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Abstract — Our goal is to organize the ElectroEncephalo@eafG) signal so as to describe and image vanainsdotivities. Our work is based on a
data structure, a graph, which sums up the bisiityan the spatial, temporal and frequency dosidrrom the information contained in the time-
frequency map of EEG signals, a graph is constrlicterder to analyze the complexity of the signaimethod is based on a multi-scale approaah wit
several levels of information extraction. To corepiifferent EEG signals, we use techniques of graithing with our data structure. The developed
algorithm is based on the A* algorithm that alloago compare variations of the recorded EEGnddiatency, frequency, energy and activated.area
The results of this project show first, that ttagolaris an appropriate tool to reduce the cortittgityacomplexity, and second, that graph-matchifes
some interesting perspectives in order to dedaribiional brain activity.

Keywords EEG, Wavelet, Graph-matching, ERD/ERS.

INTRODUCTION [4,6]. This small fraction of synchronized neurons
. , , . enerates a specific signal at high frequenc 0
Our goal is to describe brain functioning fro"\gvith a low eﬁergy. U%on the qtask, qa Iargeﬁr%)uron
cognitive tasks to low-level cerebral activatidre. that assembly could be necessary and synchronizes itself
purpose, we develop a generic analysis methodolqgcing an increase of energy [22]. As a reattican
based on a data structure holding all informatiQlierng] event, the brain generates evoked respinse
arranged in a hierarchical way. By this structwe, gpecific frequency bands and related brain aréms, T
consider the brain dimensions in terms .Of UM@ne information contained in EEG signals is coated i
frequency or space. One of our preoccupations s dyinde, frequency and spatial position. Thesetbe
validate this methodology with classical approaches g presents a high level of complexity. Different
Electromagnetic activations are essential to brainethods, from parametric ([11,21]) to nonparametric
functioning comprehension as they directly refle¢hethods (spectral analysis [9], coherence [8])ivia-

information transmission between neurons. Thus it frequency analysis [3,12,13,19], are investigatirain
possible to observe very short activations wittatihm  electrical signals.

of only a few miliseconds by means Of the main idea of our approach is that the brain

ElectroEncephaloGram (EEG) Ofeg N ) ) A
. ponse to excitation is not linear but is a stimear
MagnetoEncephaloGram (MEG), whereas duration ngponses in a non linear structure. The hypofiaek

the hemodynamic activation of several seconds g, '\ level activity producing synchronizatioruich
required in Positron Emission Tomography (PET) angs modeled by a linear response. These synchiamizat
Functional Magnetic resonance Imaging ((MRI) [3].  are finked in a non linear structure. This noralirsespect

In addition to good time resolution, the EEG prisseris embedded in a graph and the continuous aspact in
a good spatial distribution (with up to 256 elation time-frequency analysis. In practice, we constauct
the scalp). It allows us to record cortical agtivit a  graph simplifying the data by keeping only theipent
powerful way. The EEG principle is based on thé fapformation and the link between the various
that populations of neurons form complex neuronabmponents thereof. The information is extracted vi
networks whereby feedback loops are responsilflegfor time-frequency analysis (using the complex Morlet
generation of oscillatory activity and determing itwavelet transform). Finally, the matching is the
resonance frequency. [2]. instrument to measure similarities between gragies.

Even if only a small fraction of the total populatof - matching step, performed by algorithms such asLBy* [
neurons is synchronized, the resulting oscillaimay is used to compare, to classify signals, to foltbey
well outweigh the rest of non-synchronized neurorggrtical activity evoked by the stimulation, ortietter

understand the information contained in the signals

36
Copyright© 2006C.M.B. Edition



Structural analysis and application to brain imggin

The strategy followed is, first, to perform EEGsily EEG recordings were scanned visually for artif@atdy
modeling by a time-frequency representation. In tfaswered trials, free of artifacts were includedhim
second step, we present the graph built in ordistéin ~ subsequent analysis. Individual recordings wermnsch
a data structure including the spatial contentsalidate  visually for question and answer trigger marksnithe
this process, we establish comparisons between mgordings were trimmed to keep from 5 secondsdiefo
structure and a classical approach based onicsihtisthe beginning up to 5 seconds after the end afthser.
techniques (Event-Related Synchronization, ERD and
Event-Related Synchronization, ERS). Before priegent
the results, we develop the methodology used
compare two graphs. The interest comparison
demonstrated at the end of the discussion secti
Finally, we conclude with our current developmend
prospects in brain activity analysis.

