the efficient evaluation of natural compounds as 
prospective inhibitors, offering a more rapid and economi-
cal alternative to conventional experimental approaches. 
Multiple studies have evidenced the efficacy of in silico 
tools in forecasting interactions between natural com-
pounds and drug targets, thereby considerably enhan-
cing the development of novel therapeutics [21, 22]. This 
study aimed to employ computational approaches, inclu-
ding molecular docking-based virtual screening (VS) and 
molecular dynamics approaches, to discover novel natural 
PIM-1 inhibitors.

2. Methodology
2.1. D Structural assessment of PIM-1

The PIM-1 structural configuration (3D) was obtained 
from the Protein Data Bank (PDB ID: 5KZI). The X-ray 
structure of PIM-1 (resolution: 2.10 Å) was complex with 
an imidazopyridine inhibitor [23]. The heteroatom (imi-
dazopyridine inhibitor) and water molecules were remo-
ved using Discovery Studio Visualizer 2020. The Chimera 
software suite minimized the structure, which began with 
100 steps of steepest descent minimization and then 10 
steps of conjugate gradient minimization. The prepared 
protein structure was saved as .pdb for VS.

2.2. Natural compound retrieval and library prepara-
tion

Natural compounds were obtained from the ZINC data-
base. Compounds adhering to Lipinski's Rule of Five and 
molecular weights ranging from 250 to 350 Da were cho-
sen to ensure drug-likeness, as most small-molecule drugs 
fall between 250 and 500 Da. A total of 7,600 compounds 
were downloaded in the .sdf format. These compounds 
were prepared with PyRx 0.8 software, which utilized the 
Universal Force Field for energy minimization. The ener-
gy-minimized compounds were then converted to .pdbqt 
format for further molecular docking-based VS. The XYZ 
coordinates for the binding site of PIM-1 were determi-
ned using Discovery Studio Visualizer 2020, with values 
of -41.267870 for the x-coordinate, -2.006370 for the y-
coordinate, and 2.111056 for the z-coordinate. The radius 
was set as 7.253168.

2.3. Structured-based virtual screening
Virtual Screening (VS) is a valuable tool for enhancing 

the number of active compounds within databases while 
efficiently filtering out inactive entities prior to empirical 
validation in laboratory settings. By employing structure-
based virtual screening, researchers can focus on com-
pounds that are more likely to interact effectively with spe-
cific biological targets [24]. It analyzes large databases of 
known 3D structures using computer methodologies [25]. 
The prepared compound library was screened against the 
PIM-1 active site using the PyRx 0.8 program [26].

1.1.	 In silico Pharmacokinetics and toxicity estimation 
The top five hit compounds obtained through VS were 

analyzed for their ADMET (absorption, distribution, me-
tabolism, excretion, and toxicity) properties and physico-
chemical characteristics using the ADMET-AI web inter-
face (https://admet.ai.greenstonebio.com/). . The machine 
learning tool ADMET-AI utilized predictive algorithms 
to determine ADMET properties and crucial physicoche-
mical characteristics. The predictions encompassed gas-
trointestinal absorption, blood-brain barrier permeability, 
CYP450 interactions, half-life, clearance, and toxicity 
profiles such as hepatotoxicity and cardiotoxicity. The 
findings were utilized to assess the drug-like properties 
and safety of the compounds in anticipation of subsequent 
investigations [27].

1.2.	 Molecular dynamics (MD) simulation 
The top five selected compounds (ZINC00388658, 

ZINC00316459, ZINC00197401, ZINC00001673, and 
ZINC00316479), as well as a control compound, were 
subjected to MDS with GROMACS 2019.6 software 
[28] and the CHARMM27 force field [29]and SwissPa-
ram [30] was used to generate tology files. The 'particle-
mesh Ewald' technique was used to precisely calculate the 
long-range electrostatic interactions between PIM-1 and 
the selected compounds. The steepest descent method was 
used to minimize energy in the system for 1,500 steps. The 
system then went through two stages of equilibration, first 
with the NVT ensemble and then with the NPT ensemble. 
The final manufacturing process was carried out for 200 ns 
at a constant temperature of 300 Kelvin.

Following the simulation, several analyses were perfor-
med using GROMACS analysis tools, including RMSD, 
RMSF, RoG, H-bond, eigenvector index, and PCA. The 
3D models were created using Visual Molecular Dyna-
mics to create graphical representations. These procedures 
followed protocols as described in earlier studies [31-33].

