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1.	 Introduction 
Extracellular vesicles are released by nearly all cells 

containing plasma and body fluids as part of their normal 
functioning, holding significant diagnostic and therapeu-
tic potential for numerous diseases. The study of these 
vesicles enables a more precise understanding of intracel-
lular communication between cells. There are two main 
types of extracellular vesicles: ectosomes and exosomes 
[1]. Ectosomes, ranging from 0.50 to 1 um in diameter, 
form directly through a budding process from the plasma 
membrane, while exosomes, ranging from 30 to 150 nm, 
originate from endosomes and are released into body fluids 
such as blood, saliva, breast milk, and urine [2]. Additio-
nally, apoptotic bodies resulting from apoptosis are also 
considered extracellular vesicles, adding to their diversity.

The discovery of exosomes represents a revolutionary 
contribution to cell biology. Exosomes are enveloped by 
a lipid bilayer, providing stability to their contents and 
preventing easy destruction by RNases. They play pivotal 
roles in cell-to-cell communication and interaction with 
other cells through various mechanisms, including lectin, 
lipid, and integrins interactions. Moreover, exosomes are 
involved in immune system functions, viral replication, 
regulation of pathophysiological processes, and the tumor 
environment [3-5]. For example, tumor-derived exosomes 
(TDEs) contribute to the development of pre-metastatic 

niches [6].
Given their diverse functions, exosomes can serve as 

vectors for drug delivery into tissues. For instance, exo-
somes released by tumor cells facilitate communication 
with surrounding cells and can indicate cancer presence 
as a biomarker. Thus, the presence of exosomes holds pro-
mise for both diagnostic and therapeutic applications in 
various diseases.

2.	 Exosome biogenesis and release
The biogenesis of exosomes involves a budding pro-

cess where double invagination of the plasma membrane 
occurs, forming a multivesicular body (MVB). This is fol-
lowed by the fusion of the MVB with the plasma mem-
brane, leading to the expulsion of exosomes in the form 
of intraluminal vesicles (ILVs) via exocytosis [7]. MVBs 
can also be degraded through lysosomal fusion. In a direct 
pathway, T cells and erythroleukemia cell lines release 
exosomes directly from the plasma membrane [8]. For the 
delivery of exosomal contents to recipient cells, fusion 
with the plasma membrane and endocytosis are involved. 
The exchange of exosomal contents between cells facili-
tates homeostasis and helps combat stress. Intracellular si-
gnaling relies on the interaction between exosome surface 
proteins and receptors present in the recipient cell (Figure 
1). The number of exosomes secreted varies according to 
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cell type; for instance, cancerous cells release more exo-
somes than normal cells, with breast cancer cells releasing 
approximately 65 exosomes per hour [9].

Various technologies, such as dynamic light scattering, 
atomic force microscopy, Raman spectroscopy, transmis-
sion electron microscopy, and nanoparticle tracking ana-
lysis, allow for the measurement of exosomes [10], pro-
viding information about their size, concentration, and 
phenotypic characteristics [11-13]. Exosome isolation 
methods include centrifugation, ultrafiltration, chroma-
tographic techniques, and microfluidics for high-purity 
extraction [14-15].

Exosomes contain diverse cargos, including lipids, 
DNA, miRNA, mRNA, proteins (membrane, nuclear, cy-
tosolic), metabolites, and circRNAs [16]. The abundance 
and packaging of these components are regulated selecti-
vely, leading to heterogeneity in exosomal composition. 
This heterogeneity extends to exosome size, which can re-
sult from irregularities in the formation process via plasma 
membrane invagination [17]. Furthermore, exosomes can 
have a heterogeneous origin. Functionally, exosomes can 
induce both apoptosis and cell survival.

Cargo sorting within exosomes can involve ESCRT 
(endosomal sorting complex required for transport) path-
ways which comprise a multiprotein machinery that in-
cludes both ESCRT-dependent and ESCRT-independent 
mechanisms [18].

2.1.	  ESCRT dependent pathway
The ESCRT (Endosomal Sorting Complex Requi-

red for Transport) complex plays a crucial role in cargo 
sorting within cells. This complex consists of class E va-
cuolar protein sorting (Vps) components, which include 
four subcomplexes: ESCRT-0, I, II, and III, working in a 
coordinated cascade [19]. Mono- or poly-ubiquitinylated 
proteins are recognized by STAM and Hrs within the ES-
CRT-0 subcomplex. The FYVE domain aids in cargo sor-
ting through the clathrin vesicle machinery. While the ubi-
quitin-binding domain (UBD) is present in both ESCRT-I 
and ESCRT-II, it is absent in ESCRT-III [20].

ESCRT-I and ESCRT-II combine to form a saddle-sha-
ped complex, which then recruits ESCRT-III, ultimately 
leading to the production of intraluminal vesicles (ILVs) 

through polymerization [21]. In many instances, ubiquitin 
is removed from cargo proteins by enzymes.

Additionally, alternative pathways involving ESCRT-
III have been observed. These pathways can provide two 
auxiliary mechanisms: the ALIX-dependent pathway and 
the HD-PTP-dependent pathway [22]. These alternative 
routes offer further insight into the complex mechanisms 
of cargo sorting within cells.

2.2.	  ESCRT independent pathway
This pathway operates independently of both ESCRT 

and ubiquitin. Membrane lipid rafts play pivotal roles in 
this process, with cholesterol, ceramide, and sphingoli-
pids, along with proteins like tetraspanins, caveolins, and 
flotillins, contributing significantly [23,24]. Tetraspanins, 
for instance, are associated with both transporting cargos 
to multivesicular bodies (MVBs) and compartmentalizing 
endosomal membranes [25]. Among tetraspanins, CD63 
has garnered particular importance in tumor signaling.

Caveolins, characterized by their hairpin structure, are 
membrane proteins that bind cholesterol [26]. Through the 
formation of caveolae, caveolins mediate endocytosis pro-
cesses. Flotillin proteins are also crucial in this pathway, 
being involved in protein sorting processes [27].

Together, these lipid rafts and associated proteins play 
essential roles in a pathway that operates independently 
of ESCRT and ubiquitin, contributing to various cellular 
functions and signaling mechanisms [27’28].

2.3.	  Proteins
The protein content inside exosomes varies between 

different cell types, but there are common sets of proteins 
consistently found among them. Many of these proteins 
are sorted through both the ESCRT pathways, while some 
are selectively sorted. Tetraspanins, notably CD81, CD63, 
CD82, Tsg101 (associated with ESCRT), Alix-1 (asso-
ciated with MVB), and various heat shock proteins, are 
among the most common. For instance, Hsp90α requires 
Rab protein for sorting [29], with Protein Rab22a-NeoF1 
and PYK2 interacting with Hsp90 for sorting. Ago2 is sor-
ted when associated with Alix. Chaperones are also uti-
lized for sorting, such as Hsp90 and Hsc70 for cytosolic 
proteins [30]. Hsc70 and LAMP2A bind to protein HIF1α 
for sorting in an ESCRT-independent manner. Additional-
ly, several enzymes including peroxidase, enolase-1, lipid 
kinase, and GTPase are found inside exosomes.

2.4.	  DNA
Regarding DNA, research on its sorting into exosomes 

presents contrasting findings. Some studies suggest that 
DNA secretion from cells doesn't involve exosomes, while 
others propose that genomic DNA (gDNA) is sorted into 
exosomes. Single-stranded DNA and mitochondrial DNA 
were reported inside exosomes until 2014 [31-33]. In that 
year, Kahlert and colleagues confirmed the presence of 
double-stranded DNA in cancer cell exosomes using DNA 
digestion methods involving DNAse I [34’35]. Thakur 
and collaborators used an alternative method with shrimp 
DNAse, supporting the presence of double-stranded DNA 
[36]. It was initially thought that exosomal DNA origina-
ted from cytoplasmic DNA due to DNA damage or normal 
DNA metabolism, but this hypothesis doesn't fully explain 
the heterogeneity of DNA found inside exosomes [37]. 
The sizes of DNA found range from 100 bp to 10 Kbp. 