MATERIAL AND METHODS
Data Set and Acquisition

Subjects and stimulus material

Ten subjects, between 30 and 50 years of a
participated in this study. All subjects were rigahded
as confirmed by a standard test for handednessichac
hearing impairment, had normal vision or were ctece
to normal vision, and were without past history of g ye 2 posiioning of the 25 EEG electrodes on the scalp.
abnormalities of the central nervous system. Only the E1-4 electrodes do not follow the conueali

The participants had to apply a certain cognitive —©lectrode placement
strategy, known to involve the frontal lobes irtipalar.
They answered questions of approximation askeekin t
course of the paradigm (for instance “How may azang
in a kilogram?”). For a good understanding of cortical functionitig, i
important to simplify the complex EEG signal. The
simplification process we use is based on neuronal

Subjects sat in front of a computer screen and wénformation coding. The amplitude, the frequencyt an
confronted sequentially with the stimulus materiathe spatial position had to be investigated. Toered
presented via loudspeakers positioned on both aidedime-frequency transform is applied to extract the
the screen. In detail, the temporal sequenceedfidls is  frequency, latency and duration of oscillatory
(see Fig.1): phenomena as accurately as possible. The chdige of

1. aquestion known to involve the frontal lobe, time-frequency transform was concerned with wavelet

ecomposition. The wavelet interest is its dual

o . d
2. the tr,:j'nk'ng uzeful to elaborate a solution to thﬁ:emporanrequency representation that can telhvide
gquestion raised, which frequency, i.e. a technique in which thelfesgy

Signal Modeling

Experimental Procedure

3. the answer to the question, resolution changes with the temporal localization.
4. apause of 5 seconds at the minimum. Time-frequency representation
Trial (25 . .
|<- ————————— el e . +| Wavelets are mathematical functions that decompose
_| _ | | data into different frequency components, andshety
IQ“f_;‘;‘ml Thinking | Answer | Rest | each component with a resolution which is adaptitsl t

_ _ scale [5]. This approach is well suited to our lerokio
Figure 1 The temporal sequence of the experimental  describe EEG synchronization as precisely as pmssib

procedure. A mother wavelgf14] is a functio?IL, N Lwith
The EEG was recorded from 25 Ag-AgCl electrod Jur 1 null moment I, is the space of integrable functions
positioned on the scalp in proportion 1 2 SX5HERg on [ andL,is the space of square integrable functions

2). Uniform spacing was allowed between the eldesro on [). n acts on the shape af curve rep_resentgtion
The band pass filter of the amplifier was set hemNe(the larger the value of, the more oscillationg will
0.54 and 60Hz, with a50 Hz notch fiter included. ~~ "2Ve)-

The EEG was recorded with a sampling rate of 250 Atomsof the wavelet transform are defined by the

Hz during the presentation of stimulus blocksviddal ransiation and the diation f For any scale factor
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a00"and any position fact]0, an atom is map composition, we observe that the map histoigram

defined by: bimodal, one mode, in the low level, pixel represtire
1 t-b noise and the background activity and the otheepiod

@) =—=¢(—) the high level pixel, represents the event-relatity.
\/5 a A bi-Gaussian modeling is used to define the toldsh

; level. Consequently by removing low level pixels we
Th? famiy {¢a'b} only keep the interesting EEG features (Fig. 3 (C))
associated . After all, a watershed algorithm [1, 18] is use to
Thecontinuous wavelet transforofithe functiorf of ~ segment the thresholded map into bursts of intdieist
finite energy is the family of the coefficien®; (a,b)  algorithm performs segmentation by labeling comakect
defined by: areas within the gradient of the time-frequencygena
' Regarding the morphological gradient of the orlgina

aport r 1S the wavelets family

Tt image as a topographic surface, the rule of asgigni
oF (ab) = I f (t)¢a,b (t)dt labels can be derived from physics: a particlesie fall
T on a topological surface will move due to gravity
The chosen mother wavelgt , (t) is the complex downward to the deepest neighboring location. aste t
Morlet wavelet which has a simple analytic form basl performed by the present algorithm is to fracetfafpa

: . each non-minimum point on the surface (origin) to a
a good time and frequency resolution [6]. The cermpl _ = L :
Morlet function is defined as the product of a camip minimum (destination), and to mark all pixels altmg

il 1aG . I path with label of the minimum. This path is thelf
exponential wave and a Gaussian envelope. boundary of each burst of the time-frequency mip (F

1 t? 3 (d)). Each segmented burst is individually
p(t) = 4e*e 2 characterized by four features:
where constank is the wavenumber defined in ¢ & ime position on the energy maximum of the
accordance with the signal length. burst,
The wavelet estimate of the energy density in ime- * i frequency position of the energy maximum
scale planesealogramis given by: of the burst,
2 * E: maximum energy of the burst,
B :‘Cf (a,b)‘ E;: avera
. i ged energy of the burst.
This estimate can be translated to the time-freguen By this signal modeling, we have extracted and
plane: characterized each oscillation of interest repteddsy a
b 2 burst in our time-frequency map. Consequently raakig
E™ = ‘Cf (f ,a)‘ = Scan be sum by a set of bursts features, withusedet

\/— 1£2,, Jz B and|B| its cardinal:
,/_2 i 2k V) ot t-a) 18| o
k _J;f (t)e e dt S= iL:JO(ti £, EE )

By this translation, we can represent our EEG ksigna Even if the amplitude and frequency information has
in a time-frequency map as shown on the figure);3 (een investigated, we have no information about the
the high energy level is represented by a red epidr SPatial position. The link between burst along tand
the low one by a blue color. Consequently, if axagt frequency and its spatial position should be also
appears on the map, it means that this frequencymedeled. In a first approximation, it would be [iego
strongly presents at this given time (for instafats,of ~SUM up the brain activity from an electrode bytaoke

10 Hz at 0.2 sec). energy bursts, but this approach could not eassigrithe
) ) the dependence relation between bursts. Consegguentl
Conserved information we chose to use a graph structure able to descrithe

With the use of the wavelet transform, the frequencone hand the energy burst localization in timejieecy
latency and duration of the oscillatory phenomera #nd spatial space and, on the another hand the
identified on a map. This map is composed of pixeldependence relation.

Each pixel represents the energy of a defineddr@yu  Graph structure and graph-matching

at a precise time (see fig3 (b)). The next stepestract o

the interesting pixels to model the EEG signal wrilly ~ Graph definition

its main characteristics. A threshold is appliedtia A graph is a par G=(V,E pf sets

time-frequency map to remove the noise afE%ltisfyinQE|s ZL;( thus the elements dE are 2-
background' activity. Thls threshold is defineddach glement subsets Bf The elements of are the vertices
map according to the pixel level. After a well gtofithe ¢ the graphG, the elements dE are its edges. In a
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directed graphE is a set of directed edges.labeled g - -
graphis a quatk(V,E,a, S ) wherea is the vertex - 3l i
labeling function and? the edge labeling function. (@) = o' W\w MMWL‘*MN
Labels describe the vertices and edges propetties. §§ \ ‘f
Naturally, the main approach is to combine burs ' =2 + ? ot
extracted from the time-frequency map with the lgrag 12 Eelienl
vertices. We obtain a directed labeled graf by 3 - =
G(V,E,a,3) defined as following; O 3
— V: non empty and finite set of vertices, eac s—= o . T 1
vertex represents an energy burst. N —
— EDVxV: finite set of directed edges, eact ul b ' '

edge represents the link between two bursts.  (¢) Ew _ 4

— Ly non empty and finite set of labels of one
vertex defined bk, £).

-2 -1
— Lg non empty and finite set of labels of on
edge defined b4 , 4) with 4 the time (d) DDD DD ‘
variation and4 the frequency variation from the [
edge origin until the edge destination.
- a:V - L, :vertexlabeling function.
— B:E - Lg:edge labeling function.

[uv2]

@ W

0 1 [s]

L . . (e)
Application to the EEG activity representation
To reduce the signal complexity, we use a N
abstraction trough a simple model. For that, w
conserved in the time-frequency representatiobutst _ _ . .
of significant energy level. To chain these buirstsle Eggn‘ﬁfggg%a;pmffgﬂ'ggmg%;‘agigefﬁm’ ©)

the graph representation is our main difficulty. @s between 8-12Hz, (c) the adapted thresholded timeeincy
connection between all bursts implies a huge cotityple map, (d) the bursts extracted from the  threshaiesl

in the data structure and the graph manipulatias, i  frequency map by a watershed algorithm, (€) thdpailt
necessary to limit the edges number. from the extracted bursts, each burst is linketd isittwo

. .. nearest bursts in time and frequency.
To respect the brain activity and enhance the

structure ability, we only consider edges in wihio _ o _ _
time distance between the two bursts is low in This matching is done by isomorphism, we are
accordance to the detail level (frequency domairipoking for the best association between the esrénd
Consequently the structure allows us to manip@ate the edges o6, (Vi, E, o, f) and the vertices and the
complex representation (fig 3(e)). edges 06G; (V;, B, o, ). A graph isomorphisrbetween

G; and Gis a bijective mapping :V, — V, such that

Graphs comparison 1. OvOV, a(v) = a,(f (V)
Comparing two cortical activities correspondsuno 2.
case, to compare the variations of the recorded EEG O(v,e) OV, xV,, Bi(v,e)= ,Bz(f (v), f(e)).

th?\\;ﬁé d";r(;[g;mﬂ?tzslae}g:i]r?gtefﬁgiin\fgr’ia?ergzv and For the same brain process, the neuronal osciffatio
) ' thep and the number of oscillations are not totallytideh So

d_atg structure, s equivalent 1o measure the .gral.'ﬁié two brain processes that we want to compae hav
similarity. For that two steps are necessaryjrtehe is ot necessarily the same length, it means tryingatoh

to find the most common subgraph in the two gra . :

; . . berel graph with aubgraphof a larger graph. To get this
pandldates, itis the graph matching probiem. & isomorphism, similarity distances have to be defice
is the measure computation between these two COMMIML v v similar two bursts or edges are. For each

subgraphs. Generally a unique optimization alguorith o . ]
used to combine these two steps, the graph matchifige & Simiarity § s defined: S 0fod]

problem using a similarity measure. with! O{L, , Le}.

By the mean of these similarities, it is possible t
estimate the similarit$s,;.c, between two graphs; and
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G, The goal is to maximize this similarity to firfftet in a given frequency bands. This may be considered
most similar common subgraph. be due to a decrease or an increase in synchrang of
underlying neuronal populations, respectively. The

> OM (v,,v,)x S, (v,,v,)former case is called eventrelated desynchramizati

NG A (ERD) and the latter eventrelated synchronization
Sel—ez - (ERS). A method has been developed, mainly by
3 Y M (v,,v,) Pfurtscheller et al. [16], to measure these phemame
IOLy ViV, v, 0V, The classical method to compute the time coufS&Bf
includes the following steps (Fig. 4):
XX > M(e.e,)xS (e.e,) 1. raw EEG epoch selection.
4+ 10Le&lE, 08,08, 2. bands pass filtering of all event-related trials.
z z z M (el,ez) 3. squaring of the amplitude samples to obtain
I0Le &0E,0e,0E, power sample.
4. averaging of power samples across all trials.
M s the result matrix of the best matching betv@emd 5. averaging over t_ime to smooth the data and
G, reduce the variability.

The implemented matching algorithm is based onthe This procedure results in a time course of band
A* algorithm which is a graph search algorithm thgbower values, including phase-locked power chaagies
finds a path from a given initial vertex to a givgwal well. To obtain percentage values for ERD/ERS, the
vertex [15]. It employs a heuristic estimate tiastks power within the frequency band of interest ingieod
each vertex by an estimate of the best route test gafter the event is namédwhereas that of the preceding
through that vertex. It visits the vertices in ortlethis  baseline or reference period is nafReBRD or ERS is
heuristic estimates. Consequently the A* algorithrdefined as the percentage of the power decrease or
permits to find the optimal solution, however inst  increase, respectively, according to the expression
optimized in term of computation timE(og(|V])) A-R
complexity, with [V| the number of graph vertices). ERD% =
Some algorithms as those proposed by Gold or
Ranganath [10,17] could be more optimized.

Similarity formulation m ,,WWMMW Il WWWM
i

The similarity functions are defined for all lal(a) | X
I0{L,,Lc}. These functions need normal WMWM
measures between two labels. In this case

normalization is done by using the distance maxi e
between two labels in  destinatidpx V., or E; XE,, WWMWWMMWWWWMM“ 1

x100

SOpV
] 1
=50pV o
50uV

e A N

S0pV

for instance: (b) ” | o &
. afe)-5ye) winftil]:
Sy (&,8)=1 AL
000V ]
A -A . PRI R S 0
Sy (€,8,) =1- : (ezA)f f (el) © ‘

max

I . |—:00p\" N

The4, and4; functions used expression in time a
frequency domain. The purpose was to validat
structure and the approach, not the distancedusat(d)
similarity formulation. Moreover numerous exis
formulations are possible from Minkowski Norrr
fuzzy expressions [20]. A specific work on thisgiiag on trigger

is in process. Figure 4. Principle of ERD processing. () Raw EEG signals,

. P (b) bandpass fittered signals (8-12Hz), (c) sousaegbles, (d)
Event-related De/Synchronization relative power of the averaged squard samplesohosen

To validate our approach, we need to compare our 199er, in black the significant difference frohe veference
results with results from a wellknown techniquee T~ (dashedrectanguiar).
eventrelated phenomena represents frequencyicspecif _ _ .
changes of the ongoing EEG activity and may cansist  The same kind of procedure can be applied by using

general terms, either of decrease or of incregsevaér  the wavelet transform and the marginal densitgaaisbf
the band pass filtering. The burst structure, dssfithe
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averaged time-frequency map, was a three dimensionin order to validate the chosen model based on the
object (energy over time and frequency) whereas thgtraction of the burst from a time-frequency mag,
classical ERD was a two dimension object (power oveompared the eventrelated synchronization and
time). In order to compare them, we used the coontepdesynchronization description from the classicahak
marginal density in a chosen frequency band. Thi§ Pfurtscheller and the one based on our burstiate
marginal densitip,,, sums up the energy of the burst ovejsee the precedent section).

the time, withE the scalogram: A statistical Wilcoxon parametric test was used to
frmax know if the two methods are significantly differemt

Dn(®) = 2 E(t.1) not. This Wilcoxon test was chosen as it is non
o arametric test (no hypothesis on the sampleodiim)

The method adapted to the use of the wavegpropriated for paired samples. The test wasrpestb
transform can be computed by following the differerbn the 1000 original signals (40 trials on 25 elelets,
steps (Fig 5): see Materials and methods, Experimental procedure).

1. raw EEG epoch selection. The first time, the test was applied to compare the

2. wavelet transform of all event-related trials.  classical ERD and the marginal density of the time-

3. inal density of the time-f tfrequency map. The result shows that they are not
gnt?t;gj;rl]nener%r;sgn?ple.e me-requency map significantly different, witte=0.01andp=0.8736.

4. averaging of energy samples across all trials.

5. averaging over time to smooth the data ar
reduce the variability.

% ' "[— classical ERD

time-frequency ERD

of AN A Lo el VY
] B e S—

[%]

o
=]

(a) ' Py : Figure 6. No significant difference between ERD from the
WM '\‘w &'(WV‘W‘ M" N classical method and ERD from the marginal deoitye
e time-frequency map.

The second time, the test was applied in order to
compare the classical ERD and the marginal desfsity
the burst structure, i.e. the segmented time-freyue
map.o. =0.01andp=0.4395.

(b)

50 =T

= MV A

I , ' ‘ mzu ¥ A pe va iy "(\Um{
i el . A8 8Hz -

()

= classical ERD
—— bursts ERD
= VAW A

-100~+ - - - L L L L L
10 20 [g]
Figure 7. No significant difference between ERD from the
classical method and ERD from the marginal deobiye
segmented time-frequency map (burst structure).

on trigger

Figure 5. Principle of time-requency ERD processing. (a) As we have proved that the data structure did not
Sgg E'%d(); fgggﬁ (m;e%fg?eggagésﬁmb%m loose important information, indeed we are able to
chosen trigger, only values significantly differéim the observe the same phenomena as ywth the classical ER
reference are depicted, () relative power of theginal we can go further in the use of this structure. rid
density of the averaged map on a chosen trigdaiadk the section gives an example of this use.

significant difference from the reference (dasbeingular).

