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Abstract – microscopic cellular image segmentation schemes must be efficient for reliable analysis and fast to process huge quantity of images. Recent 
studies have focused on improving segmentation quality. Several segmentation schemes have good quality but processing time is too expensive to deal 
with a great number of images per day. For segmentation schemes based on pixel classification, the classifier design is crucial since it is the one which 
requires most of the processing time necessary to segment an image. The main contribution of this work is focused on how to reduce the complexity of 
decision functions produced by support vector machines (SVM) while preserving recognition rate. Vector quantization is used in order to reduce the 
inherent redundancy present in huge pixel databases (i.e. images with expert pixel segmentation). Hybrid color space design is also used in order to 
improve data set size reduction rate and recognition rate. A new decision function quality criterion is defined to select good trade-off between recognition 
rate and processing time of pixel decision function. The first results of this study show that fast and efficient pixel classification with SVM is possible. 
Moreover posterior class pixel probability estimation is easy to compute with Platt method. Then a new segmentation scheme using probabilistic pixel 
classification has been developed. This one has several free parameters and an automatic selection must dealt with, but criteria for evaluate segmentation 
quality are not well adapted for cell segmentation, especially when comparison with expert pixel segmentation must be achieved. Another important 
contribution in this paper is the definition of a new quality criterion for evaluation of cell segmentation.  The results presented here show that the selection of 
free parameters of the segmentation scheme by optimisation of the new quality cell segmentation criterion produces efficient cell segmentation. 
 
Key words :  cell microscopic image, segmentation, pixel classification, quality criterion, SVM,  hybrid color space, vector quantization. Metaheuristic.  
 

 

INTRODUCTION 

In recent years, computer-aided image processing and 
analysis systems have played a significant part in 
quantitative pathology. Image analysis in the field of cancer 
screening is a significant tool for cytopathology (7,15). Two 
principal reasons can be highlighted. Firstly, the quantitative 
analysis of shape and structure of nuclei coming from 
microscopic color images brings to the pathologist valuable 
information for diagnosis assistance. Secondly, the quantity 
of information that the pathologists must deal with is 
increasingly large, in particular when the number of cancer 
screening increases. That is why, segmentation schemes for 
microscopic cellular imaging must be efficient for reliable 
analysis and fast in order to process large quantity of 
images. 
 

Several studies have shown that segmentation schemes 
combining color pixel classification and morphological 
operations are efficient with microscopic cellular images 
(12,13,14). Cells staining with Papanicolaou international 
staining  (Fig. 1) make it possible to classify the color pixels 
among three classes (Fig. 2): background, cytoplasm or 
nucleus, but this classification cannot be perfect. Indeed, a 
fraction of nucleus pixels have the same color as cytoplasm 
pixels because of the variability of the nucleus according to 
the type of cells and of the chromatin distribution. 

 

 
Moreover, for some cytophathologies, the mucus 

present in the background has the same color as some cells 
(cytoplasm and nucleus). Morphological operations, like 
regions growing, which take into account neighborhood 
relations from the spatial repartition of pixels on cells and 
nucleus, can improve the quality of the segmentation. 

 
 
 

Figure 1. Microscopic cellular images with international coloration 
of  Papanicolaou. 
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The studies mentioned before only focus on improving 

segmentation quality, this can lead to build a powerful 
classifier of pixels but the computing time is intractable for a 
real application. Therefore, a new learning method (11) 
which uses Vector Quantization (VQ) technique is 
proposed to build Support Vector Machine (SVM) decision 
functions of reduced complexity, while preserving efficient 
generalization. Moreover each decision function uses an 
adapted hybrid color space (14). The aim is to build a fast 
and efficient Support Vector Machines classifier of pixels 
with probabilities estimation. Secondly, a new segmentation 
scheme is defined, based on the fast and efficient SVM 
pixels classification. That segmentation scheme has several 
parameters which must be well tuned in order to optimize 
the segmentation quality.   