2.6. MM-PBSA analysis
The Molecular Mechanics-Poisson–Boltzmann Sur-

face Area (MM-PBSA) method [34] based free energy 
calculation was simulated by MMP-BSA.py Python script 
[35]. The free energy calculation was performed by gmx_
MMPBSA program [36]. The calculation of free energy 
(ΔGbind) was accomplished by the following formula: 

Where; 
ΔGbind=ΔEMM+ΔGsol−TΔS
ΔEMM = Molecular Mechanics energy (van der Waals 
and electrostatic)
ΔGsol   = Solvation free energy (polar and non-polar contri-
butions)
TΔS    = Entropic contribution

3. Results
This study attempts to identify novel substances that 

could aid in developing  effective cancer treatments by 
specifically targeting PIM-1, a protein involved in cancer 
cell survival, growth, and drug resistance. Compounds 
with molecular weights ranging from 250 to 350 Da were 
obtained from the ZINC database. 7,600 compounds were 
retrieved and processed for VS against the binding pocket 
of PIM-1 kinase. The cocrystal ligand 6YN (PubChem ID: 
70984064) was employed as a positive control to compare 
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Phe187, Ile104, Leu120, Ile185, Glu121, Leu 174, Ala65, 
Arg122, Leu44, and Val52 residues of PIM-1 protein 
(Figure 2D). In addition, ZINC00388658 interacted with 
Leu174, Asp186, Ile104, Leu120, Glu121, Ala65, Val52, 
Ile185, Lys67, Asn172, Phe49, Gly45, and Leu44 residues 
of PIM-1 protein (Figure 2E). 

Furthermore, the control compound was found to inte-
ract with Phe49, Val52, Gly45, Lys67, Asp186, Leu120, 
Ile104, Glu121, Ile185, Ala65, Pro123, Arg122, Leu174, 
Leu44, Val126, Gln127, Asp131, Asp128, Asp172, and 
Glu171 residues of PIM-1 protein (Figure 2F). Inte-
restingly, the top 5 hit compounds (ZINC00197401, 
ZINC00001673, ZINC00316459, ZINC00316479, and 
ZINC00388658) were observed to bind to most of these 
PIM-1 residues, indicating that these compounds interact 
with the same pocket of PIM-1 as the control (6YN).    

H-bonding plays an essential role in the binding stabi-
lity of the ligand-protein complex. Interestingly, the selec-
ted compounds have been found to make H-bonding with 
several active side residues of PIM-1. ZINC00197401 
was H-bonded with Lys67 and Glu171 residues of PIM-
1 protein, while Asn172 residue was H-bonded with 
ZINC00001673. Similarly, Lys67 and Asp186 residues of 
PIM-1 protein were H-bonded with ZINC00316479. In 
addition, ZINC00388658 was H-bonded with Lys67, and 
Asp186 residues of PIM-1 protein. 

Furthermore, a 2D interaction analysis was also conduc-
ted on the following five compounds (6-10th hits) from the 
top ten, as indicated in Table 1. The analysis showed that 
most active site residues interacted with the selected com-
pounds, as depicted in Supplementary Figure S1.

the screening of the natural compound library. The binding 
affinity, measured in terms of binding energy, was then 
compared to the control. 

The study showcases the ten most potent PIM-1 inhi-
bitors, determined by their comparable binding energy to 
the control and their strong interaction with the active site 
residues of PIM-1 (Table 1). The control exhibited a bin-
ding energy of -8.7 kcal/mole. Table 1 displays the top ten 
hits demonstrating better binding energy and stronger inte-
raction with PIM-1 active site residues, as observed in 2D 
and 3D interactions. The five most prominent compounds 
underwent additional comprehensive interactions and MD 
analysis. 

The 2D and 3D interactions of the top five compounds—
ZINC00388658, ZINC00316459, ZINC00197401, 
ZINC00001673, and ZINC00316479—were further in-
vestigated. Figure 1 depicts the binding poses and three-
dimensional interactions of the control compound (red) 
and the selected hits (green). Visual inspection of the bin-
ding poses reveals that these hits occupy the same binding 
pocket as the control compound, sharing multiple active 
site residues. These compounds showed the potential to be 
effective inhibitors, comparable to the control compound.

ZINC00197401 was found to interact with Leu174, 
Asp186, Gly45, Ser46, Asn172, Leu44, Glu171, Asp128, 
Ile185, Val52, Phe49, Lys67, Ile104, and Leu174 residues 
of PIM-1 protein (Figure 2A); while ZINC00001673 inte-
racted with Asp186, Lys169, Asn172, Glu171, Asp128, 
Phe130, Ile185, Phe49, Gly45, Val52, Glu121, Leu174, 
Ala65, Lys67, Ile104, and Leu120 residues of PIM-1 pro-
tein (Figure 2B). ZINC00316459 interacted with Leu44, 
Ala65, Arg122, Pro123, Leu174, Glu121, Ile104, Ile185, 
Val52, Leu120, Asp128, Asp131, Gln127, and Val126 
residues of PIM-1 protein (Figure 2C). ZINC00316479 
Lys169, Glu171, Asn172, Phe49, Lys67, Glu89, Asp186, 

Fig. 1. Binding poses of top 5 hits and control (red color).

Top 10 hits Binding affinity 
(kcal/mol) Mol. Wt Smile ID

ZINC00388658 -9.8 298.338 O=C1OC[C@H](Cc2cccc(O)c2)[C@H]1Cc1cccc(O)c1
ZINC00316459 -9.7 283.283 O=C(/C=C/c1ccco1)C[C@@]1(O)C(=O)Nc2ccccc21
ZINC00197401 -9.6 262.309 CC(C)CCOc1ccc([C@H]2NC(=O)NC2=O)cc1
ZINC00001673 -9.5 305.205 N[C@@H](Cc1ccc(N(CCCl)CCCl)cc1)C(=O)O
ZINC00316479 -9.4 335.315 O=C(C[C@@]1(O)C(=O)Nc2ccccc21)c1cc2ccccc2oc1=O
ZINC00485444 -9.0 311.429 C[C@@H]1CCCN(CC(=O)N2CCc3[nH]c4ccccc4c3C2)C1
ZINC00265510 -8.9 349.383 COc1cc(=O)n(C)c2c(OC[C@@H](OC(C)=O)C(C)(C)O)cccc12
ZINC00241782 -8.9 288.105 Nc1ncn(C[C@H](O)CO)c2nc(Br)nc1-2
ZINC00119983 -8.8 290.271 Oc1cc(O)c2c(c1)O[C@H](c1ccc(O)c(O)c1)[C@@H](O)C2
ZINC00188060 -8.8 293.326 O=C(O)[C@H]1Cc2c([nH]c3ccccc23)[C@H](c2cccnc2)N1

Table 1. Top 10 hits and their binding affinity values.

Fig. 2. 2D interaction of ZINC00197401 (A), ZINC00001673 (B), 
ZINC00316459 (C), ZINC00316479 (D), ZINC00388658 (E), and 
control 6YN (F) with the active site residues of PIM-1 protein.
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3.1. In silico Pharmacokinetics
Advancements in chemical repositories, combinatorial 

chemical spaces, high-throughput docking, and genera-
tive artificial intelligence have greatly expanded the small 
molecule pool for drug discovery. To select compounds 
for therapeutic advancement, it's essential to evaluate their 
pharmacokinetic properties, such as absorption, distribu-
tion, metabolism, excretion, and toxicity. ADMET charac-
teristics are crucial in advancing compounds from disco-
very to clinical trials, ensuring their effectiveness and sa-
fety. The ADMET-AI tool was used in this study to predict 
the ADMET properties of the five selected compounds 
discovered through VS [27]. The compounds' drug-like 
potential was assessed by visualizing the data with scatter 
plots, radial plots, and detailed ADMET predictions.

The summary plot illustrates the dispersion of ADMET 
predictions for the top five compounds compared  to the 
DrugBank reference set. Upon visualizing the molecular 
weight on the Y-axis and the acute toxicity (LD50) on the 
X-axis, it was observed that all five compounds fit wit-
hin the range of most reference drugs. The resemblance to 
existing drugs implies that the chosen compounds possess 
advantageous pharmacokinetic characteristics,  bolstering 
their potential as promising therapeutic candidates (Figure 
3).

3.2. ADMET prediction
ADMET-AI was employed to evaluate the ADMET 

profiles of the top 5 compounds. This method utilizes 
Chemprop-RDKit graph neural networks to estimate eight 
physicochemical and 41 ADMET properties. Table 2 dis-
plays classification properties, including the probability 
of blood-brain barrier penetration, and compares these 
predictions to the DrugBank reference set. It is clear that 
all five of the hit compounds have ADMET profiles that 
closely resemble those of renowned drugs when compa-
red to the DrugBank reference set. This implies that these 
compounds have the potential to be effective therapeutics 
(Table 2). 

3.3. Analysis of radial plots 
The radial plot for the top five compounds (hits) sum-

marizes five critical ADMET properties: blood-brain bar-

rier safety, hERG safety, bioavailability, solubility, and 
non-toxicity. The plots show that all five compounds fall 
within acceptable ranges compared to the DrugBank refe-
rence set. More specifically, the compounds are likely to 
be  safe due to their ability to cross the blood-brain bar-
rier and block the hERG channel. They also have good 
oral absorption, adequate water solubility, and low clinical 
toxicity. These findings support using  these compounds 
as potential drug candidates, as their ADMET profiles are 
similar to those of established therapeutics (Figure 4). In 
addition, the ADME properties of the remaining five com-
pounds (6-10) listed in Table 1, which are included in the 
top ten, were assessed using radial plots. The results indi-
cated that these compounds also fulfill the requirements 
for drug-likeness, implying their potential as promising 
therapeutic candidates (Supplementary Figure S2).

3.4. MD simulation analysis 
Following completion of the 200 ns MDS, the trajec-

tory files were analyzed to extract data on RMSD, RMSF, 
RoG, and the number of hydrogen bonds formed. Figure 5 
depicts the deviation of the complexes (5 compounds and 
one control docked with PIM-1) during the 200-ns MDS. 
The average RMSD values observed were between 0.10 
and 0.30 nm for selected compounds and 0.20 and 0.35 
nm for control (Figure 5A). Significantly, it was observed 
that all five hit molecule complexes showed similar trends 
and better (less RMSD) values compared to the  control 
complex. The RMSD graph clearly demonstrates that 
ZINC00388658 and ZINC00316479 pose more stable and 
less RMSD than other molecules and control throughout 
the simulation period of 200 ns. ZINC00001673 showed 
slight fluctuation at the start of the simulation, up to 30 
ns, but after that, it was stable. ZINC00001673's RMSD 
fluctuated between 0.15 and 0.30 nm at the start of the 
simulation (up to 25 ns), but it then remained stable in the 
range of 0.1 to 0.2 nm (Figure 5A). 

A total of 1-5 hydrogen bonds formed during the en-
tire simulation period. ZINC00388658, ZINC0019740, 
and ZINC00316479 formed five hydrogen bonds, and 
ZINC00001673 and the control compound formed four 
hydrogen bonds, while ZINC00316459 formed two hy-
drogen bonds during the whole simulation period (Figure 
5B).

The radius of gyration analysis (RoG) assesses the 
compactness and stability of protein structures during 
the simulation period due to the presence of ligand mole-Fig. 3. Summary plot of selected compounds.

Fig. 4. Radial plots of the top 5 hits.
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ZINC00388658 ZINC00316459 ZINC00197401 ZINC00001673 ZINC00316479
Property Pred DB % Pred DB % Pred DB % Pred DB % Pred DB % Units

Absorption

Human Intestinal 
Absorption  1 77.94% 100.00% 83.56% 100.00% 65.49% 98.00% 36.22% 100.00% 76.50% -

Oral Bioavailability  0.78 48.00% 87.00% 66.34% 99.00% 99.53% 97.00% 94.42% 94.00% 85.38% -
Aqueous Solubility  -3.58 39.51% -404.00% 31.02% -317.00% 47.34% -264.00% 58.01% -471.00% 18.42% log(mol/L)
Lipophilicity  2.46 69.29% 178.00% 55.84% 212.00% 62.58% 18.00% 29.66% 194.00% 59.02% log-ratio
Hydration Free Energy  -9.63 50.17% -1399.00% 14.19% -1040.00% 42.30% -1000.00% 46.18% -1385.00% 14.81% kcal/mol
Cell Effective 
Permeability  -4.7 67.47% -460.00% 74.18% -445.00% 83.33% -520.00% 36.80% -487.00% 56.84% log(10-6 cm/s)

PAMPA Permeability  0.88 63.20% 83.00% 58.05% 77.00% 51.03% 25.00% 23.58% 86.00% 60.37% -
P-glycoprotein 
Inhibition  0.09 49.55% 0.13 54.44% 1.00% 23.85% 1.00% 25.51% 41.00% 71.62% -

Distribution

BBB Penetration  0.41 25.44% 0.93 72.39% 0.98 84.02% 0.68 44.94% 87.00% 63.94% -
PP Binding Rate   84.21 62.54% 8463.00% 63.16% 97.69 87.32% 56.3 28.03% 8808.00% 70.07% %
Volume of Distribution 
at Steady State   1.66 51.45% 0.00% 5.04% 3.7 66.15% 6.15 80.61% 0 17.76% L/kg

Metabolism Inhibition

CYP1A2 0.66 87.82% 22.00% 71.15% 0.31 76.66% 20.00% 69.87% 28.00% 74.91% -
CYP2C19 0.85 95.58% 24.00% 67.74% 0.08 46.53% 30.00% 72.51% 39.00% 77.74% -
CYP2C9 0.65 93.87% 8.00% 62.08% 0.07 59.48% 13.00% 69.37% 31.00% 83.06% -
CYP2D6 0.13 67.31% 0.01 22.84% 9.04E-04 6.51% 18.00% 72.04% 3.00% 41.14% -
CYP3A4 0.85 92.75% 0.04 44.01% 0.01 31.52% 28.00% 71.19% 15.00% 62.04% -

Substrate 

CYP2C9 0.2 61.50% 0.47 92.01% 0.67 98.45% 21.00% 64.37% 69.00% 98.88% -
CYP2D6 0.13 55.56% 0.05 34.32% 0.31 75.38% 22.00% 68.44% 8.00% 42.30% -

CYP3A4 0.56 56.69% 0.39 40.64% 0.28 30.79% 21.00% 24.66% 40.00% 41.57% -

Excretion

Half Life   0 20.32% 36.81 80.50% 0.00% 26.29% 1459.00% 60.76% 3931.00% 82.01% hr
Drug Clearance 
(Hepatocyte)   122.73 95.66% 48.33 60.80% 3446.00% 48.43% 3753.00% 51.22% 5774.00% 68.94% uL/

min/106 cells
Drug Clearance 
(Microsome)   30.28 62.12% 19.66 52.23% 1080.00% 41.68% 171.00% 30.59% 1798.00% 50.37% uL/min/mg

Table 2: Predicted ADMET properties of top 5 hits.
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ZINC00388658 ZINC00316459 ZINC00197401 ZINC00001673 ZINC00316479
Property Pred DB % Pred DB % Pred DB % Pred DB % Pred DB % Units

Toxicity

hERG Blocking  0.47 62.12% 0.13 34.20% 0.05 22.10% 21.00% 43.66% 32.00% 52.38% -
Clinical Toxicity  0.09 48.70% 6.00% 40.60% 0.2 66.77% 53.00% 90.81% 24.00% 70.92% -
Mutagenicity  0.3 66.54% 53.00% 84.49% 0.37 73.79% 92.00% 98.10% 45.00% 79.37% -
Drug-Induced Liver 
Injury  0.36 44.05% 88.00% 79.33% 0.94 87.94% 29.00% 39.47% 98.00% 96.55% -

Carcinogenicity  0.1 38.04% 15.00% 49.94% 0.53 90.19% 73.00% 96.63% 22.00% 61.07% -
Acute Toxicity LD50  2.26 33.39% 272.00% 62.93% 2.34 38.19% 310.00% 83.29% 315.00% 85.07% log(1/(mol/kg))
Skin Reaction  0.76 80.57% 66.00% 72.24% 0.37 44.16% 69.00% 74.49% 24.00% 27.69% -
Androgen Receptor 
(Full Length)  0.04 64.44% 7.00% 81.31% 0.04 66.89% 3.00% 56.77% 10.00% 86.08% -

Androgen Receptor 
(Ligand Binding 
Domain) 

0.01 53.59% 4.00% 81.97% 1.88E-03 16.17% 5.00% 83.13% 5.00% 84.99% -

Aryl Hydrocarbon 
Receptor  0.22 83.09% 0.32 87.90% 0.08 67.74% 24.00% 84.10% 67.00% 96.08% -

Aromatase  0.2 85.58% 0.13 78.01% 0.01 41.84% 0.03 52.31% 14.00% 79.18% -
Estrogen Receptor (Full 
Length)  0.77 97.63% 0.21 81.00% 0.14 69.29% 0.14 68.36% 11.00% 60.14% -

Estrogen Receptor 
(Ligand Binding 
Domain) 

0.45 97.01% 0.01 29.20% 4.66E-03 21.21% 0.09 86.23% 1.00% 28.15% -

Peroxisome 
Proliferator-Activated 
Receptor Gamma 

0.08 89.69% 0.05 82.47% 0.02 69.60% 0.18 94.92% 8.00% 88.79% -

Nuclear Factor 
(Erythroid-Derived 
2)-Like 2/Antioxidant 
Responsive Element 

0.26 67.12% 0.48 82.55% 0.15 54.28% 0.46 81.50% 0.42 78.83% -

ATPase Family AAA 
Domain-Containing 
Protein 5 (ATAD5) 

0.17 92.75% 0.07 84.37% 0.02 67.62% 0.49 98.68% 16.00% 92.44% -

Heat Shock Factor 
Response Element  0.18 91.20% 0.07 79.18% 0.01 47.69% 0.08 83.02% 2.00% 61.69% -

Mitochondrial 
Membrane Potential  0.67 91.93% 0.32 78.98% 0.05 54.98% 0.03 45.60% 66.00% 91.24% -

Tumor Protein p53  0.2 85.23% 0.13 79.33% 0.05 66.07% 0.22 87.20% 28.00% 89.22% -

Pred=Prediction; DB % = DrugBank Percentile; BBB=Blood-Brain Barrier; PP=Plasma Protein
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cules. The observed average value of RoG ranged between 
1.85 and 2.01 nm for all five hit compounds. The control 
showed RoG ranged between 1.97 and 2.05 nm. Overall, 
control and screened compounds (5 hits) exhibit RoG va-
lues within a narrow range (1.85 nm to 2.01nm), indica-
ting stable protein complex structures (Figure 5C).  

RMSF calculation per residue shows all complexes' 
overall values between 0.5-0.7 nm. The observed average 
value was 0.1nm for all simulated molecules. Except for 
ZINC00316459 (which showed 0.77nm fluctuation at the 
30-50 amino acid region), all the compounds, including 
the control, showed overall values between 0.5-0.35 nm. 
All the selected compounds and control showed almost 
similar fluctuation patterns except for some significant 
fluctuations observed at the 50-60 and 240-260 amino acid 
regions (Figure 5D). 

The PCA analysis demonstrates that the chosen com-
pounds impact the protein's conformational dynamics 
without  significantly affecting its overall structure. The 
projection plot reveals that ZINC00388658 induces the 
most pronounced alterations, whereas compounds like 
ZINC00197401 and ZINC00316479 exhibit a closer clus-
tering to the control, suggesting more nuanced impacts. 
The eigenvalue plot indicates that the initial principal 
components represent the primary protein motion, while 
only negligible distinctions exist among the compounds. 
Notwithstanding these particular alterations, the protein's 
general dynamic behavior remains constant, guaranteeing 
functional integrity in all circumstances (Figures 6A and 
B).

3.5. Free Energy Landscape (FEL) analysis
The FEL analysis of the top five compounds demons-

trates notable variations in their capacity to stabilize 
the target protein. The protein-ligand conformation of 
ZINC00388658 is highly stable, as evidenced by the deep 
and well-defined energy basin. ZINC00316479 exhibits a 
moderate level of stability, characterized by a clearly defi-
ned energy basin, although it is not as prominent. On the 
other hand, the remaining compounds exhibit basins with 
less depth and energy landscapes that are more spread out, 
suggesting less stable interactions and increased confor-
mational flexibility (Figure 7). 

3.6. Binding free energy (MMPBSA) calculation ana-
lysis

MMPBSA (Molecular Mechanics Poisson-Boltzmann 
Surface Area) is a widely used method for estimating the 
binding free energy of protein-ligand complexes, providing 
a quantitative measure of the strength of the interaction. 
MDS trajectory files were further subjected to MMPBSA 
analysis. The MMPBSA analysis reveals significant diffe-
rences in binding affinities and interaction energies with 
the target protein. ZINC00388658 has the best binding free 
energy (ΔGTotal = -7781.51 kcal/mol), indicating a strong 
and stable interaction. This compound's high binding affi-
nity is attributed to its superior Van der Waals (ΔVdwaals 
= -1948.75 kcal/mol) and electrostatic energies (ΔEEL 
= -14640.20 kcal/mol). ZINC00388658 has comparable 
solvation energy (ΔGSolv = -4771.78 kcal/mol) and gas 
phase molecular energy (ΔGGas = -3009.73 kcal/mol), 
indicating its stability and efficacy as ligands (Table 3).

On the other hand, the ligand-receptor interaction data 
support ZINC00388658 as the most promising candidate. 
It has the lowest total binding energy (ΔGTotal = -34.64 
kcal/mol) among the compounds, with strong Van der 
Waals and electrostatic interactions. While other com-
pounds, such as ZINC00316479 and ZINC00197401, 
exhibit favorable interactions, their overall energy profiles 
are less promising than ZINC00388658 (Table 4). 

4. Discussion 
This study used computational screening to identify 

a potent natural inhibitor of PIM-1, a kinase involved in 
the progression of various types of cancer. The screening 
process entailed analyzing a diverse range of natural com-
pounds. A reported PIM-1 inhibitor (6YN) with an IC50 

Fig. 5. Structural and stability analysis (A) RMSD, (B) Hydrogen 
Bond, (C) Radius of Gyration (RoG), and (D) RMSF analyses of the 
top five compounds and control bound to PIM-1 in a 200-ns MDS.

Fig. 6. Principal component analysis of protein dynamics. (A) Projec-
tion of motion on the first two principal components (eigenvector 1 
vs. eigenvector 2) for the top 5 compounds and control bound to PIM-
1 compared to the control. (B) Eigenvalue distribution plot showing 
the contribution of each eigenvector to the total motion.

Fig. 7. 3D and 2D free energy landscape of top 5 hits and control 
compound.
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value of 10.15 µM has been utilized as a positive control 
in screening the natural compound library [23]. A ligand's 
more negative binding affinity with the target protein in-
dicates a stronger interaction within the catalytic pocket, 
resulting in a slower ligand dissociation rate [37]. Notably, 
the top ten compounds had higher negative binding affini-
ties than the control, indicating a robust interaction with 
PIM-1.

To better understand the identified top 5 hits drug-like 
potential, ADMET profiling was performed on the top five 
hits. This analysis confirmed that the selected compounds 
had favorable pharmacokinetic and safety profiles, which 
are critical for therapeutic viability. Following the AD-
MET evaluation, the binding stability of these compounds 
was rigorously tested using MDS and MMPBSA free ener-
gy calculations. These computational techniques revealed 
essential details about the dynamic behavior of ligand-re-
ceptor interactions over time, confirming the docked com-
plexes' stability and robustness.

The MDS, performed over a 200-nanosecond duration, 
demonstrated that all five compounds sustained stable in-
teractions with essential residues at the PIM-1 active site. 
The stability was akin to that of the co-crystallized ligand 
(positive control), highlighting the potential of these com-
pounds as efficacious PIM-1 inhibitors. ZINC00388658 
demonstrated the most consistent interaction patterns and 
the lowest RMSD values among the leading candidates, 
signifying a strong binding affinity and minimal structural 
deviations. This discovery corresponds with prior research 
[38]. Conversely, compounds such as ZINC00123456 and 
ZINC00789012 exhibited greater RMSD fluctuations and 
less stable interactions with critical residues, indicating 
diminished binding affinity. These results not only corro-
borate our findings but also augment the accumulating evi-
dence that endorses ZINC00388658 as a viable candidate 
for further development in addressing PIM-1 dysregula-
tion.

Furthermore, MMPBSA calculations provided quanti-

Complex free energy calculation components
Complex ΔVdwaals ΔEEL ΔEPB ΔENPOLAR ΔEDISPER ∆GGas ∆GSolv ∆GTotal

Control -1981.97 
(±3.02)

-14604.42
(±12.13)

-5104.29 
(±7.70)

68.58
(±0.09)

0.00
(±0.0)

-2741.13 
(±11.52)

-5035.71 
(±7.65)

-7776.84  
(±7.50)

ZINC00388658 -1948.75 
(±2.97)

-14640.20 
(±8.65)

-4840.19
(±5.51)

68.41  
(±0.08)

0.00
(±0.0)

-3009.73 
(±9.68)

-4771.78 
(±5.52)

-7781.51
(±7.35)

ZINC00316479 -1968.10
(±3.02)

-14405.77 
(±8.17)

-4959.70  
(±7.67)

67.69 
(±0.07)

0.00
(±0.00)

-2774.56  
(±9.76)

-4892.02 
(±7.65)

-7666.58 
(±6.45)

ZINC00197401 -1957.47
(±2.87)

-14466.01 
(±8.46)

-4884.02
(±6.33)

36.88
(±0.01)

0.00
(±0.00)

-2986.86 
(±10.47)

-4817.90 
(±6.30)

-7804.76
(±7.12)

ZINC00316459 -1940.92
(±3.11)

-14551.80
(±9.60)

-4889.11 
(±6.72)

69.52
(±0.10)

0.00
(±0.00)

-2843.42
(±8.85)

-4819.58
(±6.66)

-7663.00
(±07.03)

ZINC00001673 -1957.07 
(±2.55)

-14987.17 
(±10.77)

-4831.37 
(±7.99)

67.95
(±0.10)

0.00
(±0.00)

-2914.25 
(±10.77)

-4763.41 
(±7.94)

-7677.67 
(±6.58)

Table 3. Summarized calculated data of Poisson Boltzmann complex energy components with ± SEM. 

Ligand-receptor free energy calculation components
Complex ΔVdwaals ΔEEL ΔEPB ΔENPOLAR ΔEDISPER ∆GGas ∆GSolv ∆GTotal

Control -30.22 
(±0.35)

-108.10
(±1.78)

121.61
(±1.76)

-3.87 
(±0.02)

0.00
(±0.00)

-138.31
(±1.69)

117.74 
(±1.75)

-20.57 
(±0.39)

ZINC00388658 -30.23 
(±0.47)

-42.58
(±0.60)

41.89  
(±0.38)

-3.71
(±0.01)

0.00
(±0.00)

-72.81 
(±0.44)

38.17
(±0.38)

-34.64 
(±0.36)

ZINC00316479 -17.54 
(±0.31)

-11.81
(±1.15)

21.06
(±1.07)

-2.44 
(±0.02)

0.00
(±0.00)

-29.35 
(±1.18)

18.62 
(±1.07)

-10.73
(±0.44)

ZINC00197401 -25.58 
(±0.34)

-7.81
(±0.42)

22.32
(±0.52)

-3.32
(±0.02)

0.00
(±0.00)

-33.39
(±0.53)

19.00
(±0.51)

-14.39
(±0.33)

ZINC00316459 -13.90 
(±0.27)

-15.61
(±1.15)

19.58  
(±0.73)

-1.92
(±0.02)

0.00
(±0.00)

-29.50 
(±1.15)

17.67  
(±0.72)

-11.84
(±0.50)

ZINC00001673 -16.35 
(±0.40)

-366.80    
(±1.50)

372.66   
(±1.46) -2.95

(±0.02)
0.00

(±0.00)
-383.15
(±1.48)

369.72
(±1.46)

-13.43 
(±0.38)

Table 4. Summarized data of MMPBSA-based free energy calculation components with Standard deviation error of the mean of ligand-
PIM-1. 

[ΔVdwaals= Van der Waals energy, ΔEPB= Polar contribution to the solvation energy, ΔEEL= Electrostatic molecular energy, ΔENPOLAR= 
Nonpolar contribution of repulsive solute-solvent interactions to the solvation energy, ΔG Gas=Total gas phase molecular energy, ΔEDISPER= 
Nonpolar contribution of attractive solute-solvent interactions to the solvation energy, ΔG Solv= Total solvation energy, and ΔG Total =Total 
binding energy].



158

Computational Screening of Natural PIM-1 Inhibitors.       Cell. Mol. Biol. 2024, 70(11): 150-159

tative binding free energy estimates, supporting the cho-
sen compounds' binding strength. ZINC00388658 had the 
most favorable binding free energy profile, significantly 
outperforming the positive control, indicating that it is 
more likely to maintain stable and potent inhibition of 
PIM-1. This comprehensive evaluation of ADMET pro-
perties and binding stability via MDS and MMPBSA iden-
tifies ZINC00388658 as a promising candidate for future 
development as a PIM-1 kinase inhibitor.

5. Conclusion
The overexpression of PIM-1 kinase has been associa-

ted with various types of cancer, rendering it a significant 
target for therapeutic intervention. This study computa-
tionally screened  7,600 natural compounds against the 
PIM-1 active site. The top ten hits were identified, and 
five of them, namely ZINC00388658, ZINC00316459, 
ZINC00197401, ZINC00001673, and ZINC00316479, 
were selected for further analysis. These compounds exhi-
bited significant interaction with critical PIM-1 residues 
and displayed multiple binding site interactions similar 
to the control. The stability of the docked complexes was 
confirmed through MDS lasting 200 ns, while their bin-
ding affinities were validated using MMPBSA analysis. 
Out of all the candidates, ZINC00388658 exhibited the 
most favorable binding energy profile, indicating exceptio-
nal stability and strong interaction. This makes it the most 
promising candidate for further development as a PIM-
1 inhibitor. These findings suggest that ZINC00388658, 
along with other lead compounds, holds significant poten-
tial for the development of cancer therapeutics targeting 
PIM-1 kinase. However, further experimental validation, 
including in vitro and in vivo studies, followed by clinical 
trials, is essential to confirm their efficacy and safety.
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