Fig. 1. Exosome biogenesis and release.
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ciency of back-splicing. EIciRNA formation requires the 
presence of internal repeats, allowing parental gene tran-
scription. This process involves U1 snRNP acting through 
RNA-RNA interactions.

2.5.2. Abundance
Studies have shown that approximately 20% of genes in 

the human brain produce circRNAs, whereas in the human 
heart, this percentage is around 9% (Figure 2). Interest-
ingly, low proliferating cells tend to have more circRNAs 
compared to high proliferating cells [65-67]. Additionally, 
experiments have demonstrated higher expression of cir-
cRNAs in fetal tissues compared to adult tissues. Mem-
czak et al. [68]. reported that circRNAs are particularly 
abundant in peripheral whole blood, and in human fibro-
blasts, approximately 25,000 different circRNAs have 
been identified [52].

2.3. TNBC
Triple-negative breast cancer (TNBC) is a prevalent 

global health issue. Cancer encompasses a wide array 
of diseases, all stemming from disruptions in the normal 
cell cycle, which involves processes like mitosis for cell 
multiplication. Regulation of these cycles is crucial, with 
mechanisms such as apoptosis, or programmed cell death, 
eliminating non-functional cells. Genetic control plays a 
pivotal role in these processes. In cancer, there's an aber-
rant, uncontrolled proliferation of these cells, forming tu-
mors that can metastasize to other parts of the body, lead-
ing to significant health complications.

Breast cancer, one of the most common types, has gar-
nered attention as a growing concern [69]. Globally, it 
constitutes 10.4% of all female cancers, ranking second 
only to lung cancer. In 2004, breast cancer caused 519,000 
deaths worldwide. Recent data from 2018 indicates ap-
proximately 2 million new cases and around 60,000 deaths 
annually, with 42,260 deaths reported in the US alone in 
2019 [70]. While breast cancer predominantly affects 
women, it also affects men, albeit less frequently, poten-
tially due to delayed diagnosis. Breast cancer can manifest 
in various regions of the breast and may present as benign, 
such as cyst formation, a type of fibrocystic change.	
Breast cancer encompasses various subtypes, with triple-
negative breast cancer (TNBC) representing 10-20% of 
cases [71]. TNBC is associated with lower survival rates 
compared to other subtypes and has a higher likelihood of 
recurrence within a five-year prognosis [72,73]. This type 

In cancer cells, the interaction of gDNA with tetraspanin 
CD63 aids in sorting [38]. Mitochondrial DNA can also 
be sorted by an LC3/autophagy-independent mechanism.

2.5.	  RNA
RNA sorting inside exosomes is a selective process, 

with the presence of RNA in exosomes potentially re-
sulting from absorption when exosomes circulate [39]. 
Various types of RNA, including non-coding RNA and 
miRNA, are found in exosomes. Certain miRNAs, such as 
miR-150 and miR-320, are prioritized during sorting. Pro-
tein involvement may also occur in the sorting of miRNAs 
within exosomes, with RNA binding proteins (RBPs) like 
YBX1, hnRNPK, FMR1, and Ago2 playing roles [40-43]. 
CircRNAs, like circRHOBTB3 and circNEIL3, are sorted 
by hnRNPA2B1, which is also involved in the sorting of 
miRNAs and lncRNAs [44, 45].

Circular RNA (circRNA) constitutes a significant por-
tion of the non-coding RNA landscape. These molecules 
can exist freely in circulation or be enclosed within exo-
somes in the extracellular space. Their presence in exo-
somes involves various pathways. CircRNAs are abundant 
in eukaryotic cells and are conserved across species [46]. 
They have been implicated in various diseases, including 
cancers, autoimmune diseases, heart diseases, liver di-
seases, and renal diseases [47-49].

The circular closed-loop structure of circRNAs is for-
med by the attachment of the free 5' and 3' ends of RNA 
with a phosphodiester bond, creating a covalent bond [50]. 
Initially considered functionless, circRNAs have been 
found to play roles in gene expression regulation, protein 
interaction, and miRNA sponge activity, among others. 
They are produced through back splicing, distinct from 
linear RNA processing, which gives them protection from 
exonucleases and RNases, contributing to their stability 
and longer half-life compared to linear RNAs [51]. Cir-
cRNAs have emerged as biomarkers in various diseases 
and are predominantly found in the nucleus, though their 
transport mechanism to the cytoplasm remains unclear. 
Possible transportation mechanisms include ATP-de-
pendent mechanisms and the involvement of N6-methy-
ladenosine. Recent studies have highlighted the roles of 
helicase UAP56/URH49 in circRNA transport [52], with 
larger nucleotides transported by UAP56 and shorter ones 
by URH49 [53-55]. Following transportation, circRNAs 
may act as miRNA sponges, modulating gene expression 
in the cytoplasm.

2.5.1. Classification of circular RNA
CircRNAs are classified based on their splicing junc-

tions, leading to distinct categories: exonic circRNAs 
(ecircRNAs), intronic circRNAs (ciRNAs), and exonic-
intronic circRNAs (EIciRNAs). Additionally, a specific 
type called tRNA intronic circRNA (tricRNA) is formed 
from the splicing of pre-tRNA [56-61].

EcircRNAs mainly reside in the nucleus and consist 
of one or more exons. CiRNAs comprise introns, while 
EIciRNAs are composed of both exons and introns, pri-
marily found in the nucleus. TricRNAs, on the other hand, 
are generated from pre-tRNA splicing [62-64].

CiRNAs are generated through lariat formation, where 
circularization occurs, and the DBR1 gene prevents deb-
ranching enzyme action. The size of ecircRNAs depends 
on the number of exons involved, influencing the effi-

Fig. 2. Formation of different circRNAs.
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lacks expression of three hormone receptors: estrogen re-
ceptor, progesterone receptor (ER/PR), and HER2 (human 
epidermal growth factor receptor) [74].

Treatment for TNBC typically involves chemotherapy, 
utilizing agents such as anthracycline, taxane-based drugs, 
and platinum salts [75,76]. Additionally, PARP inhibitors 
and immune modulators have received approval for TNBC 
therapy [77,78]. PARP plays a role in DNA repair through 
ADP ribose transfer, making PARP inhibitors a targeted 
treatment option [79]. Atezolizumab, in combination with 
nab-paclitaxel, has been recently approved in the US for 
TNBC [80]. TNBC often exhibits heightened expression 
of growth factor receptors like EGFR, VEGFR, and FGFR 
[81], suggesting potential targets for inhibition with drugs 
like imatinib and lapatinib. However, the effectiveness of 
these therapies remains limited, highlighting the need for 
the identification of suitable biomarkers for TNBC. 

Conventional biomarkers in breast cancer include 
CEA, CA-125, and CA15-3. Recent research has identi-
fied several circular RNAs (circRNAs) as potential bio-
markers, such as hsa_circ_0068033, hsa_circ_0001785, 
and hsa_circ_0108942, detectable in plasma. Among 
these, hsa_circ_0001785 shows promise with a specific-
ity of 75.6%. Comparative analysis with conventional bio-
markers indicates that hsa_circ_0001785 has a higher area 
under the curve (AUC) value, suggesting its potential as a 
more effective biomarker for TNBC.

2.4. Exo-circRNA in TNBC
2.4.1. Function (As miRNA sponge)

In tumor malignancy, sponging plays a significant role. 
MiRNAs, short strands of RNA (19-25 nucleotides), are 
involved in post-transcriptional gene silencing. CircRNAs 
contain binding sites for miRNAs, and this sequestration 
aids in their regulation [82]. Due to these binding sites, cir-
cRNAs are known as competing endogenous RNA (ceR-
NA). Some circRNAs have the ability to bind more than 
one miRNA [83]. For instance, circRAD18 can bind both 
miR-208a and miR-3164, leading to the upregulation of 
IGF1 and FGF2, which promotes TNBC progression. Cir-
cGFRA1, with a binding site for miR-34a [84], also pro-
motes tumor progression. Reports indicate that circ-RNA 
CDR1as, also known as ciRS-7 and abundantly found in 
the mammalian brain, acts as the first miRNA sponge con-
taining 74 binding sites. It sequesters miR-671, inhibiting 
miRNA-mediated cleavage through mismatched nucleo-
tides. Other circRNAs, such as circHIPK2 with a single 
binding site for miR124-2HG, circHIPK3 with 18 binding 
sites discovered through luciferase screening, and circSRY 
with 16 binding sites for miR-138 found in mouse testis, 
also play roles in sponging miRNAs [85]. Circ0069094 
acts as a sponge for miR-591, serving as a biomarker for 
detecting breast cancer.

In transcription regulation and alternative splicing, al-
ternative splicing controls gene expression. Circ-RNAs 
in the nucleus can regulate gene expression. Studies have 
shown the involvement of circRNAs in inhibiting tran-
scription, such as circURI1, which ultimately promotes 
cancer. Among the four types of circRNAs, EIciRNAs, 
consisting of both exons and introns, are known to regu-
late transcription and RNA pol II. The interaction between 
EIciRNAs and RNA pol II allows efficient binding of the 
enzyme to the core promoter. Examples include circPAIP2 
and circEIF3 identified in the nucleus, which increases pa-

rental gene expression through interaction with U1 snRNA 
and ElciRNA. CircSIRT7 and circANKRD52 are also in-
volved in regulation, with their interaction with the RNA 
Pol II complex upregulating parental gene transcription 
[86]. A recently discovered circRNA from the insulin gene 
interacts with the RBP TDP-43 (RNA-binding protein) and 
regulates the transcription of insulin secretion-associated 
genes. Insulin is crucial in regulating blood glucose lev-
els, and a decrease in its production can lead to diabetes. 
CircRNAs are also involved in the transcription regulation 
of genes in signaling pathways like Wnt/β-catenin, as seen 
with circRNA_069718.

2.6.	 Translation
While most circRNAs are typically unable to undergo 

translation, recent research has identified circRNAs that 
can efficiently be translated into proteins. The inability of 
most circRNAs to translate is attributed to the lack of 5' 
capping required for translation initiation. However, it has 
been discovered that circRNAs can be translated in a cap-
independent manner. For instance, CircFBXW7 yields the 
protein FBXW7-185aa (21 kDa), although its functions 
remain unclear. Translation initiation is facilitated by the 
presence of a start codon (AUG), an open reading frame 
(ORF), and internal ribosome entry site (IRES) acting as 
templates. Examples include circMbl3 and circ-ZNF609, 
where IRES assists in translation [87-88]. Additionally, 
small peptides can be translated through m6A modifica-
tion due to the presence of m6A motifs. Notably, circ-
SMO, found in gliomas, encodes SMO-193aa, a compo-
nent of the hedgehog pathway, while circPINTexon2 en-
codes PINT87aa, which is less abundant in glioma tissues 
[89]. CircAXIN1 encodes AXIN1-295aa, a participant in 
the Wnt pathway. Research indicates that the presence of 
multiple ORFs in circRNAs without stop codons facili-
tates translation (Table 1).

Few miRNAs are involved in translation repression by 
forming a complex with mRNA. CircRNA thus helps in 
translation by sponging miRNAs making mRNA free for 
initiating translation (Figure 3).

2.5.1. Protein interactions
Following miRNA sponging, another crucial function 

of circRNAs is facilitating protein-protein interactions, 
where they act as protein scaffolds or chaperones. This 
capacity for protein binding is facilitated by their tertia-
ry structure. Such binding can have bidirectional effects, 
with proteins guiding circRNA synthesis and degradation, 
while circRNAs can act as protein sponges or decoys. Ad-
ditionally, circRNAs are involved in protein translocation 
or transportation from the nucleus to the cytoplasm.

The oncogenic and tumor suppressor activities of exo-

Fig. 3. CircRNA in inhibiting translational repression.
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circRNAs are evident in triple-negative breast cancer 
(TNBC). There is an increased expression or upregulation 
of circRNAs in tumor formation, migration, and metas-
tasis. For instance, circUBE2D2 in TNBC sponges miR-
512-3p, leading to the upregulation of CDCA3 expression. 
Experiments have shown that the downregulation of miR-
512-3p depletes circUBE2D2, resulting in tumor suppres-
sion. Another example is circANKS1B, which sponges 
miR-148A-3p and miR-152-3p, and its upregulation pro-
motes tumor proliferation. Downregulation of circRNAs 
is associated with tumor suppression, where proliferation, 
invasion, and metastasis are inhibited. Examples include 
circNR3C2 and circTADA2A-E6.

CircITCH, implicated in various cancers, plays a cru-
cial role in tumor suppression in TNBC. Its overexpres-
sion downregulates the Wnt/β-catenin pathway by spong-
ing miR-214 and miR-1793. Additionally, circRNAs 
regulate functions in mitochondria. These circ-mtRNAs, 
such as circRNA_103809, when overexpressed, can im-
pair miR-532-3p function and interfere with the epithelial-
mesenchymal transition (EMT) pathway.

2.6. Metastasis of exosomal circRNA in TNBC
Metastasis of exosomal circRNAs in TNBC is a signifi-

cant concern. Metastasis involves several complex steps 
ultimately leading to patient mortality. Understanding 

these mechanisms is crucial for improving therapies and 
management. Exosomal circRNA expression increases in 
breast cancer and contributes to miRNA sponging and tu-
mor suppression. Certain circRNAs are associated with in-
creased metastasis and invasion. For instance, circFBXL5 
upregulation in breast and lung cancer induces SRSF6 ex-
pression through miR-660 sponging [96]. CircANKS1B 
promotes epithelial-mesenchymal transition (EMT) via 
the TGF-B1 signaling pathway. CircHMCU impacts EMT 
and cell cycle phase G1 [97]. Methylation and demeth-
ylation control aggressive tumor spreading in cirFECR1 
(Table 2). CircBCMB1 has been observed to metastasize 
to the brain by sponging miR-125a and regulating the pro-
tein BRD4, leading to altered MMP9 expression [98].

Conversely, decreased expression of exosomal cir-
cRNAs is also observed in breast cancer. Microarrays have 
shown decreased expression of circNF1C in breast cancer 
(Figure 4). In some cases, a lower level of circRNA and 
higher miRNA expression are observed, as seen with cir-
cRNA_000554.

2.7.	  Exosomal circRNA in apoptosis
Apoptosis serves as a crucial mechanism in normal 

cells, preventing uncontrolled proliferation. CircRNAs 
have been observed to influence the apoptotic process, 
contributing to the pathogenesis of breast cancer by in-

Exosomal circRNAs that can be 
translated (found in TNBC)

Target/pathway involved /axis Function Ref.

circFBXW7 miR-197-3p/ FBXW7-185aa

Inhibition of tumor in TNBC functioning 
as a sponge of miR-197-3p
and suppresses TNBC growth encoding 
the FBXW7-185aa protein.

[90]

circKIF4A miR-375/ KIF4A
Tumor proliferation in TNBC functioning 
as a sponge of miR-375 and KIF4A 
expression is regulated.

[91]

circUBE2D2 miR-512-3p/CDCA3

Tumor proliferation in TNBC functions 
as a sponge of miR-512-3p regulating 
CDCA3 expression and promotes 
doxorubicin resistance

[92]

CircITCH Wnt/β -catenin signaling pathway

Inhibition of tumor in TNBC sponging 
miR-214/miR-17 and increase the 
expression of its ITCH linear isoform and 
inactivation of Wnt/b-catenin signalling 
pathway

[93]

circSEPT9 LIF/ Stat3 signaling pathway

Promotes tumor proliferation in TNBC 
functioning as a sponge of miR-637 to
downregulate LIF and activate LIF/Stat3 
signalling pathway

[94]

circANKS1B miR-148a-3p/miR-152-3p/ USF1

Promotes tumor migration and invasion 
sponging miR-148a-3p/miR-152-
3p, increases the expression of USF1 
transcription factor and promotes EMT

[95]

Table 1. Exosomal circRNAs that can be translated (found in TNBC).
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Circ-RNA Expression miRNA Gene targeted Hallmark Ref.