Another problem for the design of segmentation 
schemes is how to evaluate the segmentation quality. 
Indeed, almost all the segmentation schemes have some 
parameters.  Human observation highlights that the values 
chosen for those parameters are significant for the quality of 
the segmentation. However, for an automatic selection of 
the optimal parameter values, the quality of segmentation 
must be also automatically evaluated. In literature, there are 
several quality segmentation criteria: Lui and Borsotti (1), 
Vinet (23), classification rates and other statistical measures 
(5). These approaches have drawbacks and are not well 
designed for the evaluation of cell image segmentation 
quality.  
A new quality criterion is proposed for segmentation quality 
evaluation. This takes into account the fact that different 
experts cannot make exactly the same pixel segmentation, 
nevertheless the differences occur only for pixels near the 
edge of the shapes. Our new quality criterion weights all 
pixel classification errors according to its nearer distance 
from edge shapes of a manual expert segmentation. It is 
crucial that the segmentation misses the least possible cells 
and nucleus present in the expert segmentation. In the same 
way, it also is significant that the number of artifacts 
produced by the automatic segmentation is as small as 

possible. Our new criterion takes into account that effect by 
counting the number of missed or artifact objects in the 
automatic segmentation by comparing it with the expert 
segmentation. 

 
The five sections of this paper are organized in the 

following manner. The first section is the introduction. The 
second section details the new learning method proposed to 
build fast pixel classification by using SVMs. The third 
section describes the segmentation scheme and defines a 
new quality criterion for cell image segmentation. The 
fourth section shows some experimental results and the 
discussion of them. The last section draws a conclusion and 
refers to future work.      

 

FAST PIXEL CLASSIFICATION 

 
Segmentation processing time is greatly linked to pixel 

classification processing time when used in a segmentation 
scheme. As for any classification problem, the choice of an 
inducer which produces efficient decision functions having 
good generalization performances is crucial. Working with 
machine learning algorithms for pixel classification 
involves to take into account not only the recognition rate of 
the base inducer but also the processing time needed to 
perform a single pixel classification. SVM are powerful 
classifier having high generalization abilities, but the 
decision function  provided by SVM has a complexity 
which increases with training set size (16,10)  (i.e. pixel 
database). Therefore, using SVMs on a huge pixel dataset is 
not directly tractable for pixel classification. 

To this aim, we propose a new learning method which 
makes it possible to use SVM within the pixel classification 
framework. This method uses the VQ principle (4) to 
simplify the training set and thus permits to reduce the 
complexity of the decision function built by SVM. The 
Decision Function Quality (DFQ) criterion for the pixel 
classification depends on two terms: the decision function 
recognition rate and the decision function complexity. For 
pixel classification, the decision function complexity 
depends on the color space used and the number of Support 
Vectors  (see next subsection).  Classical color space 
representation of a pixel is denoted by its RGB values, 
however, depending on the application, another more 
adapted color space can be chosen (XYZ, L*a*b*, L*u*v*, …). 
This choice is difficult and subjective; therefore it is more 
reliable to define a hybrid color space (14) which will be 
more adapted to optimize the DFQ criterion. For that 
reason, it is essential that our learning method selects a 
hybrid color space adapted to each decision function 
produced by SVM. This hybrid color space is built by 
selecting a set of color components which can belong to any 
of the different classical color spaces (14). The mechanism 
used in our method for the selection of the color 
components is similar to those which typically used within 
the feature selection framework (9).  

Figure  2. expert segmentation result on the microscopic image: 
background (blue), cytoplasm (green),  nucleus (red)  
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For each binary decision function produced by SVM, 
our learning method must thus choose the values of the 
SVM hyper-parameters, the simplification level of the 
training set and the hybrid color space in order to optimize 
the DFQ criterion. Exhaustive search for model selection 
being not tractable, we decided to use tabu search meta-
heuristic because of its efficiency (8).  

Decision functions built by SVM do not provide class 
probabilities estimation. Pixel class probabilities estimation 
are useful for the whole segmentation scheme, for example 
to makers extraction by watershed (12), but also for 
combination of  SVM decision function to produce multi-
class classifiers. For those reasons, Platt method (17) has 
been used to map SVM outputs into posterior probabilities. 
Two combination schemes have been used to produce 
multi-class posterior probabilities estimation with SVM 
decision function. 

  A method for posterior class probabilities estimation, a 
multi-class combination scheme, a simplification step by 
using VQ, a hybrid color space selection, a new criterion for 
the DFQ and a tabu search meta-heuristic enables us to 
define a new learning method which produces, in tractable 
times, an efficient decision function with a reduced 
complexity and an efficient pixel class posterior probability 
estimation. The following sub-section goes deeper into the 
essential information needed to understand and construct 
that new learning method and ends by a description of that 
one. 

SVM OVERVIEW 

The SVM were developed by Vapnik and 
Colaborators (22). They are based on the structural 
risk minimization principle from statistical learning 
theory (22). SVM express predictions in terms of a 
linear combination of kernel functions centered on a 
subset of the training data, known as support 

vectors. Given the training data set ( ):{ , }a i iS x y , 

{1, , }i m∈ K ,. , { 1, 1}iy ∈ − + , SVM maps 

the input vector x  into a high-dimensional feature 
space H  through some mapping functions  

 and builds an optimal separating 
hyper-plane in this space. The mapping φ  is 

performed by a kernel function ( , )K ⋅ ⋅  which 

defines an inner product in H . The separating  
hyper-plane given by a SVM is: ( ) 0w x bφ⋅ + = . 
The optimal hyper-plane is characterized by the 
maximal distance to the closest training data. The 
margin (distance to the nearest examples) is 
inversely proportional to the norm of w . Thus 
computing this optimal hyper-plane is equivalent to 
minimize the following optimization problem:  

 

where the constraint : 

 
requires that all training examples are correctly classified up 
to some slack iξ and C  is a parameter allowing trading-off 
between training errors and model complexity. 

This optimization is a convex quadratic programming 
problem. Its whole dual problem (21) is to maximize the 
following constrained optimization problem: 

 
The optimal solution *α  specifies the coefficients for 

the optimal hyper-plane * * *

1
( )

m

i i ii
w y x bα φ

=
= +∑ in 

the feature space H  and defines the subset 

: ( , )v i i aS x y S∈ , 0iα > . All data examples in vS  are 
called support vectors. The expression of binary decision 
function h  induces by the dual optimization problem is the 
follow:  
 

( )f x is called the output of SVM and its value 
corresponds to the distance of the point x  to hyper-plane 
separator *w  in the feature space. The threshold *b  is 
computed via the unbounded (i.e. i Cα < ) support vectors 
(22). An efficient algorithm SMO (16) and many 
refinements (2,3) were proposed to solve the dual problem.  
An important remark is that SVM algorithm produces a 
decision  function h  which only depends on support vector 
examples in the training set. So complexity of SVMs 
decision functions is directly linked to the number of 
support vectors and therefore the training dataset size.  The 
complexity of the decision function is also linked to the 
dimensionality n of  input vector x .  
The choice of kernel function K is important for the 
efficiency of SVM decision function. Radial Basis Function 
(RBF) is generally greatly efficient with SVM. For 
incorporation of  hybrid color space selection (see next 
subsection 5 and 6 for more details), an extended version of 
RBF kernel Kβ has been used (lx is the l 

th attribute of vector 
xand lβ  indicates if the l 

th  attribute is used or not): 

SVM PROBABILITIES ESTIMATION 

The output of an SVM is not a probabilistic value, but 
non-calibrated distance measurement of an example x  to 
the separating hyper-plane *w . Platt proposed a method 
(17) to map the SVM into the positive class posterior 
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probability by applying a sigmoid function to the SVM 
output: 

 
The parameters 1a and 2a  are determined by minimizing 
the negative log-likelihood under a test set (17). 

MULTICLASS SVM METHOD 

SVM are binary classifiers and multi-class decision 
functions using that SVM are usually designed by 
combining several two-class SVM decision functions (19). 
The one-versus-all method using winner-takes-all strategy 
and the one-versus-one (or pairwise) method implemented 
by max-wins voting are generally used for this purpose. 
There are many other methods, but those ones could be 
interesting alternatives when muti-class problems have a 
greater number of classes, which is not the case here.    
When multi-class probabilities must be estimated, those two 
previous mentioned methods must be adapted.  Let ω  be 
the set of all multi-class label (, ,i j c ω∈ , | |nω ω= ). Let 
(a) SVM

( , ) ( )i jp x  and (b) SVM
( ) ( )ip x  the class posterior 

probably of  x  produced by mapping the SVM output with 
the Platt method after training SVM on a modified version 
of the initial training set.  
For (a) training sets that have only examples of class 
i and j with respectively class label of +1 and –1. SVM 
binary decision functions products with those training sets  
are used in the one-versus-one combination scheme . For 
(b) all examples in training sets are kept but the ones which 
belong to the class i  have the labels +1 and the others have 
the label  –1 in binary corresponding problem. SVM binary 
decision functions products with those other training sets are 

used in the one-versus-all schemes.   
For one-versus-all combination schemes, all classes 

probabilities estimation are computed by: 
For one-versus-one combination, there are several methods 
for class probabilities estimation (24). All of them must take 
into account the restricted two class probability estimation 
values ( SVM

( , ) ( )i jp x ) for computing the individual class 
probabilities. One fast and efficient way to do this, is to use 
the following Price formulation (18):  

DATASET  REDUCTION  SIZE  

The main idea for reducing the complexity of 
SVM decision functions is to reduce the training 

set size. One possibility for doing this is to produce 
prototypes which sums up efficiently many 
examples near of those ones.  The Vector 
Quantization is a classification technique used in 
the compression field (4) which can perform this. 
VQ maps a vector x  to another vector 'x  that 
belongs to 'm  prototypes vectors which is called 
codebook. The codebook 'S  is built from a training 

set aS  of size m  ( ). The algorithm must 

produce a set 'S  of prototypes 'x  which minimizes 
the distortion 'd : 

 
with ( , )d ⋅ ⋅  a distance norm (Euclidian distance). LBG is 
one of those algorithms (4) which can build this codebook. 
It is an iterative algorithm which produces 2k  prototypes 
after  k iterations. 
The dataset simplification method produces a more or less  
simplified version ( k

aS ) of  the initial training set in function 
of  the parameter k  value and can be formalized by: 
 

with ( ) { | ( , ) }c aS x x c S= ∈  is the feature subset of 
examples belonging to the class c  and ( )( ) ,cLBG S k  is 
the result of k iterations of LBG algorithm with feature.      
As the level of simplification k cannot be easily fixed in an 
arbitrary way, a significant concept in our method is to 
consider k as variable. In our new learning method k is a 
parameter which must be tuned by a model selection 
process. 

MODEL REPRESENTATION 

Each SVM binary decision function h  involved in a 
multi-class combination scheme is linked to the hybrid 
color space selection (β ), the level of training dataset 
reduction (k ) and hyper-parameter values of SVM 
( ,C σ ). All those parameters are summed up in a global 
model noted θ  and a binary decision function produced by 
SVM for a given model θ  is noted hθ . The representation 
choice for a model θ  is a integers vector 
(

1
β ,…,

Enβ ,k , 'C , 'σ ) with {0,1}iβ ∈ , 
' { 5,...,15}C ∈ − ,  '2CC = , ' { 10,...,10}σ ∈ − , 

'2σσ = . The quantization of C and σ  is a classical 
reduction of model space used in SVM field and it is 
commonly called “grid search” techniques (2).  

DECISION FUNCTION QUALITY (DFQ) 

The DFQ q  of a specific binary decision function h   
 
1 We have added indices for some color components to 
differentiate them when being denoted by the same letter but 
not being identically computed. 
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produced by SVM algorithm for a given model θ  depends 
on the recognition rate RR  but also on the complexity pC  
of a decision function hθ  when processing time is crucial.  

 
 

The DFQ q  can be modeled by: 
( ) ( )R pq R h C hθ θ θ= − . 

 When the decision function is built by SVM with a fixed 
kernel, the complexity of this decision function depends on 
the number of support vectors and the hybrid color space 
used. We have chosen to model this complexity as 
following:  

 
Constants 

1pc  and 
2pc are weighting coefficients which 

respectively represent the importance of the number of 
support vectors and the choice of the hybrid color space 
(cost( )EH β ) in the complexity of  hθ .  

The thi  color components ( 3i > ) of a pixel are 
computed by linear or not linear transformation of the first 
three RGB components (20). The time cost to compute a 
given color component is more or less expensive as regards 
the kind of transformation (linear or not, software or 
hardware).   Let iκ  denote the transformation cost to 
compute the value of thi  color components, the value of  
cost( )EH β  linked to the hybrid color space EH β  has been 
defined as:   

MODEL SELECTION METHOD 
 

The research of the exact *θ which optimizes the DFQ 
criterion is not tractable by exhaustive search and by another 
way classic gradient descent cannot be applied, so a meta-
heuristic technique must be used. 

Tabu Search (TS) is a meta-heuristic approach for 
difficult optimization problems. The roots of TS go back to 
the 1970s; it was first presented in its actual form by Glover 
(6). TS belongs to iterative neighborhood search methods. 
The general step, at the it  iteration, consists in searching 
from a current solution itθ a next best solution 1itθ +  in the 
neighborhood. This new solution may be less efficient than 
the previous one, however it avoids local minimum 
trapping problems. That is why, TS uses short memory to 
avoid creating cycles. The use of this short memory is 
helpful to avoid moves which might lead to recently visited 
solutions (tabu solutions). Although the basic idea of TS is 
straightforward, the choice of solutions coding, objective 
function, neighborhood, tabu solutions definition depends 
on the application problem. 
 

For hardware transformation, the number of the color 
components used have a great impact on silicon 
implementation cost. We have chosen to crudely model it 
as: : 1ii κ∀ = . For software trasformation, theprocessing 
time (ti) necessary to compute a specific colorcomponent (i) 

has an impact on the cost of a hybrid color space using it. 
We have chosen to crudely1 model it by:   
 

                                                 
2 Crudely because some color components are helpful to 
compute other color components.   

1 22 2( ) log ( ( ) ) log (cost( ))p p v p EC h c S h c Hβ
θ θ= +

1
cost( ) En

E i ii
H β β κ

=
=∑

Fig.ure  2.  Synopsis of the new learning training method:  selection of binary decision function hθ  which optimize the DFQ criterion. 
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Our problem is to choose an optimal model (solution) 
θ  which can be represented by a set of integer variables  

1 '( , , )nθ θ θ= K  with {1, , '}i n∀ ∈ L , 
{min( ),...,max( )}i i iθ θ θ∈ . The objective function 

qθ  to be optimized represents the quality of the binary 
decision function hθ . One move in TS corresponds to 
adding { 1, 1}∆ ∈ − +  to the value of iθ , while preserving 
the constraints on that model. From these constraints, the list 
of all possible neighborhood solutions is computed. From 
these possible solutions the one which has the best DFQ 
and which is not tabu is chosen. The set of all it

tabuΘ  
solutions θ  which are tabu at the it  iteration step of TS is 
defined as following: 

 
with Ω  the set of all solutions and t  an adjustable 
parameter for the short memory used by TS.   

NEW LEARNING METHOD 

Using previously mentioned details of different 
techniques and theory domains, the synopsis of the new 
learning method is the following: 

  
1) To build pixel dataset using expert segmentation of 

several microscopic images.  
2) To select a SVM combination multi-class scheme (c.f. 

subsection 0, a software or hardware configuration for 
hybrid color space preference  (iκ  values, c.f. 
subsection Erreur ! Source du renvoi introuvable. 
and fix values of cp1 and cp2 constants. 

3) For each binary decision function involved in the 
multi-class scheme the algorithm illustrated in figure 3 
is used (see previous subsection for details), then an 
efficient decision function as regards QFD criterion is 
produced. 

4) For each binary decision function, to determine values 
of coefficients a1 and a2 by minimizing the negative 
log-likelihood under 2 class validation set (c.f. Fig. 3).   

