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Abstract — Counting cells in culture is a common task irtésbinology research and production. This processigh
be automated to provide fast and objective quaatifin. Flow cytometry is adapted to count cellsurspension.
However, the morphological information and the Epavrganisation of adherent cells are lost whelis care

removed from culture. This paper proposes a meibggdbased on image analysis to quantify staineclenun

culture. The protocol is composed of several stepk:staining, automatic microscopy imaging, segtaton by an
automatic algorithm including a classification apgeh, and computation of quantitative data thatasttarizes the
growth of cells. An evaluation shows that the awtenprocess of counting provides results simibantman manual
counting. The major interests of the proposed aggrare the fully automated processing and presenvaf cell

shapes and positions in culture. More than two $had culture conditions have been measured bytdbisfor

various applications including optimization of callulture media, improvement of the culture procgsaad

measurement of drug toxicity.

Key words. colour image analysis, cytology, stained cell a@$) automatic segmentation, nonparametric
classification, splitting aggregated nuclei

INTRODUCTION performed on each region and adjoining
relationships  between regions can be
Cell culture is widely used in research anélvestigated. Image segmentation is therefore a
production laboratories to study cell propertie§8Y Step towards the quantitative interpretation of
and the influence of the environment. A manudhage data. To design an algorithm which
evaluation of the cultures is tedious, tim&€gments an image into meaningful regions,
consuming and yields subjective results. For thPme_prior knowledge about the image (noise,
reason, automated solutions have been desigrfgagnification, contents...) and the objects of
to produce quantitative and objective data. FloWpterest (object number, shape, size, orientation,
cytometry is the usual device employed to coutey. level distribution, color, texture...) are
and sort cells in suspension. However, thiquired. Ideally, region features should allow the
approach is not completely satisfying to stud§liscrimination of different objects in the image.
adherent cells because the morphological featurggfortunately, features enabling the recognition
and the spatial organization are lost when celff @l image objects are seldom available in
are detached from the culture surfacdractical applications. As a consequence, no
Quantitative image analysis is an interestingeneral algorithm exists to produce optimal
alternative to extract these characteristics. Segmentations for all images (14). Several papers
Owing to improvements in microscopy, thedeal \_Nlth the segmentation of_ cells: approach_es
increasing quality of digital cameras and th&'e hlsto_gram-based thre_sholdmg, edge detgctlon
higher capacity of computers, the use o). multl-_spectral analysis _(2,9_), morphologlc_al
biological images has increased over the last t@thematics and skeletonization (1,5), region
years. Many algorithms have been developed af§°Wing (21), classification (12), parametric
adapted to automatically segment biologiceﬂC“Ve contours (3,22) or level sets (8,20). Other
images. Image segmentation refers to tH@ethods have been proposed to separate
partition of an image into a set of regions wittfggregated cells, requiring the cell edge profile
specific properties. In a segmented image, tHg). the shape of cells (7) or the modeling ofell
elementary picture elements are no longer tH&)- Our application is focused on nuclei which
pixels but connected sets of pixels (11). Once t€ Smaller, more numerous and aggregated
image has been segmented, measurements @bjects compared to cells studied in the previous
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solutions. Unfortunately, existing methods ar e
not suitable to treat these characteristic » =
Microscopy images are taken with a low
magnification to observe the largest field of cell
in which nuclei are distinguishable. Here we *
present a fully automated method developed
classify and segment small aggregated nuclei. = ©

This paper proposes a method t
automatically analyzen vitro cell cultures by Figure 1. lllustration of a 12-multiwell plate
image analysis. Different parts of the where experiments are performed in triplicate.
methodology are reported, such as cell culture Oot';};g‘tievgght' we show an image taken with a 10x
preparation, microscopy image acquisition, '
image segmentation to find objects of interesk,IicrOSCO . -

S : - py image acquisition

classification step and computation of descriptive 1,0 acquisition system is composed of an inverted
data. motorized microscope (TE-2000E, Nikon), a CDD color

Among the applications that motivated theamera (DXM1200F, Nikon) and the software which
project, is our interest in characterizing theontrols the position of the plate stage, the @atod, the
growth of cells in culture. The chosen approac#fauisition and the storage of images (Lucia, Latwoy
aims to analyze adherent cells in multi_welhmaglng Ltd). The parameters of magnification (1@qglor

. . - . alance, luminosity (6V), time exposure (6 ms)efg and
plates by studying their nuclei. We consider ce alibration are identical for all the experimenthianks to

types which have only one nucleus per cell. Thigyipts adapted to the different plates, the adipris
includes immature muscular cells and bongrocedure is fully automatic. The system acquitesua 300
marrow cells. Thus, the number of cells i$mages per hour. The color images are sized 716p@4s,
directly deduced from the number of nuclei. T@nd saved in 24 bit TIFF format. A single well ofla-
avoid practical constraints such as a cultyraultiwell - plate contains 300 inclusive images, we

. pirically evaluated that the error rate of nuctainting is
chamber adapted to the microscope, cell cultur %]s than 10% when it is estimated with 50 imagely.o

are fixed, stained and observed with a brightfielghys in most of the experiments the differencenben

microscope. The Giemsa dye is used to staddnditions are enough to be visible by taking 5@ges per
nuclear structures in magenta. However, this dyell.

occasionally colors the cytoplasm of cells. The _

coloration is homogeneous inside a well buf"age Analysis

. L The algorithms developed in this project are wmitie
Sl'ght variations are present from one well tgava and integrated into the ImageJ software @®etrun

another, depending on the differentiation stag@ ai platforms. ImageJ is an open-source software
and the density of cells. developed by Wayne Rasband of the National Institiite
Health (U.S.A). It is mostly used by biologists bobt
limited in its applications. In this project, anterface was
MATERIALSAND METHODS designed to allow users to specify experiment-dégen
information such as the plate identification, thenter of
images per well, the number of wells per condititwe, type
Cell culture of cells, the culture medium, the number of seeciid and
Adherent cells used in the studied experiments amfe number of days in culture. The descriptive data
immature muscular cells and bone marrow cells ofiduor  computed by the algorithm are stored in an Exdel dnd
animal (rat, sheep) origin. Cells are cultured in220r 96 segmented images are displayable to check the seation
multi-well plates in standard conditions of growW#% CG,, results.
37°C). The composition of culture media differs ago
experiments, and each experiment is performedast i@  Computation of cell growth features

triplicate. In order to interpret and to compare the experisiehe
_ recovery rate and the doubling time are systenibtica
Cell preparation computed. The computation of this information reesi

To analyze a multi-well plate, the culture mediusn i seeding as many identical multiwell plates at tingt day
removed and cells are rinsed with PBS 1X. Samples afday 0) as the time points necessary to computsetdata.
fixed by immersion in ethanol for 10 min. After sing with 24 hours after the seeding, one plate is fixednath and
water, cells are stained with 1 ml of Giemsa dyeted 1:10 nuclei are quantified by image analysis, to cobetriumber
during 5 to 10 min. Plates are re-rinsed with wafes a  of adherent cells before cell divisions (day 1)eFacovery
consequence, the stain is stable (see figure 1pkatels can rate measures the capacity of cells to adhere dopthte,
be stored in a dry place for several months. since cells which are not attached to the plateditferent

reasons, are eliminated by the rinsing steps:

numberof cells at Dayl

recoveryrate =
numberof cells at Day0
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Other plates are fixed Igter to measure the grooith R(A) represents the number of regions with an
cells for different culture times. If we assume tthhe area equal t@\i The flrst term penallzes reglons

growth of cells follows an exponential law, amdandn; are . . : .
the number of cells counted on Day 2 and Day Jith high color heterogeneity, while the second

respectively, then the doubling time is computed as LErm penalizes noisy regions of small size. With

follows: this criterion, a good segmentation is a trade-off
N3 between the color homogeneity and the absence
log . of small regions.
2

_\Nz/ Various color spaces have been tested: RGB,
log(2) normalized rgb, Lu*v*, La*b*, YUV, YIQ,
111213, H1H2H3, HSB, XYZ and opponent
IMAGE ANALYSISAPPROACH colors. The normalized rgb color space is robust
. to variations of illumination because=R/I,
Color segmentation L . ..g=G/l ,b=B/l with I=R+G+B. For each color
T_he goa_l of the segmentation is to s_ubd|V|d omponent from each color space, the
an image into regions from which objects Okegmentation is performed with the automatic

interest are distingu_ished frpm the backgroungy asnold of Ridler (16). From trials on 25 sample
The global strategy is to define a fast and robu ages, we found that the green component of

algorithm to treat a great quantity of images. Wg,e hormalized rgh color space, provides on

have chosen to reduce color images into gr erage the lowes€ value, implying thatg
level images and to apply an automatic threshoit 14, ;ces the best segmentations (see figure 2).

on the histogram (16). On our images, thg component is enough to
There are several ways to reduce the %

, . : > ; - ‘produce segmentations with a good quality;
dimensionnal color information into 1-dimensio therwise we would combine the components

values. The intuitive approach consists ifynich provide the lowesE values to improve the
choosing the color component which pmduc%segmentation.

the best segmentations. In this caseccdor
componentrepresents only one axis among the
three axes which encode the color informatiore mean vaive

This is achieved automatically by using &'® T
quantitative criteriorC, designed to measure the '* mr
quality of color segmentations of cytological ' I
images (10,13). This criterion includes twc
normalized terms which penalize color
heterogeneity of segmented regions and ti MFH#

number of small regions: 02|

R e2 Amax R(Aj ) 0
Y [ N - 2 %
=11+ log(A) 1= Anin A
cl)y= ———" + ——
e R Color component
1+
1+ log(A)

; ; ; Figure 2. Comparison of the segmentation
wherel is the segmented imagh the size of the quality as function of the color component used

image,R the number of segmented regions @1d 5 automated threshold.

the average color heterogeneity of the image. Smaller mean C values indicate better
ande are respective|y’ the area and the average segmentations. All color spaces are not showed
color heterogeneity af" region.e? is defined as here.

the sum of the Euclidean distances between the

original image and the mean color of th
segmented region, evaluated for each pigel
belonging to regiom, and computed in a uniform

This result is confirmed by a principal
%omponent analysis of the normalized rgb color
space (see figure 3), and concurs with the
practice of biologists who have observed the

color space such as Lu*v*: green channel when they study Giemsa stained
N2 (., Y2 (, )2 samples.
QZ = z [Lp_LIJ +[U p—Ui] +[V p—Vi]
pOi
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Classification
The classification is based on the morphology

Carrelation Circle

N of the connected components. The size is not

2ol sufficient for the classification because some of

el the aggregates are smaller than isolated nuclei.
N b We have considered more features, including

T area, perimeter, major and minor axes of the best
£ o fitted ellipse, elongation and circularity. Their
2 g2} undefined distributions and the variability of

£ a4l values among experiments make impossible the
os} é determination of fixed range to define classes.
08} Moreover supervised learning by labeling
L ‘ , , samples is not conceivable in an automated

: P il Companent 1 ! process. Consequently, we chose a
nonparametric method to estimate the probability

Figure 3. The correation circle shows a density of the prototypes corresponding to the

projection of the initial variables (r,g,b) in the connected components projected in the feature

factors space. space (18). Features are normalized between 0

95.6 % of the variability is explained by the first and 1, and the probability densify(X,) of a

principal component and 98.7% by considering the . |
two first axes. The first axis is positively coatd prototypeX, is computed as follows:

to the blue and red variables but strongly n X - X
negatively correlated to the green variable. Thus, (X )= } 3 i¢ 0 i
the green variable contains almost all the P o~ ) d h

. . L n =1h

information of the initial color. =

The interest of this approach, based on thﬁ
criterion C, is to select the co_ndltlons Wh'Chwindow length of thel-dimension hypercube. In
produce the best segmentation among t Ris case, d=6 because we use 6 features to
methods and the parameter values tested. T :

As a second step, we apply a morphologic&\es_cr'be each prototypé. is the Parzen kernel
opening to eliminate isolated pixels and smootfefined as:
region edges. The binary images distinguish 1 if‘x- ‘<]/2'j=1 d
nuclei and background (see figure 4). For various P(X) :{ ] ’
reasons -cell origins, differentiation stage or 0 else
density- nuclei aggregate. In order to provide an Assuming that the majority of the connected
accurate quantification and a precise study of thymponents corresponds to individual nuclei and
culture, aggregated nuclei must be split. T@hares similar features, as it is the case in the
|dent|fy them, a classification methOd IS Ca.r”e(éxperiments tha‘[ we Considered, the Parzen
out to distinguish isolated and aggregated nuclejindow calculates a high density around their
Next, a split and merge algorithm is applied t@haracteristics, while the connected components
the class of aggregated nuclei to find the frontigjith a low density are attributed to the aggregate
of individual nuclei. class. The two parameters of this approach have
been determined empirically: the length of the
window h was set td).1 and a frontier between
the prototypes classified as isolated and
aggregated defined at 20% of the maximum
probability density. In this manner, the features
of isolated prototypes are automatically learned
with a training set of about thousand nuclei from
each experiment. Subsequently, the connected
Figure 4. The color image is reduced into gray comppnents of the images coming from the same
level by taking the green component of the experiment are classified according to the value
normalized RGB color space. of the density probability computed on the
Then, Ridler's automatic threshold produces a jndividual nuclei identifyed in the training set.
binary image where background and stained nuclei  The rate of false negatives (the number of true
are distinguished. i . N

aggregates classified as isolated nuclei) is less
than 4% and the rate of false positives (the

heren is the number of prototype&® is the
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number of true isolated nuclei classified as T2
aggregates) is less than 12%. This classificatior]
method thus provides a class of connected
components largely composed of aggregates. Th ’
next processing step deals with the class of -
aggregates in order to split them into individual
nuclei.

Split and Merge
The proposed strategy to extract individual "\
nuclei from aggregates is composed of two steps N
The first step splits the connected component intg *
regions with features similar to those of isolated #
nuclei. Because this step produces an over >
segmentation, some of the regions are merged i ?
-
L

a second step.

For splitting the connected components of the
aggregate class, we chose a watershed algorith -
applied either on the green component image, or
on the distance map computed from the binary Figure 6. Crop pictures from original images
image. The watershed algorithm (19) simulates E?ghtt)he left) and their segmentations (on the
]E_he flog?mg of catchment basins with water (see \yhite lines surround segmented regions.
igure 5).

Data Analysis
Ll (R I LA A N L AL Once segmentation is achieved, different
_ _ _ measurements can be computed on nuclear regions in
Figure 5. Watershed algorithm evolution on the order to characterize their position, shape, sidecalor.

distance map (2" image) of a binary object (1% . AL
image). P o) y dbject ( Accurate segmentation of nuclei is important to

Gray levels are flooded from darker to brighter. A determine the‘_ gro_vvth of cells, SU_Ch as the recoabey
dam is built when two catchment basins strike. and the doubling time (see Material and Methodbsgct
Moreover, the density and the morphology of nuclei

The probability density of each region isyow biologists to interpret the evolution of agibwth
computed and only the region with the highesing differentiation.

value is retained. The other regions are merged
together and this process is applied iteratively RESULTSAND DISCUSSION
until the last region can no longer be divided.

Then, all partition combinations are computed .
and the combination that produces the minimum The proposed method of segmentation has been

cost function is chosen. The cost functién validated by comparing the number of nuclei mayuall
called meraina function compares the area 0fcounted and the quantitifcation t_)ythe automaisekss.
gng g P : d able A reports the results obtained on two muscela

nucleusA.. The latter is found from the featurescum'es and one bone marrow cell culture.

of the connected component which has t . L
highest value of the probability density in thr;:fhe error in counting is about 1 to 7% for

classification training step. The merging functiorf?‘ggreg""tmj nuclei while it is negligibly small for

also takes into account the variability of the are'ﬁolateOI nuclei (0.02 to 0.4%). Since there are

between the regions that compose the partition @Eft)re isolated nuclei than aggregated nuclei, the

including the standard deviation of the acga al rate of errors is less than 2%. Thus, the
g am number of nuclei counted with this algorithm is

k similar to those counted by humans on non-

Z"Ai - Aef‘ confluent cultures. Thus this tool can be reliably

f=i=1 +0, used to quantify nuclear characteritics of
k adherent cells.

This algorithm splits the aggregates into
regions that share the features of individual
nuclei (see figure 6).
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Table 1. Comparison of nuclei counting by a human can have various shape. We plan to study this
(manual counting) and by the proposed algorithm. approach in a future
The rate of error is about 1%. )
Number  Number of Error CONCLUSION
of nude nude rate We have described a computerized image
(manual) (automatic) analysis system developed to automatically
quantify stained cell cultures. To assess the
Muscle cells A 7357 7318 053% (capacity of a given medium to favor cell growth,
o, We measured the increase in the number of nuclei
Muscle cells B 5072 5038 067% at given intervals. Nuclei segmentation is
Bone marrow 7065 6940 177% achieved by thresholding the normalised green

cells component of color images. The choice of the
green color component was based on a
Toid 12905 12885 101% gquantitative assessment of the segmentation
quality thanks to a newly proposed criterion. The
This algorithm has already been used to studyiclei segmentation was improved by using an
more than 200,000 photos, representing aboawtomatically trained classification method that
2,000 culture conditions. Applications of thedetermines the isolated nuclei features in each
proposed protocol are numerous. We used it &xperiment. Aggregated nuclei are split into
complete studies of the toxicity of differentindividual nuclei by a supervised split and merge
statins on muscular cells, to optimize the growtApproach using the previously determined
of muscular cells extracted from a human biopg'yolated isolated nuclei features. Our results show
(see figure 6), to improve the freezing protocd]hat the number of nuclei counted with this
from measures of cell recovery rate and talgorithm is similar to human counting with a
control the quality of cell proliferation in arate of error less than 2% in non-confluent

therapeutic protocol of urinary incontinence.  cultures. The presented image analysis tool is
routinely used in a number of applications,

nucleifwell including quality control and drug toxicity tests.
50000 4 —— CLI0001 Future work will address the study of muscular
—=— CLI0002 / fibers by quantifying the nuclei spatial
A0 000 J—H000 relationships and their link to tissue function.
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Figure 7. Growth of muscular cells in culture
coming from different biopsies.
The automatic algorithm has computed the number
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