Copyright (c) 2023 Wei Zhu, Jinhua Bo, Ming Jiang, Ying Liang, Li Yuan, Hanying Mei
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.SIRT2 overexpression decreases remifentanil-stimulated post-surgical hyperalgesia via microglia
Cellular and Molecular Biology,
Vol. 69 No. 12: New discoveries in gene expression and mutation
Abstract
Remifentanil (Remi)-induced hyperalgesia is a serious but common postoperative clinical problem. Sirtuin 2 (SIRT2) is essential in the pathogenetic mechanisms of several neurological disorders. However, whether SIRT2 contributes to the modulation of Remi-induced postsurgical hyperalgesia (POH) is unknown. Here, we investigated the regulatory potential of SIRT2 in Remi-stimulated POH. A rat Remi-stimulated POH model was built by infusing Remi in the surgical incision. Mechanical allodynia and thermal hyperalgesia were separately assessed by paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) measurements. SIRT2 and binding adaptor molecule 1 (Iba1) protein expressions and localization in spinal cord samples were detected by western blot and immunofluorescence. The results revealed SIRT2 downregulation in the spinal cord of rats with Remi-stimulated POH. Intrathecal administration of the overexpression plasmid harboring SIRT2 remarkably relieved mechanical allodynia, along with thermal hyperalgesia in the model animals. Iba1 amounts were increased upon intraoperative incision or Remi infusion, and this effect was more pronounced upon combining both treatments. Furthermore, SIRT2 overexpression suppressed microglia activation in the spinal cord of model animals, and starkly relieved incision- and/or Remi-associated pronociceptive processes as well as spinal microglia activation. SIRT2 elevation relieved Remi-associated POH, likely by suppressing spinal microglia activation. Thus, SIRT2 could be a potent target for treating neuropathic pain.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX