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Abstract – Counting cells in culture is a common task in biotechnology research and production. This process should 
be automated to provide fast and objective quantification. Flow cytometry is adapted to count cells in suspension. 
However, the morphological information and the spatial organisation of adherent cells are lost when cells are 
removed from culture. This paper proposes a methodology based on image analysis to quantify stained nuclei in 
culture. The protocol is composed of several steps: cell staining, automatic microscopy imaging, segmentation by an 
automatic algorithm including a classification approach, and computation of quantitative data that characterizes the 
growth of cells. An evaluation shows that the automatic process of counting provides results similar to human manual 
counting. The major interests of the proposed approach are the fully automated processing and preservation of cell 
shapes and positions in culture. More than two thousand culture conditions have been measured by this tool for 
various applications including optimization of cell culture media, improvement of the culture processes and 
measurement of drug toxicity. 
 
Key words: colour image analysis, cytology, stained cell cultures, automatic segmentation, nonparametric 
classification, splitting aggregated nuclei 
 

INTRODUCTION 
 

Cell culture is widely used in research and 
production laboratories to study cell properties 
and the influence of the environment. A manual 
evaluation of the cultures is tedious, time 
consuming and yields subjective results. For this 
reason, automated solutions have been designed 
to produce quantitative and objective data. Flow 
cytometry is the usual device employed to count 
and sort cells in suspension. However, this 
approach is not completely satisfying to study 
adherent cells because the morphological features 
and the spatial organization are lost when cells 
are detached from the culture surface. 
Quantitative image analysis is an interesting 
alternative to extract these characteristics.  

Owing to improvements in microscopy, the 
increasing quality of digital cameras and the 
higher capacity of computers, the use of 
biological images has increased over the last ten 
years. Many algorithms have been developed and 
adapted to automatically segment biological 
images. Image segmentation refers to the 
partition of an image into a set of regions with 
specific properties. In a segmented image, the 
elementary picture elements are no longer the 
pixels but connected sets of pixels (11). Once the 
image has been segmented, measurements are 

performed on each region and adjoining 
relationships between regions can be 
investigated. Image segmentation is therefore a 
key step towards the quantitative interpretation of 
image data. To design an algorithm which 
segments an image into meaningful regions, 
some prior knowledge about the image (noise, 
magnification, contents…) and the objects of 
interest (object number, shape, size, orientation, 
grey level distribution, color, texture…) are 
required. Ideally, region features should allow the 
discrimination of different objects in the image. 
Unfortunately, features enabling the recognition 
of all image objects are seldom available in 
practical applications. As a consequence, no 
general algorithm exists to produce optimal 
segmentations for all images (14). Several papers 
deal with the segmentation of cells: approaches 
are histogram-based thresholding, edge detection 
(4), multi-spectral analysis (2,9), morphological 
mathematics and skeletonization (1,5), region 
growing (21), classification (12), parametric 
active contours (3,22) or level sets (8,20). Other 
methods have been proposed to separate 
aggregated cells, requiring the cell edge profile 
(3), the shape of cells (7) or the modeling of cells 
(6). Our application is focused on nuclei which 
are smaller, more numerous and aggregated 
objects compared to cells studied in the previous 
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solutions. Unfortunately, existing methods are 
not suitable to treat these characteristics. 
Microscopy images are taken with a low 
magnification to observe the largest field of cells 
in which nuclei are distinguishable. Here we 
present a fully automated method developed to 
classify and segment small aggregated nuclei. 

This paper proposes a method to 
automatically analyze in vitro cell cultures by 
image analysis. Different parts of the 
methodology are reported, such as cell culture 
preparation, microscopy image acquisition, 
image segmentation to find objects of interest, 
classification step and computation of descriptive 
data.  

Among the applications that motivated the 
project, is our interest in characterizing the 
growth of cells in culture. The chosen approach 
aims to analyze adherent cells in multi-well 
plates by studying their nuclei. We consider cell 
types which have only one nucleus per cell. This 
includes immature muscular cells and bone 
marrow cells. Thus, the number of cells is 
directly deduced from the number of nuclei. To 
avoid practical constraints such as a culture 
chamber adapted to the microscope, cell cultures 
are fixed, stained and observed with a brightfield 
microscope. The Giemsa dye is used to stain 
nuclear structures in magenta. However, this dye 
occasionally colors the cytoplasm of cells. The 
coloration is homogeneous inside a well but 
slight variations are present from one well to 
another, depending on the differentiation stage 
and the density of cells.  
 
 

MATERIALS AND METHODS 
 
Cell culture  

Adherent cells used in the studied experiments are 
immature muscular cells and bone marrow cells of human or 
animal (rat, sheep) origin. Cells are cultured in 12, 24 or 96 
multi-well plates in standard conditions of growth (5% CO2, 
37°C).  The composition of culture media differs among 
experiments, and each experiment is performed at least in 
triplicate. 
 
Cell preparation 

To analyze a multi-well plate, the culture medium is 
removed and cells are rinsed with PBS 1X. Samples are 
fixed by immersion in ethanol for 10 min. After rinsing with 
water, cells are stained with 1 ml of Giemsa dye diluted 1:10 
during 5 to 10 min. Plates are re-rinsed with water. As a 
consequence, the stain is stable (see figure 1) and plates can 
be stored in a dry place for several months.  

 

 
Figure 1. Illustration of a 12-multiwell plate 
where experiments are performed in triplicate. 
On the right, we show an image taken with a 10x 
objective. 

 
Microscopy image acquisition  

The acquisition system is composed of an inverted 
motorized microscope (TE-2000E, Nikon), a CDD color 
camera (DXM1200F, Nikon) and the software which 
controls the position of the plate stage, the autofocus, the 
acquisition and the storage of images (Lucia, Laboratory 
Imaging Ltd). The parameters of magnification (10x), color 
balance, luminosity (6V), time exposure (6 ms), filters and 
calibration are identical for all the experiments. Thanks to 
scripts adapted to the different plates, the acquisition 
procedure is fully automatic. The system acquires about 300 
images per hour. The color images are sized 716*976 pixels, 
and saved in 24 bit TIFF format. A single well of a 12-
multiwell plate contains 300 inclusive images, we 
empirically evaluated that the error rate of nuclei counting is 
less than 10% when it is estimated with 50 images only. 
Thus, in most of the experiments the difference between 
conditions are enough to be visible by taking 50 images per 
well.  

 
Image Analysis  

The algorithms developed in this project are written in 
Java and integrated into the ImageJ software (15) to be run 
on all platforms. ImageJ is an open-source software 
developed by Wayne Rasband of the National Institute of 
Health (U.S.A). It is mostly used by biologists but not 
limited in its applications. In this project, an interface was 
designed to allow users to specify experiment-dependent 
information such as the plate identification, the number of 
images per well, the number of wells per condition, the type 
of cells, the culture medium, the number of seeded cells and 
the number of days in culture. The descriptive data 
computed by the algorithm are stored in an Excel file and 
segmented images are displayable to check the segmentation 
results. 

 
Computation of cell growth features  

In order to interpret and to compare the experiments, the 
recovery rate and the doubling time are systematically 
computed. The computation of this information requires 
seeding as many identical multiwell plates at the first day 
(day 0) as the time points necessary to compute these data.  
24 hours after the seeding, one plate is fixed, stained, and 
nuclei are quantified by image analysis, to count the number 
of adherent cells before cell divisions (day 1). The recovery 
rate measures the capacity of cells to adhere to the plate, 
since cells which are not attached to the plate, for different 
reasons, are eliminated by the rinsing steps: 

 
 

 
 



GLORY E. et al. 

 

46 
Copyright © 2006 C.M.B. Edition 

 

)2log(

2

3log

     










=
n

n

t 

R

A

Aj
jA

jAR

A

e

R

i
iA

ie

IC

∑
=

+

+
+

∑
= +

=

max

min
2

)(
 

              

)log(1

2

1

1 )log(1

2

 

            )(

∑
∈











−+










−+








−=

ip
 ivpviupu

i
L

p
L    ²ei

2
**

2
**

2

Other plates are fixed later to measure the growth of 
cells for different culture times. If we assume that the 
growth of cells follows an exponential law, and n2 and n3 are 
the number of cells counted on Day 2 and Day 3, 
respectively, then the doubling time t is computed as 
follows: 

 
 
 
 

IMAGE ANALYSIS APPROACH 

Color segmentation 
The goal of the segmentation is to subdivide 

an image into regions from which objects of 
interest are distinguished from the background. 
The global strategy is to define a fast and robust 
algorithm to treat a great quantity of images. We 
have chosen to reduce color images into gray 
level images and to apply an automatic threshold 
on the histogram (16).  

There are several ways to reduce the 3-
dimensionnal color information into 1-dimension 
values. The intuitive approach consists in 
choosing the color component which produces 
the best segmentations. In this case, a color 
component represents only one axis among the 
three axes which encode the color information. 
This is achieved automatically by using a 
quantitative criterion C, designed to measure the 
quality of color segmentations of cytological 
images (10,13). This criterion includes two 
normalized terms which penalize color 
heterogeneity of segmented regions and the 
number of small regions: 

 

 

 

 

where I is the segmented image, A the size of the 
image, R the number of segmented regions and e 
the average color heterogeneity of the image. Ai 
and ei are respectively, the area and the average 
color heterogeneity of i th region. ei² is defined as 
the sum of the Euclidean distances between the 
original image and the mean color of the 
segmented region, evaluated for each pixel p 
belonging to region i, and computed in a uniform 
color space such as Lu*v*: 
 
 
 

 
 

R(Ai) represents the number of regions with an 
area equal to Ai. The first term penalizes regions 
with high color heterogeneity, while the second 
term penalizes noisy regions of small size. With 
this criterion, a good segmentation is a trade-off 
between the color homogeneity and the absence 
of small regions. 

Various color spaces have been tested: RGB, 
normalized rgb, Lu*v*, La*b*, YUV, YIQ, 
I1I2I3, H1H2H3, HSB, XYZ and opponent 
colors. The normalized rgb color space is robust 
to variations of illumination because r=R/I, 
g=G/I ,b=B/I  with I=R+G+B. For each color 
component from each color space, the 
segmentation is performed with the automatic 
threshold of Ridler (16). From trials on 25 sample 
images, we found that the green component of 
the normalized rgb color space, g, provides on 
average the lowest C value, implying that g 
produces the best segmentations (see figure 2). 
On our images, the g component is enough to 
produce segmentations with a good quality; 
otherwise we would combine the components 
which provide the lowest C values to improve the 
segmentation. 

 
 

 
 
 

Figure 2. Comparison of the segmentation 
quality as function of the color component used 
for automated threshold. 
Smaller mean C values indicate better 
segmentations. All color spaces are not showed 
here. 

 
This result is confirmed by a principal 

component analysis of the normalized rgb color 
space (see figure 3), and concurs with the 
practice of biologists who have observed the 
green channel when they study Giemsa stained 
samples.  
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Figure 3. The correlation circle shows a 
projection of the initial variables (r,g,b) in the 
factors space. 
95.6 % of the variability is explained by the first 
principal component and 98.7% by considering the 
two first axes. The first axis is positively correlated 
to the blue and red variables but strongly 
negatively correlated to the green variable. Thus, 
the green variable contains almost all the 
information of the initial color. 
 
The interest of this approach, based on the 

criterion C, is to select the conditions which 
produce the best segmentation among the 
methods and the parameter values tested.  

As a second step, we apply a morphological 
opening to eliminate isolated pixels and smooth 
region edges. The binary images distinguish 
nuclei and background (see figure 4). For various 
reasons -cell origins, differentiation stage or 
density- nuclei aggregate. In order to provide an 
accurate quantification and a precise study of the 
culture, aggregated nuclei must be split. To 
identify them, a classification method is carried 
out to distinguish isolated and aggregated nuclei. 
Next, a split and merge algorithm is applied to 
the class of aggregated nuclei to find the frontier 
of individual nuclei. 

 
 
 
 
 
 
 
 
 
Figure 4. The color image is reduced into gray 
level by taking the green component of the 
normalized RGB color space. 
 Then, Ridler’s automatic threshold produces a 
binary image where background and stained nuclei 
are distinguished.  

