Issue
Copyright (c) 2023 Feng Wan, Linlu Jin, Yixue Qin, Ye Zeng
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Modulation of muscarinic receptors by anisodine hydrobromide in cerebral ischemia
Corresponding Author(s) : Ye Zeng
Cellular and Molecular Biology,
Vol. 69 No. 11: Issue 11
Abstract
Ischemic cerebrovascular diseases pose significant challenges due to their high mortality, disability rates, and recurrence risk, imposing substantial societal and healthcare burdens. Current treatment modalities, including medication and surgical interventions, have limitations. This study explores the therapeutic potential of anisodine hydrobromide, a neuroprotective compound, with a focus on its interaction with muscarinic receptors (M1-M5) in cerebral ischemic diseases, employing a middle cerebral artery occlusion (MCAO) rat model, and microglial HM cells and astrocytes SVG12 as models. Immunohistochemistry comprehensively assessed M1-M5 receptor expression in cerebral arteries, hippocampus, and parenchymal tissues in MCAO rats before and after anisodine hydrobromide administration. Additionally, a hypoxia/reoxygenation (H/R) model validated our findings using SVG12 and HM cells. M receptor mechanisms under hypoxia, including calcium ion influx, reactive oxygen species (ROS) levels, and aspartate expression were explored. Anisodine hydrobromide effectively reduced exacerbated M1, M2, M4, and M5 receptor expression in hypoxia/reoxygenation (H/R)-treated brain tissues and M2 receptors in H/R-treated cells. Concentration-dependent inhibition of calcium ion influx and ROS levels was observed, elucidating its neuroprotective mechanisms. Under H/R conditions, HM cells exhibited decreased aspartate levels by anisodine hydrobromide, Atropine, and M2 inhibitor treatments. These findings shed light on the modulation of muscarinic receptors, particularly the M2 subtype, by anisodine hydrobromide in cerebral ischemia. The neuroprotective effects observed in this study highlight the promising clinical prospects of anisodine hydrobromide as a potential therapeutic agent for ischemic brain diseases, warranting further investigation into its mechanisms of action.
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX