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1. Introduction 
Giant cell tumor (GCT), although histologically be-

nign, is considered one of the most common bone neo-
plasms. This type of tumor is characterized by locally 
aggressive behavior and primarily affects young adults, 
being most common in individuals between the ages of 
20 and 40, according to current epidemiological reports. 
It mainly affects the tibia or femur in the metaphyseal or 
epiphyseal regions [1]. It has been reported that there is 
no difference in its aggressiveness between the lower and 
upper extremities [2]. On the other hand, GCT has been 
reported in the cervical spine in elderly patients [3]. His-

tologically, GCT is mainly composed of mononuclear 
ovoid-shaped cells and multinucleated giant cells, the 
latter being directly associated with bone resorption in 
the tumor microenvironment [1]. Molecular studies have 
identified that approximately 90% of these tumors present 
the G34W mutation in the gene encoding histone H3.3 [4, 
5]. This mutation is found exclusively in the neoplastic 
stromal cells and is absent in the osteoclast precursors [5]

One of its main characteristics is its aggressive behavior 
[2]. It can be classified as unpredictable, as it may present 
features ranging from focal bone or cortical destruction, 
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invasion of the surrounding soft tissues of the primary 
tumor [1], and metastasis, which is reported as infrequent 
[5], occurring in 2-9% of patients [6-8], and typically in 
the lungs in less than 8% of the studied patients [9].

The current standard treatment for GCT combines sur-
gical interventions (curettage or resection) with medical 
therapy based on denosumab, which is the main therapeu-
tic alternative available [10]. In cases of advanced GCT, it 
has been reported that 73% of patients require a surgical 
intervention with extensive resection and the use of endo-
prostheses to replace the resected bone tissue [9], resulting 
in dysfunction in patients’ quality of life due to the loss 
of motor ability [11]. Additionally, side effects of current 
GCT treatments have been described: loss of tissue sur-
rounding the tumor area due to necrosis induction [12, 13], 
damage to the neural pathways of the affected extremity 
[14], and the possibility of tumor recurrence after discon-
tinuing denosumab treatment in 48% of patients after 24 
months of monotherapy [15]. Furthermore, when deno-
sumab is administered prior to surgical resection of the 
tumor, the recurrence risk is between 15% and 20% within 
18 months [16]. 

Considering that the available therapeutic options for 
GCT treatment still have limitations in terms of efficacy 
and safety, our research group has focused on studying 
quercetin, a flavonoid with proven antitumor activity in 
various preclinical models [17-19], with the aim of evalua-
ting the effect of quercetin as a potential therapeutic alter-
native for this neoplasm. Our in vitro results indicate that 
quercetin induces cell death through apoptosis via cas-
pase-3 activation in a GCT cell line (TIB-223) [20]. In this 
study, we conducted a pilot in vivo study using a murine 
GCT model to evaluate molecular markers for apoptosis, 
necrosis, and cell proliferation, and to determine whether 
quercetin maintains the same behavior when transferred 
from a 2D in vitro model to a 3D in vivo model.

2. Materials and methods
2.1. Murine GCT model

The treatment was performed in accordance with the 
guidelines for the care and use of laboratory animals (NIH 
Publications No. 8023, revised in 1978) and was approved 
by the bioethics committee of the CEI-111-ORD-2019 Ins-
titute, as well as the Internal Committee for the Care and 
Use of Laboratory Animals (CICUAL/005/2019, identi-
fication number: 52/19). Six male CD1 athymic mice, 
weighing 30 g, heterozygous nu/nu, aged 9 months, were 
used. The mice were divided into two groups: Group 1 (3 
control mice that were administered only the vehicle) and 
Group 2 (3 mice that were administered quercetin). The 
mice were provided with water and standard maintenance 
food ad libitum, previously sterilized, in cages connected 
to an animal rack with HEPA-filtered air at low speed, 
with a 12-hour light/dark cycle, an average temperature of 
25°C, and 50% humidity.

2.2. Construct preparation
The construct was prepared using the TIB-223 cell line, 

which has been described and used in in vitro models of 
Giant Cell Tumor of Bone [21, 22]. The cells were ex-
panded in cell culture (McCoy’s 5A medium, 10% fetal 
bovine serum, and 1% antibiotic-antimycotic, Gibco, Life 
Technologies, Carlsbad, CA, USA) until a sufficient num-
ber of cells for the experiments was obtained. The cells 

were then frozen in cryovials at a concentration of 1x106/
mL and stored in liquid nitrogen until use.

2.3. Three-dimensional (3D) scaffold printing
The design of the 3D-printed tumor model was carried 

out according to the method described by Estrada et al. 
[23]. A polycaprolactone (PCL) pellet was used as the raw 
material. The printing conditions were as follows: pore 
size of 850 μm, filament thickness of 200 μm, printing 
angle of 90°, with a total of 7 layers and no solid base, to 
form a 5 mm³ cube (a REGEMAT 3D bio-printer, desig-
ned at the University of Granada, Spain, was used). Once 
the scaffolds were printed, they were sterilized using the 
ethylene oxide method [24]. Then, under sterile conditions 
within the laminar flow hood, 2x106 TIB-223 cells were 
seeded onto each scaffold (Figure 1A), as previously des-
cribed by Landa et al. [25]. The constructs (scaffolds with 
seeded cells) were maintained under culture conditions 
(37°C with a 5% CO₂ atmosphere, McCoy’s 5A medium, 
10% fetal bovine serum, and 1% antibiotic-antimycotic, 
Gibco, Life Technologies, Carlsbad, CA, USA) for 4 days 
to achieve consolidation of the constructs before implan-
tation (Figure 1B).

2.4. Implantation of the construct
The construct implantation was carried out in the ani-

mal handling facilities, specifically in the immunocompro-
mised animal handling area (throughout the experimental 
process). Within the laminar flow hood, general anesthesia 
was administered by inhalation using 4% isoflurane. The 
implantation was performed in the dorsal-thoracic area 
(after antisepsis), making an incision of 1 cm that extended 
to the subcutaneous tissue. Using fine-tipped forceps, the 
tissue was separated until the necessary space was obtai-
ned to house the construct. To prevent displacement of the 
construct from the implantation area, a 3-0 nylon suture 
was used to anchor the construct to the adjacent muscle. 
Finally, the incision was closed with two “U” sutures in a 
single plane (Figures 1D and 1E). The mice, before recei-
ving the treatment, were housed in separate cages by group 
for two weeks and were provided with water and food.

Fig. 1. Experimental design. (A) TIB-223 cells, previously expanded 
in cell culture, were seeded at 2x106 cells on a 3D-printed scaffold 
made of polycaprolactone. (B) Consolidation of the tumor constructs 
(scaffolds with TIB-223 cells), which were maintained in culture for 
4 days. (D and E) The constructs were implanted in the dorsal-thora-
cic region of the athymic mice and were kept isolated for two weeks 
before starting treatment. (F) Administration of the treatment using 
stainless steel gastric applicators. (C and G) After treatment, the mice 
were euthanized, and the tumor constructs were dissected (marked 
with a red circle), and stored at -80°C for molecular analysis.
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Carlsbad, California, USA) [29]. From 1 µg of total RNA, 
cDNA was synthesized using the QuantiTect® Reverse 
Transcription Kit (Qiagen, Hilden, Germany). For real-
time quantification (RT-PCR), the SYBR Green Premix 
Kit (Bio-Rad, Hercules, California, USA) was used. The 
primer sequences employed are listed in Table 1. Relative 
mRNA quantification was performed using the delta-delta 
CT (∆∆CT) method.

2.8. Statistical analysis
The data obtained from the quantification of Western 

blot bands and real-time qPCR for both the treated and 
control groups are presented as mean ± standard devia-
tion. Statistical analysis was performed using GraphPad 
Prism version 9. An unpaired t-test was used to compare 
the groups, and statistically significant differences were 
defined as p < 0.05.

3. Results
3.1. Western blot analysis

Western blot analysis was performed on tumor frag-
ments from mice treated with quercetin (100 mg/kg) and 
control mice treated with vehicle (200 µL olive oil). The 
expression of pro-caspase-3 (32 kDa) and its activated 
forms (caspase-3, 11, 17, and 20 kDa) was evaluated using 
a specific anti-caspase-3 antibody. The gel revealed a re-
duction in the intensity of the band corresponding to pro-
caspase-3 in tumor samples from quercetin-treated mice 
compared to the control group, while the bands correspon-
ding to the activated forms—particularly the 17 kDa band 
(caspase-3 p17)—showed increased intensity in the trea-
ted group. This suggests enhanced caspase-3 activation 
induced by quercetin (Figure 2A).

2.5. Treatment of the murine GCT model
The treatment of the mice was administered orally 

using curved stainless steel gastric applicators with a blunt 
tip, 44 mm long and 0.78 mm in diameter, previously ste-
rilized by steam under pressure (15 psi, 121°C, for 15 mi-
nutes). The treated group received 100 mg/kg of quercetin 
(Sigma-Aldrich, Darmstadt, Germany) [26, 27], diluted in 
200 µL of the vehicle (highly refined, low acidity olive 
oil, Sigma-Aldrich, Darmstadt, Germany), once every 24 
hours for 14 days, while the control group received 200 µL 
of the vehicle (Figure 1F). After the treatment administra-
tion, the mice were euthanized (Figure 1C), and the tumor 
constructs were dissected, keeping them free of soft tis-
sues (Figure 1G), and all collected tissue was immediately 
stored at -80°C for subsequent molecular analysis.

2.6. Western blot analysis
Tumor fragments obtained from the treated mice (quer-

cetin 100 mg/kg body weight) and the control group (vehi-
cle 200 µL olive oil), approximately 30 mg, were used for 
the detection of pro-caspase 3 and caspase 3 with the pri-
mary antibody anti-caspase-3 (SC-56053, Santa Cruz Bio-
technology, TX, USA). The tumor fragments were placed 
in 15 mL Falcon tubes (previously washed with 1X PBS), 
300 µL of RIPA lysis buffer (Santa Cruz Biotechnology, 
TX, USA) was added, the samples were sonicated, and 
incubated at 4°C for 30 minutes. Then, the samples were 
centrifuged for 20 minutes at 15,000 rpm at 4°C. To sepa-
rate the proteins by electrophoresis (previously quantified 
to 60 µg), a 12% SDS-PAGE gel was used. The proteins 
were transferred to a nitrocellulose membrane, and non-
specific binding sites were blocked using 5% skim milk 
in Tris-buffered saline with Tween 20 (TBST) (NaCl 150 
mM, Tris-HCl 10 mM (pH 7.4), and 0.1% Tween-20). The 
membrane was incubated overnight at 4°C with the pri-
mary antibody. A secondary antibody was used: anti-rab-
bit IgG conjugated with horseradish peroxidase (Bio-Rad, 
Hercules, CA, USA), and incubated for 1 hour at room 
temperature. The chemiluminescence detection reagent 
(Millipore, Burlington, MA, USA) was added, and the 
membrane was washed with PBS. For image digitization, 
the C-DiGit® Blot Scanner (LI-COR Biosciences, NE, 
USA) was used, and for band density quantification, the 
Image Studio Digits V4.0 program (LI-COR Biosciences, 
NE, USA) was employed. For the positive control of cas-
pase-3 expression, 1x106 TIB-223 cells from a monolayer 
culture were exposed to a standardized dose of H2O2 (125 
µM) for 3 hours, and then the procedure was performed as 
described above [28].