 
 

Classification 
The classification is based on the morphology 

of the connected components. The size is not 
sufficient for the classification because some of 
the aggregates are smaller than isolated nuclei. 
We have considered more features, including 
area, perimeter, major and minor axes of the best 
fitted ellipse, elongation and circularity. Their 
undefined distributions and the variability of 
values among experiments make impossible the 
determination of fixed range to define classes. 
Moreover supervised learning by labeling 
samples is not conceivable in an automated 
process.  Consequently, we chose a 
nonparametric method to estimate the probability 
density of the prototypes corresponding to the 
connected components projected in the feature 
space (18). Features are normalized between 0 
and 1, and the probability density p(X0) of a 
prototype X0 is computed as follows: 

 
 
 

 

where n is the number of prototypes, hd  is the 
window length of the d-dimension hypercube. In 
this case, d=6 because we use 6 features to 
describe each prototype. ϕ  is the Parzen kernel 
defined as:  

 

 

Assuming that the majority of the connected 
components corresponds to individual nuclei and 
shares similar features, as it is the case in the 
experiments that we considered, the Parzen 
window calculates a high density around their 
characteristics, while the connected components 
with a low density are attributed to the aggregate 
class. The two parameters of this approach have 
been determined empirically: the length of the 
window h was set to 0.1 and a frontier between 
the prototypes classified as isolated and 
aggregated defined at 20% of the maximum 
probability density. In this manner, the features 
of isolated prototypes are automatically learned 
with a training set of about thousand nuclei from 
each experiment. Subsequently, the connected 
components of the images coming from the same 
experiment are classified according to the value 
of the density probability computed on the 
individual nuclei identifyed in the training set.  
The rate of false negatives (the number of true 
aggregates classified as isolated nuclei) is less 
than 4% and the rate of false positives (the 
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number of true isolated nuclei classified as 
aggregates) is less than 12%. This classification 
method thus provides a class of connected 
components largely composed of aggregates. The 
next processing step deals with the class of 
aggregates in order to split them into individual 
nuclei. 
 
Split and Merge 

The proposed strategy to extract individual 
nuclei from aggregates is composed of two steps. 
The first step splits the connected component into 
regions with features similar to those of isolated 
nuclei. Because this step produces an over-
segmentation, some of the regions are merged in 
a second step.  

For splitting the connected components of the 
aggregate class, we chose a watershed algorithm 
applied either on the green component image, or 
on the distance map computed from the binary 
image. The watershed algorithm (19) simulates 
the flooding of catchment basins with water (see 
figure 5). 

 
 

 

Figure 5. Watershed algorithm evolution on the 
distance map (2nd image) of a binary object (1st 
image). 
Gray levels are flooded from darker to brighter. A 
dam is built when two catchment basins strike. 
 
The probability density of each region is 

computed and only the region with the highest 
value is retained. The other regions are merged 
together and this process is applied iteratively 
until the last region can no longer be divided. 
Then, all partition combinations are computed 
and the combination that produces the minimum 
cost function is chosen. The cost function f, 
called merging function, compares the area of 
each region Ai with the area of a standard isolated 
nucleus Aref. The latter is found from the features 
of the connected component which has the 
highest value of the probability density in the 
classification training step. The merging function 
also takes into account the variability of the area 
between the regions that compose the partition by 
including the standard deviation  of the area σA: 

 
 
 

 

This algorithm splits the aggregates into 
regions that share the features of individual 
nuclei (see figure 6). 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Crop pictures from original images 
(on the left) and their segmentations (on the 
right). 
White lines surround segmented regions. 

 

Data Analysis 
Once segmentation is achieved, different 

measurements can be computed on nuclear regions in 
order to characterize their position, shape, size and color. 
Accurate segmentation of nuclei is important to 
determine the growth of cells, such as the recovery rate 
and the doubling time (see Material and Method section). 
Moreover, the density and the morphology of nuclei 
allow biologists to interpret the evolution of cell growth 
and differentiation. 

 
RESULTS AND DISCUSSION 

 
The proposed method of segmentation has been 

validated by comparing the number of nuclei manually 
counted and the quantitifcation by the automated process. 
Table A reports the results obtained on two muscular cell 
cultures and one bone marrow cell culture. 

 
The error in counting is about 1 to 7% for 
aggregated nuclei while it is negligibly small for 
isolated nuclei (0.02 to 0.4%). Since there are 
more isolated nuclei than aggregated nuclei, the 
total rate of errors is less than 2%.  Thus, the 
number of nuclei counted with this algorithm is 
similar to those counted by humans on non-
confluent cultures. Thus this tool can be reliably 
used to quantify nuclear characteritics of 
adherent cells.  
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Table 1. Comparison of nuclei counting by a human 
(manual counting) and by the proposed algorithm. 
The rate of error is about 1%. 
 