circUBE2D2 Upregulation miR-512-3p CDCA3
Migration (+)

[92]Invasion (+)
Proliferation (+)

circAGFG1 Upregulation miR-195-5p CCNE1

Migration (+)

[99]
Invasion (+)
Proliferation (+)
Apoptosis (-)

circRNA_069718 Upregulation NA
Genes related to 
Wnt/b-catenin 
pathway-

Migration (+)

[100]
Invasion (+)
Proliferation (+)
Apoptosis (-)

circSEPT9 Upregulation miR-637 LIF

Migration (+)

[94]
Invasion (+)
Proliferation (+)
Apoptosis (-)

circFBXW7 Downregulation miR-197-3p FBXW7
Migration (-)

[90]Invasion (-)
Proliferation (-)

CircITCH Downregulation miR-214/ miR-17 ITCH1
Migration (-)

[93]Invasion (-)
Proliferation (-)

circKIF4A Upregulation miR-375 KIF4A
Migration (+)

[91]
Proliferation (+)

circRAD18 Upregulation miR-208a/miR-3164 IGF1/FGF2
Migration (+)

[83]Proliferation (+)
Apoptosis (-)

circTADA2A-E6 Downregulation miR-203a-3p SOCS3
Migration (-)

[101]Invasion (-)
Proliferation (-)

circANKS1B Upregulation miR-148a-3p/miR-152-3p USF1
Migration (+)

[95]Invasion (+)
EMT (+)

circUBAP2 Upregulation miRNA-661 MTA1
Migration (+)

[102]Proliferation (+)
Apoptosis (-)

circPLK1 Upregulation miR-296-5p PLK1
Invasion (+)

[103]
Proliferation (+)

circEPSTI1 Upregulation miR-4753/miR-6809 BCL11A
Proliferation (+)

[58]
Apoptosis (-)

CircGFRA1 Upregulation miR-34a GFRA1
Proliferation (+)

[104]
Apoptosis (-)

hsa_circ_001783 Upregulation miR-200c-3p ETS1, ZEB1, 
ZEBI2

Migration (+)
[105]Invasion (+)

Proliferation (+)

CircNR3C2 Downregulation miR-513a-3p HRD1, vimentin

Migration (-)

[106]
Invasion (-)
Proliferation (-)
EMT (-)

(+) Increased activity, (-) Decreased activity.

Table 2. Expression of different exosomal circRNAs in TNBC.        
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teracting with downstream signaling pathways. This in-
teraction often involves the sponging action of miRNAs 
by circRNAs. For instance, circABCC4, which sponges 
miR-154-5p [108], enhances apoptosis when downregu-
lated [109]. Conversely, upregulated circRNAs like cir-
cRNA_0001283 induce apoptosis by sponging miR-187. 
Similarly, overexpression of circRNA_000911 inhibits 
tumor growth by sponging miR-449a, despite its initial 
downregulation in breast cancer cells [110]. Another ex-
ample is hsa_circ_0068033, which sponges miR-659. 
These circRNA-miRNA interactions also regulate differ-
ent pathways, such as enhancing Notch1 and NF-κB sig-
naling pathways [111]. The PI3K/AKT signaling pathway, 
crucial in apoptosis control, is regulated by the circRNA/
PI3K/AKT axis, thereby inhibiting apoptosis.

2.7.1.	 Exo-circRNA and chemotherapeutic resistance
Exosomal circRNAs and chemotherapeutic resistance 

present significant challenges in breast cancer treatment 
[112]. Effective therapy selection is crucial among the 
various available options. Tamoxifen, commonly used 
for TNBC patients, was found to have increased sensitiv-
ity when combined with circRNA_0025202, which was 
downregulated in tamoxifen-resistant cells [113]. Con-
versely, circUBE2D2 was upregulated in tamoxifen-resis-
tant cells, leading to resistance by sponging miR-200a-3p 
[114].

In TNBC patients, resistance to paclitaxel poses a ma-
jor challenge. Upregulated circ-RNF111 in paclitaxel-re-
sistant cells contributes to resistance by upregulating E2F3 
through miR-140-5p sponging [115]. Conversely, down-
regulation of hsa_circ_0000199 increases sensitivity to 

paclitaxel. Similar observations were made with therapies 
involving gemcitabine, cisplatin, and Adriamycin [116]. 
Monastrol, another chemotherapeutic agent, suppresses 
tumors by inhibiting the mitotic kinesin Eg5 required for 
bipolar spindle formation. CircRNA-MTO1, upregulat-
ed in monastrol-resistant cells, can be downregulated in 
TNBC cells to reverse resistance to monastrol [117].

CircKDM4C, usually downregulated in cells resistant 
to doxorubicin, can be overexpressed to reverse resis-
tance [92]. Additionally, downregulation of circUBE2D2 
reverses resistance to doxorubicin through miR-512-3p 
downregulation and CDCA3 upregulation (Table 3). Simi-
larly, hsa_circ_0092276 overexpression leads to therapy 
resistance via altered autophagy-related gene 7 through 
miR-384 sponging [119].

2.8.	  Challenges and limitations in exosomal circRNAs 
in research

Exosomal circular RNAs (exo-circRNAs) detected in 
triple-negative breast cancer (TNBC) can either act as tu-
mor suppressors or promote tumor proliferation, influen-
cing the effectiveness of chemotherapeutic drugs in TNBC 
therapy. Sequencing techniques have provided insights 
into the roles of exo-circRNAs in TNBC. Some assump-
tions have been made regarding exosomal circRNAs: 
exosomes protect circRNAs from clearance by transfer-
ring genetic information to other cells, while they may 
also facilitate circRNA clearance through exocytosis from 
the vesicle. Recently, certain circRNAs have been found 
to have functional roles in cancer research, making them 
promising biomarkers or prognostic markers for detecting 
TNBC in patients.

Despite these advances, further studies and validation 
are needed. The scarcity of circRNA in exosomes presents 
challenges in detection. Additionally, due to their circular 
structure and sequence similarity with linear counterparts, 
studies may lack precision. The impact of circRNAs on pa-
thophysiological processes is under study. There is unclear 
research on how circRNAs are ultimately degraded and 
how they are enriched in exosomes during formation. Ac-
cording to assumptions, circRNAs plentifully found in the 
cytoplasm are passively incorporated into exosomes. As 
the current development of exo-circRNA is in its nascent 
stage, more advanced tools are needed to aid research in 
this area.

Fig. 4. Expression of different exosomal circRNAs in TNBC.

Chemotherapeutic agent circRNA Expression Effect Ref.

Tamoxifen
circ_UBE2D2 Upregulation Resistant [114]
circBMPR2 Downregulation Resistant [120]
circRNA_0025202 Upregulation Sensitive [113]

Paclitaxel
circ-RNF111 Upregulation Resistant [115]
circGFRA1 Upregulation Resistant [121]
circ-ABCB10 Upregulation Resistant [122]

Monastrol circRNA-MTO1 Downregulation Sensitive [117]

Adriamycin
circ_0085495 Upregulation Resistant [123]
circ_0006528 Upregulation Resistant [124]
circ_0001667 Upregulation Resistant [125]

Lapatinib circ-MMP11 Upregulation Resistant [126]
5-Fluorouracil circFBXL5 Upregulation Resistant [127]

Table 3. Exo-circRNA and chemotherapeutic resistance.
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3.	 Conclusion
The study highlights the multifaceted roles of exosomal 

circular RNAs (exo-circRNAs) in triple-negative breast 
cancer (TNBC) pathogenesis and therapy. These exo-cir-
cRNAs can either suppress or promote tumor growth and 
influence the effectiveness of chemotherapeutic drugs. 
While sequencing techniques have shed light on their 
functions, challenges such as detection difficulty and lack 
of precision in studies persist due to their circular structure 
and sequence similarities. Despite these obstacles, exo-cir-
cRNAs hold promise as biomarkers or prognostic markers 
for TNBC detection. However, further research and vali-
dation are imperative to fully understand their mechanisms 
of action and potential clinical applications. Additionally, 
advancements in tools and methodologies are needed to 
propel research in this nascent field forward.
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