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1. Introduction
Zingiber officinale, commonly known as ginger, com-

prises various components including 40–70% starch, 1.5–
3% essential oil, 6–20% protein, 2–11% fixed oil, 9–12% 
water, and 8–10% ash, along with pungent principles and 
other saccharides [1]. Additionally, it is a rich source of 
antioxidants, antimicrobial polyphenols, and flavonoids 
[2]. Beyond its culinary uses, ginger root has demonstra-
ted efficacy in reducing cholesterol, alleviating arthritis 
pain, addressing digestive issues, acting as an expectorant, 
and stimulating intestinal function [3]. Various diseases, 
including cardiovascular ailments, stroke, diabetes, com-
mon cold, rheumatism, asthma, catarrh, gingivitis, too-
thache, and constipation, have traditionally been treated 
with ginger in medicinal and therapeutic preparations 
because of its pharmacological effects, which include anti-
platelet, immunomodulatory, anti-tumor, anti-apoptotic, 
anti-inflammatory, antiviral, antimicrobial, analgesic, an-
tioxidant, and anti-hyperglycemic properties [4]. The main 

active constituents of ginger, namely gingerol, zingerone, 
paradol, and shogaol, contribute to its characteristic odor 
and flavor [5]. Gingerols exhibit potent antioxidant and 
anticancer properties, thereby offering potential benefits in 
disease prevention and treatment [6].

Glycyrrhiza glabra commonly known as licorice, be-
longs to the Leguminosae or Fabaceae families. It is valued 
as an ethnomedicinal sweetener and calming herb and is 
used in various applications. Licorice is increasingly being 
incorporated into numerous commercial products, inclu-
ding pharmaceuticals, foods, beverages, and cosmetics, 
serving as a flavoring agent [7]. Additionally, it has been 
recognized for its antioxidant and antimicrobial properties 
under the name mulethi [8]. Licorice contains two main 
classes of bioactive compounds: saponins and flavonoids, 
with glycyrrhizin and glabridin or glabrene as the major 
constituents. It also contains various nutrients such as pro-
teins, amino acids, simple sugars, polysaccharides, carbo-
hydrates, minerals (manganese and calcium), vitamins (E, 
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B1, B2, B3, B5, and C), tannins, coumarins, phytosterols 
(stigmasterol and sitosterol), and glycosides [9]. Its roots 
have been reported to exhibit various beneficial properties, 
including antacid, anti-inflammatory, demulcent, diuretic, 
anti-ulcer, tonic, expectorant, sedative, and laxative effects 
[10]. Licorice derivatives can be used in food as encap-
sulated polyphenolic compounds, owing to their antioxi-
dant and antimicrobial properties. However, it is important 
to note that the antioxidant activity of dried ginger may 
be affected by prolonged heating [11]. Therefore, freeze-
drying the extracted active components of ginger and lico-
rice is crucial for producing high-quality dried ginger and 
licorice products, despite higher initial equipment expen-
ditures. This process can result in increased color, nutri-
tional, and flavor stability, while maintaining the natural 
characteristics of the raw product [12] . This study aimed 
at the extraction of bioactive compounds from Zingiber of-
ficinale and Glycyrrhiza glabra which grow with different 
time incubation and different salt concentration.

2. Materials and methods
Zingiber officinale and Glycyrrhiza glabra were selec-

ted as experimental plants, and Zingiber officinale and 
Glycyrrhiza glabra were grown on a large scale in Khyber 
Pakhtunkhwa. The experiments were conducted under na-
tural conditions at the Department of Botany, Bacha Khan 
University Charsadda, from 2022 to 2023, with an average 
day/night temperature of 37 ± 8°C and a photoperiod ran-
ging from 10 to 13 hours. Seeds of two plants were obtai-
ned from the Surezai Research Station, Peshawar Khyber 
Pakhtunkhwa Pakistan, and were grown in 18 pots filled 
with soil and sand at a ratio of 3:1. Zingiber officinale (9 
pots) and Glycyrrhiza glabra (9 pots) varieties were grown 
in triplicate. In contrast, salinity stress was applied at the 
vegetative stages and examined for 15-d (2mM salt), 20-d 
(3mM salt), 25-d (5 mM salt), 30-d (10mM salt), 35-d 
(20mM salt), 40-day (30mM salt), 45-d (40mM salt), 50-d 
(50mM salt), and 55-d (60mM salt). The objectives of the 
present study were to analyze different types of parame-
ters under the consequence of benzoic acid foliar spraying 
under salinity stress.

2.2. Experimental species
Zingiber officinale and Glycyrrhiza glabra were selec-

ted for experimental evaluation due to their well-docu-
mented bioactive compounds and traditional medicinal 
uses, particularly their anti-inflammatory and analgesic 
properties.

2.3. Experimental chemicals
Glucose (C6H12O6), Glycerin (C3H8O3), Methanol 

(CH4O or CH3OH), Distilled water, Sodium Acetate trihy-
drate (C2H3NaO2) (NaAc), acetic acid (CH3COOH) (HAC), 
Aluminum Chloride Hexahydrate (AlCl3.6H2O), Sulfuric 
Scid (H2SO4), Anthrone (C14H10O), Potassium periodate 
(KIO4), Hydrochloric acid (HCl), L-rhamnose (C6H12O5), 
Nash solution (ammonium acetate [NH₄CH₃CO₂] plus 
Acetic Acid [CH₃COOH] plus Diacetone [C6H12O2]), Po-
tassium Hydroxide (KOH), sodium hydroxide (NaOH), 
Hydrogen chloride (HCl), and Dimethyl Sulfoxide (CH₃)₂ 
(DMSO). Additionally, a buffer solution was prepared 
using Sodium Phosphate (Na2HPO4) and Sodium Phos-
phate (NaH2PO4)•H2O), and Congo Red was used.

2.4. Instrumentation
Erlenmeyer flask, Different size of beakers, Test-tube, 

Pipette, BP 221 S Electronic Balance (Sartorius, Ger-
many); 101 - 3 ES Electric Heating Blower Drying Oven 
(Beijing Yongguang Medical Instrument Co., Ltd.) com-
pany); ZWY-2102 Constant Temperature Culture Oscilla-
tor (Shanghai Zhicheng Analytical Instrument Manufactu-
ring Co., Ltd.); DFT-50 A universal high-speed pulverizer 
(Zhejiang Wenling Linda Machinery Co., Ltd.); simulta-
neous distillation extractor (Yunnan Ruisheng Technolo-
gy Co., Ltd.) Ultraviolet (UV) radiation (UV–Vis Jasco 
V-730, Jasco, USA), HPLCTM Ultimate 3000, Shimadzu, 
Kyoto, Japan, Ultrasound machine.

2.5. Determination of the polysaccharides content
The total polysaccharide content was measured 

through anthrone sulfuric colorimetry [13]. Samples were 
placed in 0.300 g tube-shaped bottles, to which 5 mL of 
80% methanol was added. Subsequently, the bottles were 
refluxed in an ultrasound machine for 45 min to facili-
tate the polysaccharide extraction. Following reflux, the 
samples were centrifuged for 5 min to separate the solid 
particles from the solution. A 1mL aliquot of the sample 
solution was then transferred to a test tube, and 1mL of 
water was added. A mixture comprising 6mL of 80% sul-
furic acid and anthrone (1 g) was prepared. This mixture 
was added to a test tube containing the sample and water, 
and the resulting solution was allowed to stand for 20 min 
in a water bath maintained at 35°C. After incubation, the 
absorbance of the reaction mixture was measured at 625 
nm using a spectrophotometer. The control solution was 
prepared by substituting the sample with distilled water in 
the same reaction mixture. A standard curve (y = 43.487 + 
0.0909_005, R2 = 0.9987) for polysaccharides was gene-
rated using a known polysaccharide standard, such as that 
from Sigma-Aldrich, USA. The polysaccharide content in 
the extract was determined based on the absorbance values 
obtained from the sample and standard curve.