5) At this final step an efficient and low complexity pixel 
svm with posterior class probabilities estimation is built 
(c.f. fig. 4 for illustration). 

CELL SEGMENTATION 

SEGMENTATION SCHEME 

The segmentation scheme globally is classical and close 
to segmentation schemes described in (12,13) for pixel 
classification. The main difference is that at first step it 
compute pixel class probabilities directly from color image 
(with help of hybrid color space) without using previously 
color smoothing process (13). In the next steps, it use only 
probabilistic pixel class estimations without returning to 
initial image color information, in particular for regions 

growing (whatershed). The segmentation scheme have the 
following five steps: 
1) Color image Pixel classification with posterior 

probabilities estimation. 
2) Smoothing pixel probabilities image with gaussian 

filter. 
3) Extraction of confident marker by using different 

threshold probability values for each class.  
4) Removal of not sufficiently confident markers by 

morphological operations. 
5) Marker growing with watershed using smoothed 

probabilistic image. 
 

The first step use a fast probabilistic SVM pixel decision 
function which is built by the new learning algorithm 
presented in the previous section. The aim of the first step is 
to capture color information by using adapted hybrid color 
space for a primary identification of semantic object: 
background, cytoplasm and nuclei. The next four steps use 
spatial information for refined shape of identified objects 
and remove artifact elements. Mucus presence, carbon 
remains and intrinsic noise in image acquisition system are 
the principal raison of artefact effect.  

Steps 2, 3 and 4 have several parameters which must 
efficiently be selected to improve the segmentation quality 
of that scheme. For step 2, the widow size (ws) of gaussian 
filter.  For step 3, the thresholds (Ti) at which a pixel is 
belong potentially to a marker. For step 4, the number (ne) 
of morphological opening operations (those are used in 
order to remove the too small markers which could have a 
high probability to being artifacts). All those parameters are 
chosen by a tabu search method which optimizes the segq  
cell segmentation quality criterion as defined in the next 
subsection. 
 

 

1 ( ' 1) ' ( ' 1)

{ | , ' : ' {1, , },

             }

it
tabu

it it t it t it t
i i i i i i

i t t tθ
θ θ θ θ θ θ− − + − − +

Θ = ∈Ω ∃ ∈

≠ ∧ = ∧ ≠

K

Fig.ure  4. Pixel probabilities estimation of background (up-
right), cytoplasm (down-left) and nucleus (down-right) by 
decision function produce with our learning method and applied 
on a cell microscopic image (up-left). Processing time of the 
whole image take less at 2 seconds.  
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CELL SEGMENTATION QUALITY 

This new cell segmentation quality criterion (segq ) must 
take into account the good adequacy (shapeq ) between the 
shape of the objects produced by the automatic 
segmentation (aI ) and those produced by the expert 
segmentation (eI ). That criterion must also take into 
account the number of missing objects (missingn ) and the 
number of artifact objects (artifactn ). The definition of that 
criterion is:   

 
with [ ]0,1λ ∈ . The constant λ  makes it possible to favor 
a segmentation which limits the number of missing objects 
as compared to the number of artifact objects and vice 
versa. In the case of the segmentation of cells, it is essential 
that no cell is lost, even if that forces to keep some artifacts 
like bronchial carbon remains (those artifacts are identified 
by a next module which works on more high level 
information than pixels), so we have chosen 0.9λ = .  

The good shape adequacy shapeq  is defined as 
following:  

where ( ),e ed p I  corresponds to the distance between the 
pixel p  and the nearest pixel of p  belonging to the shape 
edges in expert segmentation eI .  maxd  value aims at 
restricting the effect of weighting decrease when pixels are 
close to expert segmentation boundaries. Taking into 
account the actual size (752x574) of microscopic images, 
the current value of maxd  is 4. 
Figure 5 illustrates where the errors of classifications are the 
least serious in function of expert segmentation. 
 