 
This algorithm has already been used to study 

more than 200,000 photos, representing about 
2,000 culture conditions. Applications of the 
proposed protocol are numerous. We used it to 
complete studies of the toxicity of different 
statins on muscular cells, to optimize the growth 
of muscular cells extracted from a human biopsy 
(see figure 6), to improve the freezing protocol 
from measures of cell recovery rate and to 
control the quality of cell proliferation in a 
therapeutic protocol of urinary incontinence. 
 

 

 

 

 

 

 

 

 

 
Figure 7. Growth of muscular cells in culture 
coming from different biopsies. 
The automatic algorithm has computed the number 
of cells cultured for various times. 
 
These encouraging results obtained with the 

proposed cell counting methodology allow the 
study of other cellular features, such as the 
organization of nuclei during the differentiation 
stage. Another interest to biologists is the ability 
to quantitatively study the distribution of nuclear 
size, which can be informative about a cell’s 
capacity to divide. 

The distinction of isolated nuclei and 
aggregates might be seen as as a one class 
classification problem (17) because only features 
of isolated nuclei are well defined. Aggregates 

can have various shape. We plan to study this 
approach in a future.  

 

CONCLUSION 

We have described a computerized image 
analysis system developed to automatically 
quantify stained cell cultures. To assess the 
capacity of a given medium to favor cell growth, 
we measured the increase in the number of nuclei 
at given intervals. Nuclei segmentation is 
achieved by thresholding the normalised green 
component of color images. The choice of the 
green color component was based on a 
quantitative assessment of the segmentation 
quality thanks to a newly proposed criterion. The 
nuclei segmentation was improved by using an 
automatically trained classification method that 
determines the isolated nuclei features in each 
experiment. Aggregated nuclei are split into 
individual nuclei by a supervised split and merge 
approach using the previously determined 
isolated isolated nuclei features. Our results show 
that the number of nuclei counted with this 
algorithm is similar to human counting with a 
rate of error less than 2% in non-confluent 
cultures. The presented image analysis tool is 
routinely used in a number of applications, 
including quality control and drug toxicity tests. 
Future work will address the study of muscular 
fibers by quantifying the nuclei spatial 
relationships and their link to tissue function. 

 
Acknowledgments - Authors thank all the researchers from 
Celogos for starting and developing the project and 
producing cell cultures. We acknowledge members of 
Intelligent Perception System laboratory (SIP lab) at the 
University Paris 5 for their valuable comments, and the 
laboratory of Quantitative Image Analysis at the Institut 
Pasteur for their advices and involvement in this project. 
Authors are very grateful to Pr. Cheriet and Pr. Sequeira for 
their significant and constructive help. This work was partly 
supported by the CIFRE grant 710/2001. 

 

REFERENCES 

1. Angulo, J. and Flandrin, G., Automated detection of 
working area of peripheral blood smears using mathematical 
morphology. Analytical Cellular Pathology, 2003, 25-1:37-
49. 
2. Aggarwal, R.K. and Bacus, J.W., A multi-spectral 
approach for scene analysis of cervical cytology smears, 
Journal of Histochemistry and Cytochemistry, 1977, 25-
7:668-680. 
3. Bamford, P., In: Segmentation of cell images with an 
application to cervical cancer screening. PhD thesis - 
University of Queenland, 1999. 
4. Brenner, J.J., Necheles, T.F., Bonacossa, I.A., Necheles, 
T.F., Fristensky, R., Weintraub, B.A. and Neurath, P.W., 

 
Number 
of nuclei 
(manual) 

Number of 
nuclei 

(automatic) 

Error 
rate 

Muscle cells A 7 357 7 318 0.53 % 

Muscle cells B 5 072 5 038 0.67 % 

Bone marrow 
cells  

7 065 6 940 1.77 % 

Total 12 905 12 885 1.01 % 



GLORY E. et al. 

 

50 
Copyright © 2006 C.M.B. Edition 

 

Scene segmentation techniques for the analysis of routine 
bone marrow smears from acute lymphoblastic leukaemia 
patients. Journal of Histochemistry and Cytochemistry, 
1977, 25-7: 601-613. 
5. Cloppet, F., Oliva, J.M and Stamon, G., Angular 
Bisector Network, a Simplified Generalized Voronoï 
Diagram: Application to Processing Complex Intersections 
in Biomedical Images. IEEE Trans. on Pattern Analysis and 
Machine Intelligence, 2000, 22-1: 120128. 
6. Cong, G. and Parvin, B., Model-based segmentation of 
nuclei, Pattern Recognition, 2000, 33: 1383-1393. 
7. Delingette, H. and Montagnat, J., Shape and Topology 
Constraints on Parametric Active Contours, Computer 
Vision and Image Understanding, 2001, 83-2: 359-369. 
8. Dufour, A., Shinin, V., Tajbakhsh, S., Guillen-Aghion, 
N., Olivo-Marin, J.-C.  and Zimmer, C., Segmenting and 
Tracking Fluorescent Cells in Dynamic 3-D Microscopy 
with Coupled Active Surfaces, IEEE Trans. on Image 
Processing, 2005, 14-9: 1396-1410. 
9. Fernandez, G., Kunt, M. and Zryd, J.-P., Multi-spectral 
based cell segmentation and analysis. Proc. of the Workshop 
on Physics-based Modelling in Computer Vision, 
Cambridge, USA, 1995, 166-172. 
10. Glory, E., Meas-Yedid, V., Pinset, C., Olivo-Marin, J-C. 
and Stamon, G., A Quantitative Criterion to Evaluate Color 
Segmentations. Application to Cytological Images, In: 
Lecture Notes in Computer Science, Springer-Verlag GmbH, 
2005, 3708:227-234. 
11. Gonzalez, R.C. and Wintz, P., Digital Image Processing. 
Addison Wesley, 1987, 122-125. 
12. Lebrun, G., Charrier, C., Lezoray, O., Meurie, C and 
Cardot, H.: Fast Pixel Classification by SVM Using Vector 
Quantization, Tabu Search and Hybrid Color Space. CAIP, 
2005, 685-692.  

 

13. Meas-Yedid, V., Glory, E., Morelon, E., Pinset C. and 
Olivo-Marin, J.-C. Automatic color space selection for 
biological image segmentation. International Conference of 
Pattern Recognition , 2004, 3:514-517. 
14. Pal, N. R. and  Pal, S. K., A review on image 
segmentation techniques. Pattern Recognition, 1993, 26-9: 
1277-1294. 
15. Rasband, W., ImageJ Version 1.31s. 
http://rsb.info.nih.gov/ij/, National Institutes of Health, 
USA, 2005. 
16. Ridler, T.W. and Calvard Clarke, S., Picture 
thresholding using an iterative selection method. IEEE 
Trans. System, Man and Cybernetics, 1978, 8: 630-632. 
17. Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A. J. 
and Williamson, R. C., Estimating the support of a high-
dimensional distribution. Neural Computation, 2001, 
13:1443-1471.  
18. Theodoridis, S. and Koutroumbas, K., Pattern 
Recognition. Accademic Press, 1999, 13-20. 
19. Vincent, L. and Soille, P., Watersheds in digital spaces: 
an efficient algorithm based on immersion simulations. 
IEEE Trans. on Pattern Analysis and Machine Intelligence, 
1991, 13-6: 583-598.  
20. Xie, X. and Mirmehdi, M., Level-set based geometric 
color snakes with region support. Proc. of International 
Conference on Image Processing, 2003, 2: 153-156. 
21. Zhang, X.-W., Song, J.Q., Lyu, M. R. and Cai, S.J., 
Extraction of karyocytes and their components from 
microscopic bone marrow images based on regional color 
features. Pattern Recognition, 37:351-361, 2004.  
22. Zimmer, C., Labruyère, E., Meas-Yedid, V., Guillèn, N. 
and Olivo-Marin, J.-C., Segmentation and Tracking of 
Migrating Cells in Videomicroscopy with Parametric Active 
Contours: a Tool for Cell-Based Drug Testing. IEEE Trans. 
Med. Imaging, 21-10:1212-1221, 2002. 

 