2.6. Determination of the flavonoid content
The total flavonoid content of the extracts was assessed 

[14]. The samples were placed in tube-shaped bottles, each 
weighing 0.300 g. To each bottle, 5 mL of 70% methanol 
was added and the mixture was refluxed for 45 min using 
an ultrasound machine. Subsequently, the solution was 
centrifuged for 5 min to separate the sample solution, and 
2 mL was transferred to a test tube. Then, 1 mL of buffer 
solution (prepared by mixing 100 mL distilled water, 2.72 
g sodium acetate trihydrate, and 1.15 mL acetic acid to 
achieve a pH of 5.2) was added to each test tube, followed 
by 2 mL of chemical reagent (prepared by mixing 100 mL 
methanol with 1.34 g aluminum chloride hexahydrate) and 
shaking. Test tubes were allowed to stand for 10 min in a 
water bath at 40°C. The absorbance of the reaction mix-
ture was then measured at 415 nm using a spectrophoto-
meter (UV–Vis Jasco V-730, Jasco, USA), with distilled 
water used as the control. The flavonoid content of the 
extract was calculated using a standard curve (y = 43.487 
+ 0.0909, R2 = 0.9987) generated from known concentra-
tions of flavonoids (Sigma-Aldrich).

2.7. Quantification of the ergosterol content
The ergosterol content was determined using high-per-

formance liquid chromatography (HPLC) [15]. Initially, a 
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± standard error of the mean (SEM) derived from three 
distinct investigations (n = 3). Graph-Pad Prism 8 was uti-
lized for creating bar graphs [17].

3. Result

3.2. Evaluation of various components production
The various components of Zingiber officinale and 

Glycyrrhiza glabra, such as polysaccharides, flavonoids, 
ergosterol, and nucleic acid derivatives, including adenine, 
adenosine, guanosine, and hypoxanthine, were examined 
over a period with salt of 15-d (2mM salt), 20-d (3mM 
salt), 25-d (5 mM salt), 30-d (10mM salt), 35-d (20mM 
salt), 40-day (30mM salt), 45-d (40mM salt), 50-d (50mM 
salt), and 55-d (60mM salt).

3.3. Determination of the polysaccharides content
The results in Figure 1 confirm that Zingiber officinale 

harvested at 20 days with 3mM salt exhibited the highest 
polysaccharide content at 17.22 mg/g, while Glycyrrhiza 
glabra showed slightly lower content (15.76 mg/g. Poly-
saccharide concentrations varied across different time 
points for both plants, with Zingiber officinale ranging 
from 15.55 mg/g to 14.09 mg/g and Glycyrrhiza glabra 
ranging from 15.96 mg/g to 12.80 mg/g over the 15 to 
55-d period with 5-d intervals. The minimum polysaccha-
ride content for both plants was observed at 50 and 55-d, 
indicating a decrease in polysaccharide concentration over 
time. These findings suggest that the response of polysac-
charide content depends on the plant species, duration of 
growth, and salt concentration. Specifically, in Zingiber 
officinale, the polysaccharide content gradually decreased 
after the 20-d mark with 3 mM salt. Similarly, both plants 
exhibited the lowest polysaccharide content after 55-d of 
induction. Overall, the results indicate that Zingiber offi-
cinale, especially after 20 days with 3mM salt, tended to 
have higher polysaccharide content than Glycyrrhiza gla-
bra.

3.4. Detection of the flavonoid content
The data presented in Figure 2 demonstrate that Zin-

giber officinale harvested at 25-d with 5 mM salt exhi-
bited the highest flavonoid content at 6.96 mg/g, while 
Glycyrrhiza glabra showed a slightly lower content (4.04 
mg/g. Flavonoid concentrations varied across different 

standard curve was generated by precisely weighing 0.300 
g of standard ergosterol and preparing a solution with a 
concentration of 0.04 mg/mL in pure methanol in a 50 
mL volumetric flask. Subsequently, 1 mL of the sample 
solution was drawn with a syringe and manually filtered 
through a 0.45 μm micro-porous filter membrane into an 
HPLC sample vial. Different sample sizes were used for 
detection, according to the chromatographic conditions. 
The chromatographic parameters were as follows: Waters 
C18 column, pure methanol as the mobile phase, isocra-
tic elution, column temperature of 30°C, detection wave-
length set at 284 nm, flow rate of 1 mL/min, and total run 
time of 20 min. For the analysis of test samples, a liquid 
culture sample weighing 0.05 g was accurately weighed 
and placed in a 5 mL centrifuge tube. Next, 2 mL of pure 
methanol solution was added to the tube, followed by tho-
rough mixing and oscillation. The samples were extracted 
for 3 h followed by ultrasonic extraction for 1 h. The resul-
ting mixture was centrifuged at 4000 r/min for 5 min, and 
the supernatant was collected. Subsequently, 1 mL of the 
sample liquid was drawn with a syringe and filtered ma-
nually through a 0.45 μm micro-porous filter membrane 
into an HPLC sample vial. The samples were analyzed 
using the previously mentioned chromatographic condi-
tions with a sample volume of 30 μL.

2.8. Measurement of the nucleosides and their analogs
Nucleosides and their analogs were quantified using 

high-performance liquid chromatography (HPLC), [16]. 
Standard curves were constructed for adenine, guanine, 
cytosine, thymine, adenosine, and guanosine. Each stan-
dard compound (10 mg) was dissolved in a 10 mL volu-
metric flask containing 20% methanol to achieve a fixed 
concentration of the standard solution. A 1 mL aliquot of 
the sample was then withdrawn using a syringe and ma-
nually filtered through a 0.45 μm micro-porous filter mem-
brane into an HPLC sample vial. Subsequently, the sample 
was analyzed using an HPLC system (Ultimate 3000, Shi-
madzu, Kyoto, Japan) under the following conditions: Co-
lumn: Waters Symmetry C18 column (4.6 mm × 250 mm, 5 
μm); mobile phases: methanol (A) and water (B) gradient 
elution method: 0-10 min: 5-10% A, 10-15 min: 10-40% 
A, 15-25 min: 40-25% A, 25-27 min: 25-5% A, 27-30 min: 
5% A Column temperature: 30 °C, detection wavelength: 
260 nm, flow rate: 1 mL/min, total running time: 30 min. 
A standard regression curve was constructed by plotting 
the mass on the abscissa and the peak area on the ordinate. 
For the determination of test samples, a 0.05 g sample was 
accurately weighed and soaked in 2 mL of a 20% methanol 
solution for 1 h. The sample was subjected to ultrasonic 
extraction for 30 min, followed by centrifugation at 4000 
rpm for 5 min to collect the supernatant. The extraction 
process was repeated and the solvent was added to achieve 
a constant volume of 5 mL with thorough mixing. A 1 mL 
sample solution was then withdrawn using a syringe and 
manually filtered through a 0.45 μm micro-porous filter 
membrane into an HPLC sample vial. The content of each 
component in the test sample solution was determined 
under the same chromatographic conditions with a sample 
volume of 40 μL.

2.9. Statistical analysis
In each of the experiments, a total of three distinct trials 

were conducted. The outcomes were reported as the mean 

Fig. 1. For polysaccharide content, the X-axis shows incubation time 
with salt concentration and the Y-axis shows quantification of content 
(mg/g). Error bars indicate the mean ± standard error, as shown in the 
bar graph.
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time points for both plants, with Zingiber officinale ran-
ging from 5.24 mg/g to 2.93 mg/g and Glycyrrhiza glabra 
ranging from 3.55 mg/g to 2.36 mg/g over the 15 to 55-d 
period with 5-d intervals. The minimum flavonoid content 
for both plants was observed at 50 and 55-d, indicating 
a decrease in flavonoid concentration over time. These 
findings suggest that the response of flavonoid content 
depends on plant species, duration of growth, and salt 
concentration. Specifically, in Zingiber officinale, the fla-
vonoid content gradually decreased after the 25-d mark 
with 5 mM salt. Similarly, both plants exhibited the lowest 
flavonoid content after 25-d of induction. Overall, the re-
sults indicate that Zingiber officinale, especially after 25-d 
with 5 mM salt, tended to have a higher flavonoid content 
than Glycyrrhiza glabra.

3.5. Quantification of the ergosterol content
The results obtained from (Table 1) verified that the 

25-d (5 mM salt) 2.263 mg/g Zingiber officinale and 
Glycyrrhiza glabra 0.9876 mg/g showed the maximum 
ergosterol content in both pants. The various concentra-
tions of guanosine content in the Zingiber officinale part 
are 0.249, 1.840, 2.263, 1.889, 1.689, 1.379, 1.3724, 
0.690, and 0.690 mg/g, and in the Glycyrrhiza glabra part, 
0.7088, 0.7560, 0.9876, 0.9553, 0.8275, 0.7321, 0.6920, 
0.6634, 0.5725 mg/g from 15 to 55-d with 5-d intervals. 
However, the minimum ergosterol content in both parts 
has been reported under 50-d and 55-d, which indicates 
that the concentration decreases with the passage of time. 
This implies that the response of ergosterol content pants 
and duration. Consequently, the ergosterol content of the 
Zingiber officinale indicates that after 25-d (5 mM salt), 
the ergosterol content decreased gradually. Similarly, the 
minimum ergosterol content in both body parts was repor-
ted after 25-d (5 mM salt) induction. The results clearly 
suggest that at 25-d (5 mM salt), the Zingiber officinale 
body parts had a higher ergosterol content than the Glycyr-
rhiza glabra body parts (Figure 3).