Both of these methods bring the description of the First result of graph matching
time course of the cortical activity in corresponde

mghcgr:]egg:;g%eoﬁzg?{ The following section dess interest. Indeed this latter is able to comparedmical
' activites and, in the same time, to precise thieggo

RESULTS evolution. We looked on the functional evolutiorttef
cortical activity according to the data protocol.

Afterward we evaluated the graph-matching method

Signal modeling validation
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The neurophysiologic knowledge brought somthey are linked as the graphs are linked. The links
information about the well known cortical activatitn  between these graphs are studied by the graphimgatch
our case, three main tasks should be found, Hiest technique. Thanks to this technique we should led@b
guestion hearing activating the auditory cortex e add some spatial edges linking the graphs theragalve
thought activating the prefrontal lobe and lastti@ver the spatial domain.

enunciation aCt|Vat|ng the motor cortex. The Very |mp0rtant point after the methodology
The objective of the experimentation was to measuadjustment is the method validation. This one kes b
the activation delay between each area of int&fést. done in two steps. First we have computed the
chose the middle electrode of each area: P3 in BBD/ERS technique on our data set and then we have
auditory cortex, F4 in the prefrontal lobe and ICthe compared these results with those obtained inatine s
motor cortex. Then we matched the burst structungy with our signal abstraction. A wilcoxon stasit
issued of these three electrodes. The matchinghesestest has demonstrated that they are not significant
vertices and edges labels (time, frequency, awkragiifferent. This proves that the data reduction has
energy and maximum energy burst). These labelsigivecorrectly been carried out. Therefore the usedisf t
similarity values which are interpreted in accoogato abstraction decreased hugely the amount of data, fo
the physiological data. instance the raw data size was about 20MB for a

The following results are one example of what coukgcording of thirty minutes and the reduced dataitab
be obtained. By studying the time shift betweerh eaféW kilo bytes. Moreover we can study all convenatio
graph we found a delay of 0.9s from P3 to F4 agBsf EEG waves (alpha, beta, gamma, ...) or subject abapte
from P3 to Cz (Fig. 8). So the time delay is gdingn ~ frequency band.

P3 to F4 and later from P3 to Cz. We found again th The second step was to demonstrate the graph-
same process as the one described by tmatching interest in brain activity descriptioneTinst
neurophysiologist. And the results appear to kisén computation, presented in the last section, shivied
same range as the physiological expectations. possible to have different kind of brain functignin
information. The time delay gives information altbet
information transfer from one brain area to anpther
frequency delay shows the rhythm variations and the
energy variations illustrate the size of the nudaili
neurons population.

The results obtained with the presented method are
encouraging. However some improvements had to be

brought, mainly in the graph structuring and graph
matching. First of all, the edge building is stiroblem.
How be sure that two vertices had to be linked? The
different building possibiliies had to be analyzeda

Figure 8. Description of cortical activity evolution from RS deeper way and tested with simulated data. Secedly
Cz via F4 by burst structure matching (trial 143/z). The similarity functions used in the graph matchingcpss
evoluion features are the following, between RiFeh 0.9 are actually very simple. If they allow a structure

fime shif, between P3 and Cz: 3 8s time shilt validation they do not have an acceptable behadiar.

current work is based on a theoretical expres$itireo
DISCUSSION distance function on the time, frequency and s$patia
domain. As the physiological mechanisms are differe
for the information transfer (spatial aspect),anaission
d reaction time (time aspect) or rhythm variation
y%,equency aspect), a specific formulation is neédde

Our goal is the description of brain functionirgnfr
cognitive tasks to low levels cerebral activatiéius.that
purpose, we have developed a generic anal

methodology based on a data structure holding these dimensions. The siudy complexity is

information arranged in a hierarchical way. Thi . : ) -
structure -a graph- consists of information frora th%e norHinear behavior of brain activity for eatihese

whole brain dimensionalities. The time and freq;aen(g'mn?r':ls'?g\f’é tl‘ha;griomzu%%“;n'éeeg matching alguorith
and energy features are extracted from Morlet waver2 MP P peed.
decomposition. The spatial dimension is consideyed
'g;g Cﬁgggl origin, i.e. the spatial position of #teguiring REFERENCES
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