2.7. qPCR analysis
Total RNA was extracted from the tissues obtained from 

both treated and untreated mice using Trizol (Invitrogen, 

Gene Forward Reverse
HPRL27 CTGGGAAGGTGGTGCTTGTC TAGCGGTCAATTCCAGCCAC
Caspasa 3 AGAGGGGATCGTTGTAGAAGTC ACAGTCCAGTTCTGTACCACG
Caspasa 8 ATTTGCCTGTATGCCCGAGC CCTGAGTGAGTCTGATCCACAC
RIP TGGGCGTCATCATAGAGGAAG CGCCTTTTCCATGTAAGTAGCA
PCNA CCTGCTGGGATATTAGCTCCA CAGCGGTAGGTGTCGAAGC

Fig. 2. Expression and activation of caspase-3 in giant cell tumors 
implanted in mice. (A)Western blot analysis of pro-caspase-3 (32 
kDa) and its activated forms (caspase-3, 11, 17, and 20 kDa) in tumor 
fragments from mice treated with quercetin and those that received 
only vehicle. As a positive control, TIB-223 cells treated with hy-
drogen peroxide (H₂O₂) were used, showing robust caspase-3 acti-
vation. ACTB protein (35 kDa) was used as a loading control. (B)
Densitometric analysis of the bands corresponding to pro-caspase-3 
and caspase-3 p17, normalized to ACTB. Data are presented as mean 
± SD; asterisks (*) indicate statistically significant differences (p < 
0.05).

Table 1. Primer Sequences. 

For the amplification of target genes by RT-qPCR. Forward and reverse sequences are listed for each gene, 
including HPRL27 (housekeeping gene), Caspase 3, Caspase 8, RIP, and PCNA.
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Additionally, a positive control using TIB-223 cells 
treated with H₂O₂ confirmed robust expression of the acti-
vated forms of caspase-3. Densitometric analysis of the 
bands, normalized to ACTB, showed that pro-caspase-3 
expression was significantly lower in the quercetin-treated 
group compared to the control group (p = 0.023). Although 
the expression of caspase-3 p17 was higher in the treated 
group, the difference did not reach statistical significance 
(p = 0.058) (Figure 2B). These data demonstrate that quer-
cetin treatment induces changes in caspase-3 proteolysis, 
consistent with apoptosis induction in the evaluated tumor 
model, further supported by the positive control with 
H₂O₂-treated TIB-223 cells.

3.2. qPCR analysis of GCT
Following real-time qPCR analysis of tumor frag-

ments extracted from treated and control mice, significant 
changes were observed in the expression of genes asso-
ciated with apoptosis, necrosis, and cell proliferation after 
quercetin treatment. For Caspase 8, a marked increase was 
observed in the treated group (~250 relative units) com-
pared to the control group (~50 units), with a statistically 
significant difference (p = 0.032), suggesting activation of 
the extrinsic apoptotic pathway (Figure 3A). In contrast, 
Caspase 3 expression showed a slight decrease in treated 
mice (0.8 U vs. 1.1 U in the control group), though without 
statistical significance (p = 0.13) (Figure 3B). The RIPK1 
gene, associated with regulated necrosis, exhibited a dra-
matic increase in the quercetin group (~1400 U) compared 
to the control (~100 U), with a highly significant difference 
(p = 0.01) (Figure 3C), indicating a possible activation of 
non-apoptotic cell death in addition to that induced by the 
extrinsic apoptosis pathway. Finally, PCNA expression, a 
marker of cell proliferation, showed a slight increase in 
the treated group (~2.5 U vs. 2 U in the control group), 
without reaching statistical significance (p = 0.66) (Figure 
3D), ruling out a direct effect of quercetin on cell prolife-
ration as a result of treatment. Quercetin induced a signi-
ficant increase in Caspase 8 and RIPK1, suggesting acti-
vation of both apoptosis and necrosis in the treated group.

4. Discussion
As reported in our previous study, where TCG cells 

(TIB-223) were exposed to quercetin in vitro for 24 hours 
at two concentrations of 91.1 μM, the cell population was 
predominantly positive for apoptosis (84.48%), with a 
smaller fraction positive for necrosis (3.14%), and a third 
population expressing both markers (11.84%), considered 
indicative of necroptosis. Protein analysis demonstrated 
that apoptosis was induced through caspase-3 activation 
[20]. In the present study, we advanced this approach by 
applying it in a murine model of giant cell tumor, using a 
dose of 100 mg/kg body weight for two weeks in athymic 
mice—a dose previously used in other in vivo tumor mo-
dels with favorable outcomes [26, 27]. This study shows 
that quercetin exerts an antitumor effect through the simul-
taneous activation of multiple cell death pathways.

Western blot analysis of protein expression revealed 
that the treated group exhibited reduced intensity of the 
bands corresponding to pro-caspase-3 compared to the 
control group. In contrast, the bands corresponding to the 
activated forms, particularly the 17 kDa band (caspase-3 
p17), showed a trend toward increased intensity, sugges-
ting that the apoptotic pathway was mediated by caspase-3 

activation. On the other hand, RT-qPCR analysis of cas-
pase-3 expression did not show statistically significant dif-
ferences in mRNA levels between the groups. Therefore, 
we propose that the discrepancy between mRNA levels 
and protein expression suggests that caspase-3 activa-
tion is more dependent on post-translational mechanisms 
than on transcriptional regulation of the gene, as has been 
reported in other experimental models where a dissocia-
tion between caspase-3 mRNA and protein expression has 
been observed [30-32].

Notably, unlike caspase-3, the analysis of caspase-8 
expression showed a significant increase compared to the 
control group (p = 0.032), suggesting possible activation 
of the extrinsic apoptosis pathway mediated by death re-
ceptors, as has been reported in the BT-474 breast cancer 
cell line [33], and in the HL-60 acute leukemia cell line, 
where quercetin was found to regulate pro-apoptotic and 
anti-apoptotic proteins such as Bax and Bcl-2 [34].

Another cell death pathway identified through RIPK1 
gene overexpression was necroptosis. RIPK1 expression 
showed a significant increase in the treated group compa-
red to the control (p = 0.01). The activation of this pathway 
by quercetin is of great relevance, as it broadens the range 
of therapeutic options for tumors resistant to classical 
apoptotic mechanisms, such as diffuse large B-cell lym-

Fig. 3. Graphical representation of RT-qPCR gene expression 
analysis in tissue from quercetin-treated mice vs. control group. 
The mRNA levels were evaluated for: (A) Caspase 8 expression (p = 
0.032), (B) Caspase 3 expression (p = 0.13), (C) RIPK1, a necrosis 
marker, and (D) PCNA expression (p = 0.66). Data are presented as 
mean ± standard deviation (SD) of relative quantification (2^−ΔΔCT). 
Asterisks (*) indicate statistically significant differences (p < 0.05), 
and “ns” indicates no significant difference.
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phoma [35]. Additionally, the activation of this alternative 
mechanism of cell death by quercetin has also been repor-
ted in isolated cholangiocarcinoma cells through activa-
tion of the RIPK1/RIPK3/MLKL pathway [36], suppor-
ting our findings in the induced GCT model.

Finally, an interesting finding in the induced murine 
GCT model was the absence of significant changes in the 
expression of PCNA, a marker of cell proliferation (p = 
0.66). Based on this result, we suggest that quercetin does 
not promote tumor cell proliferation, which is consistent 
with the antiproliferative effect previously described in 
our in vitro study [20].

The main limitations of this work include its pilot 
study nature, involving a small sample size and a limited 
number of molecular markers evaluated. Nonetheless, our 
findings suggest that quercetin possesses antitumor po-
tential against GCT through a dual mechanism, inducing 
both apoptosis and necroptosis. This mechanism could be 
particularly valuable for tumors resistant to conventional 
treatments. Our evidence provides a foundation for further 
research into the molecular mechanisms involved and sup-
ports the use of electron microscopy to verify apoptosis 
and necrosis in the in vivo murine model over the long 
term, potentially paving the way for the design of clinical 
study protocols.

This pilot study provided a preliminary overview of 
the various cell death pathways activated by quercetin in a 
murine model of GCT, identifying two main mechanisms 
of action: apoptosis and necroptosis. The therapeutic po-
tential of quercetin for the treatment of GCT, without the 
side effects associated with current therapies, highlights its 
capacity to improve the quality of life for patients with 
GCT.
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