3.6. Adenine content
The data from Table 1 demonstrate that Zingiber of-

ficinale harvested at 25-d with 5 mM salt exhibited the 
highest adenine content at 3.4186 mg/g, while Glycyr-
rhiza glabra showed a slightly lower content of 2.4521 
mg/g. Adenine concentrations varied across different time 
points for both plants, with Zingiber officinale ranging 
from 2.3622 mg/g to 0.9523 mg/g and Glycyrrhiza gla-
bra ranging from 0.5725 mg/g to 1.0519 mg/g over the 
15 to 55-d period at 5-d intervals. The minimum adenine 
content for both plants was observed at 50 and 55-d, indi-
cating a decrease in adenine concentration over time, and 
salt concentration. These findings suggest that the res-
ponse of adenine content depends on plant species, growth 
duration, and salt concentration. Specifically, in Zingiber 
officinale, adenine content gradually decreased after the 
25-d mark with 5 mM salt. Similarly, both plants exhibited 
the lowest adenine content after 25-d of induction. Ove-
rall, the results indicate that Zingiber officinale, especially 
after 25-d with 5 mM salt, tended to have a higher adenine 
content than Glycyrrhiza glabra.

3.7. Adenosine content
The data presented in Table 1 confirm that Zingiber 

officinale harvested at 25-d with 5 mM salt exhibited the 

highest adenosine content at 3.4078 mg/g, while Glycyr-
rhiza glabra showed a slightly lower content of 2.4501 
mg/g. Adenosine concentrations varied across different 
time points for both plants, with Zingiber officinale ranging 
from 2.3226 mg/g to 1.4655 mg/g and Glycyrrhiza glabra 
ranging from 0.6755 mg/g to 1.0529 mg/g over the 15-to 
55-day period with 5-d intervals. The minimum adenosine 
content for both plants was observed at 50 and 55 days, 
indicating a decrease in adenosine and salt concentrations 
over time. These findings suggest that the response of ade-
nosine content depends on the plant species, duration of 
growth, and salt concentration. Specifically, in Zingiber 
officinale, the adenosine content gradually decreased after 
the 25-d mark with 5 mM salt. Similarly, both plants exhi-
bited the lowest adenosine content after 25-d of induction. 
Overall, the results indicate that Zingiber officinale, espe-
cially after 25-d with 5 mM salt, tended to have a higher 
adenosine content than Glycyrrhiza glabra.

3.8. Hypoxanthine content
The data presented in Table 1 confirm that Zingiber of-

ficinale harvested at 25 days with 5 mM salt exhibited the 
highest hypoxanthine content at 2.4627 mg/g, while Gly-
cyrrhiza glabra showed a slightly lower content of 1.4547 
mg/g. Hypoxanthine concentrations varied across different 
time points for both plants, with Zingiber officinale ran-
ging from 1.3326 mg/g to 0.4555 mg/g and Glycyrrhiza 
glabra ranging from 0.5155 mg/g to 0.0649 mg/g over 

Fig. 2. For flavonoid content, the X-axis shows incubation time with 
salt concentration and the Y-axis shows quantification of content 
(mg/g). Error bars indicate the mean ± standard error, as shown in 
the bar graph.

Fig. 3. For ergosterol content, the X-axis shows incubation time with 
salt concentration and the Y-axis shows quantification of content 
(mg/g). Error bars indicate the mean ± standard error, as shown in 
the bar graph.
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the 15 to 55-d period with 5-d intervals. The minimum 
hypoxanthine content for both plants was observed at 50 
and 55-d, indicating a decrease in hypoxanthine and salt 
concentrations over time. These findings suggest that the 
response of hypoxanthine content depends on both plant 
species and the duration of growth and salt concentra-
tion. Specifically, in Zingiber officinale, the hypoxanthine 
content gradually decreased after the 25-d mark with 5 mM 
salt. Similarly, both plants exhibited the lowest hypoxan-
thine content after 25-d of induction. Overall, the results 
indicate that Zingiber officinale, especially after 25-d with 
5 mM salt, tends to have a higher hypoxanthine content 
than Glycyrrhiza glabra.

3.9. Guanosine content
The data provided in Table 1 confirm that Zingiber 

officinale harvested at 25-d with 5 mM salt exhibited the 
highest guanosine content at 3.4537 mg/g, while Glycyr-
rhiza glabra showed a slightly lower content of 2.4513 
mg/g. Guanosine concentrations varied across different 
time points for both plants, with Zingiber officinale ran-
ging from 2.4556 mg/g to 1.4325 mg/g and Glycyrrhiza 
glabra ranging from 1.6023 mg/g to 1.0789 mg/g over the 
15–55-d period with 5-d intervals. The minimum guano-
sine content for both plants was observed at 50 and 55-d, 
indicating a decrease in guanosine concentration over time 
and salt concentration. These findings suggest that the res-
ponse of guanosine content depends on both plant species 
and the duration of growth and salt concentration. Speci-
fically, in Zingiber officinale, the guanosine content gra-
dually decreased after the 25-d mark with 5 mM salt. Simi-
larly, both plants exhibited the lowest guanosine content 
after 25-d of induction. Overall, the results indicate that 
Zingiber officinale, especially after 25-d with 5 mM salt, 
tends to have a higher guanosine content than Glycyrrhiza 

glabra.

4. Discussion
This study evaluated the production of various com-

ponents of Zingiber officinale (ginger) and Glycyrrhiza 
glabra (licorice) under different salt concentrations and 
growth durations. The components examined included 
polysaccharides, flavonoids, ergosterol, and nucleic acid 
derivatives, such as adenine, adenosine, guanosine, and 
hypoxanthine. Zingiber officinale harvested at 20-d with 
3mM salt exhibited the highest polysaccharide content, 
whereas Glycyrrhiza glabra showed slightly lower poly-
saccharide content. Polysaccharide concentrations varied 
over time in both plants, with a gradual decrease observed 
after 20-d. Zingiber officinale (Ginger root) has long been 
used to alleviate and manage various common ailments, 
such as headaches, colds, nausea, and vomiting. Nume-
rous bioactive compounds found in ginger, including 
phenolic and terpene compounds, contribute to its thera-
peutic properties. Among these, gingerols, shogaols, and 
paradols are the primary phenolic compounds responsible 
for the diverse biological activities of ginger [18]. Recent 
research has revealed the additional biological effects of 
ginger, including antioxidant [19], anti-inflammatory [20], 
antimicrobial [21], and anticancer properties [22].

Overall, Zingiber officinale tended to have a higher po-
lysaccharide content than Glycyrrhiza glabra, especially 
after 20-d with 3mM salt. Zingiber officinale harvested 
at 25-d with 5 mM salt exhibited the highest flavonoid 
content, whereas Glycyrrhiza glabra showed a slightly 
lower flavonoid content. Flavonoid concentrations varied 
over time in both plants, with a gradual decrease obser-
ved after day 25-d mark. Zingiber officinale tended to 
have a higher flavonoid content than Glycyrrhiza glabra, 
especially after 25-d with 5 mM salt. Both Zingiber offi-

Zingiber officinale
Time (days) with salt concentration Adenine (mg/g) Adenosine (mg/g) Hypoxanthine (mg/g) Guanosine (mg/g)
15 (2 mM salt) 2.3622 2.3226 1.3326 2.4556
20 (3mM salt) 2.9556 2.9565 1.9655 2.7875
25 (5 mM salt) 3.4186 3.4078 2.4627 3.4537
30 (10 mM salt) 2.0018 2.0330 1.2529 2.9523
35 (20 mM salt) 2.0013 2.0125 1.1965 2.8655
40 (30 mM salt) 1.1427 2.0074 1.0524 2.6628
45 (40 mM salt) 1.0013 1.9147 1.0001 2.5621
50 (50 mM salt) 1.0007 1.8767 0.8787 1.8657
55 (60 mM salt) 0.9523 1.4655 0.4555 1.4325

Glycyrrhiza glabra
Time (days) with salt concentration Adenine (mg/g) Adenosine (mg/g) Hypoxanthine (mg/g) Guanosine (mg/g)
15 (2mM salt) 0.5725 0.6755 0.5155 1.6023
20 (3mM salt) 1.0957 1.2387 0.9367 1.8967
25 (5 mM salt) 2.4521 2.4501 1.4547 2.4513
30 (10mM salt) 1.7862 1.8224 0.8274 1.8279
35 (20 mM salt) 1.7155 1.7465 0.7425 1.7423
40 (30 mM salt) 1.6230 1.6530 0.6523 1.6534
45 (40 mM salt) 1.5375 1.5865 0.5625 1.5875
50 (50 mM salt) 1.3982 1.4822 0.4322 1.4652
55 (60 mM salt) 1.0519 1.0529 0.0649 1.0789

Table 1. List of different nucleosides and their analogs and ergosterol in a Zingiber officinale and Glycyrrhiza glabra in mg/g.
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cinale and Glycyrrhiza glabra showed maximum ergoste-
rol content at 25-d with 5 mM salt. The ergosterol content 
gradually decreased over time in both plants. Furthermore, 
emerging evidence suggests that ginger may play a role 
in the prevention and management of various diseases, 
including neurodegenerative diseases [23], cardiovascular 
diseases [24], obesity [25], diabetes mellitus [26], chemo-
therapy-induced nausea and vomiting [27], and respiratory 
disorders [28].

Zingiber officinale had a higher ergosterol content 
than Glycyrrhiza glabra, especially after 25-d with 5 mM 
salt. Nucleic Acid Derivatives (Adenine, Adenosine, Gua-
nosine, Hypoxanthine) Zingiber officinale harvested at 
25 days with 5 mM salt exhibited the highest content of 
adenine, adenosine, guanosine, and hypoxanthine. The 
concentrations of these derivatives varied over time, with 
a gradual decrease observed after day 25-d. The medici-
nal properties of Glycyrrhiza glabra roots have been re-
cognized since ancient times, with populations in Rome, 
Greece, India, and China using them to treat respiratory 
ailments such as asthma and bronchitis [29, 30]. Pharma-
ceutical companies commonly incorporate Glycyrrhiza 
glabra into cough syrup preparations owing to its thera-
peutic effects [29].

Zingiber officinale tended to have a higher nucleic acid 
derivative content than Glycyrrhiza glabra, especially 
after 25-d with 5 mM salt. Furthermore, the sweet taste 
of the roots has garnered interest from various industries, 
including tobacco, confectionery, and flavoring, where 
it is utilized as a sweetener in products such as chewing 
gums, ice creams, and candies [29]. It is important to note 
that only certain species of Glycyrrhiza glabra possess a 
notably sweet taste [30]. This sweetness is attributed to 
the presence of glycyrrhizin, a triterpenoid saponin, and 
its primary phytochemical constituent, which typically 
constitutes 10–25% of the root extract [31]. Glycyrrhi-
zin, present in the form of glycyrrhizic acid salt within 
the plant, serves as a quality marker in pharmacopeias of 
countries such as Japan and China [32]. 

In conclusion, the evaluation of the various compounds 
produced by Zingiber officinale and Glycyrrhiza glabra 
revealed interesting insights. The polysaccharide, flavo-
noid, ergosterol, adenine, adenosine, hypoxanthine, and 
guanosine contents were analyzed over a period ranging 
from 15 to 55-d with increasing salt concentrations. The 
polysaccharide content was highest in Zingiber officinale 
harvested at 20-d with 3mM salt, whereas Glycyrrhiza 
glabra showed slightly lower levels. Both plants exhibited 
a gradual decrease in polysaccharide content over time, 
with the lowest levels observed after 55-d. Similarly, Zin-
giber officinale harvested at 25-d with 5 mM salt exhibited 
the highest flavonoid content, with a gradual decrease 
observed over time. For ergosterol, adenine, adenosine, 
hypoxanthine, and guanosine, the highest concentrations 
were observed at 25-d with 5 mM salt in both plants, with 
levels decreasing as the duration of growth increased. Zin-
giber officinale tended to have higher contents of these 
components than Glycyrrhiza glabra, especially after 25-d 
with 5 mM salt. These findings suggest that the responses 
of these components to growth duration and salt concen-
tration vary among plant species.
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