EXPERIMENTAL RESULTS 

PIXEL CLASSIFICATION RESULTS 

To build the pixel dataset ground truth, 8 microscopic 
images of bronchial tumors (RGB, 752x574 pixels) with  
expert segmentation have been used. Pixels corresponding 
to background, cytoplasm or nucleus objects have 
respectively class label 1,2,3. Pixel dataset has been split to 
produce training, validation and test sets by using 
respectively the 2 first , 2 second and 4 last images.  As the 
number of pixels in each class is not balanced in images (1: 
89%, 2: 7%, 3: 4%), only a subset of pixel of classes 1 and 2 
was selected by random to build the training and validation 
sets, so that each class has the same number of examples 
(around 60000 pixel  examples by class). This procedure 
has also the advantage to speed-up vector quantization 
process and tabu model search. 
To reduce biais in model selection the recognition rate (RR) 
is evaluated from testing set. For validation or test datasets  
S recognition rate is evaluated by: 
 

 
with ( )iyS a subset of S which only containe examples of 
class yi. In next tables, some abbreviations have been used: 
Binary Decision Function (BDF), Hybrid Color Space 
(HCS), Classical Color Space (CCS), Training Time (TT), 
Classification Time by Image (CTI), hardware (HW), 
software (SW) .   

 The first experiment (Table 1) illustrates the automatic 
tuning of binary decision functions involved in an one-
again-all combination scheme (cp2=0.01 and iκ =1). The 
first remark is that globally the increase of penality for 
number of support vectors reduce greatly that one, but 
recognition rates have very low decrease. So, it is possible 
to produce efficient decision functions with low complexity. 
Moreover, the simplification (k) and hybrid color space 
selection depend on discrimination problems. For example, 
the discrimination of cytoplasm versus background and 
nucleus (h(2)) is the most difficult. The decrease of penalty 
has for effect to increase recognition rate near 2.3%, but 
only by using a lesser-simplified training set. The direct 
drawback is an expensive increase to the evaluation cost of 
the decision function.     

Fig.ure  5. From expert segmentation (up-left) pixel error 
weighting map image (up-right) is compute in accordance to  
qshape formulation. Direct pixel classification image (middle-left) 
has a qshape = 0.769 (middle-right) and image segmentation 
(down-left) with efficient parameters choice has a qshape = 0.492 
(down-right). Visual improves of segmentation by comparison 
of direct pixel classification is also highlight by qshape criterion. 
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Table 1.  Automatic model selection of hybrid color space (HCS) 
and level of simplification (k) in function of discrimination 
problem (h(i)) and penalty level (cp1). The number of support 
vectors (|Sv|) and the recognition rate (RR) performance are also 
recorded.   
 

cp1 BDF HCS |Sv| k RR 
0.003 h(1) RY1 12 3 96.57 % 
0.003 h(2) GLI2 2623 11 87.02 % 
0.003 h(3) B 6 2 89.85 % 
0.010 h(1) u*S 2 1 96.24 % 
0.010 h(2) u*Ch1 8 3 84.94 % 
0.010 h(3) B 2 0 89.56 % 

 
Table 2. Recognition rate and number of support vector  for 
decision functions produced by our learning algorithm for  9 
different classical  color space s (cp1=0.01 and cp2=0.01). 
 

 
The second experiment (table 2) is similar to the first 

one, but color space choice is fixed. For each color space 
training, only the level of simplification and SVM hyper-
parameters must be tuned.  If maximization of QDF 
criterion of each binary decision function involved in this 
one-again-all combination scheme is searched, then it is 
necessary to use 3 different color spaces (L*u*v*, I1I2I3, 

Y3CBCR) and 15 supports vectors. In comparison with the 
solution produced by an automatic hybrid color space 
selection (Table 1, cp1=0.01), which uses only 4 color 
components and 12 support vectors for a recognition rate 
very close (lower decrease around 0.5%), we can conclude 
that automatic hybrid color space selection work well, even 
if classical color space (I1,I2,I3) globally work better ( h(1) is a 
little lower but h(2) and h(3) are a little higher, moreover only 
three color components are used) for this application with 
this combinational scheme and penalty configuration.  

The third experimentation highlights the influence of 
combination scheme when processing time is critical (table 
3 and 4).  One-again-all and pairwise combination schemes 
produce multi-class decision function with similar 
recognition rate, but time for classifying all pixels of one 
image (CTI) is generally more important with one-again-all 
scheme. The main reason is that for pairwise method each 
binary problem used only a subset of training set (one class 
is removed), so discrimination problems are globally easier 
and have fewer examples. Moreover training time is more 
tractable with pairwise method, especially when hybrid 
color space selection must be dealt with. Although, in all 
case training time is not detrimental, especially in 
consideration of number of parameters that the model 

search must to adjust. Another important remark is that 
image processing time is greatly dependant in color space 
choice for each multi-class combination scheme. Note that 
when value of cp1 penalty increases, the processing time 
variation between the two combination schemes is reduced, 
but pairwise method remains better. To conclude for our 
segmentation scheme, pairwise combination scheme using 
Price for probability estimation has been retained.   

The last experimental results consider the trade-off 
variation between recognition rate and processing time 
when penalty cp1 is increased with pairwise mutli-class 
method (Table 5).  

   
Table 3. Recognition rate, number of support vector, training time 
and classification time by image for  multi-class decision function 
produce by one-again-all combination scheme with classical color 
space and  hybrid color space (cp1=0.003 and cp2=0.01). 
 

CCS RR |Sv| TT CTI  
RGB 86.55 % 479 2639 10.32  
XY1Z 86.80 % 1364 12017 29.22  
L*a*b*  86.74 % 745 3856 16.80  
L*u*v*  86.35 % 2680 5761 61.98  
LCH1 85.97 % 1239 6785 27.40  
Y2Ch1Ch2 87.09 % 303 6404 6.58  
I1I2I3 86.85 % 2589 4760 54.11  
H2SL2 86.02 % 2520 2899 55.52  
Y3CBCR 86.67 % 519 2668 11.08  
Average 86.56 % 1382 5310 30.34  
HCS RR |Sv| TT IST κκκκi 
RGY1LI2 87.18 % 2641 75158 63.97 HW 
RGBY1L 86.97 % 2532 76256 54.28 SW 

 
Table 4. Recognition rate, number of support vector, training time 
and classification time by image for multi-class decision function 
produced by pairwise combination scheme with classical color 
space and  hybrid color space (cp1=0.003 and cp2=0.01). 
 

CCS RR |Sv| TT CTI  
RGB 86.86 % 988 968 21.38  
XY1Z 87.06 % 880 1258 20.18  
L*a*b* 86.69 % 50 1269 1.97  
L*u*v*  80.00 % 13 517 1.07  
LCH1 86.24 % 128 812 3.81  
Y2Ch1Ch2 84.57 % 35 429 1.42  
I1I2I3 86.57 % 851 1488 19.04  
H2SL2 86.36 % 146 762 3.81  
Y3CBCR 86.28 % 36 731 1.51  
Average 85.63 % 347 915 8.24  
HCS RR |Sv| TT IST κκκκi 
RBu*Y3 86.97 % 12 4622 2.13 HW 
RGBu* 86.13 % 11 4843 1.87 SW 

 
Although QDF with software preference always produces 
decision functions which are faster than the ones produced  
by using QDF with hardware preference, the software 
preference produces also decision function with little 
decrease in recognition rate. Therefore, we have selected the 
pixel decision function of table 5 which is obtained by 
hardware preference for the first step of our segmentation 
scheme. To finish with pixel classification results, table 5 
shows that for some penalty configuration the best hybrid 
color space could be the initial RGB color space. 

 h(1) h(2) h(3) 
CCS RR |Sv| RR |Sv| RR |Sv| 
RGB 95.22 % 2 84,35% 13 89,74% 4 
XY1Z 95.29 % 2 84,46% 12 90,10% 5 
L*a*b*  94.86 % 2 83,58% 7 88,68% 2 
L*u*v* 96.41 % 4 84,90% 10 89,25% 8 
LCH1 95.86 % 4 84,76% 60 89,25% 4 
Y2Ch1Ch2 96.00 % 2 85,74% 46 89,82% 4 
I1I2I3 95.73 % 2 85,41% 6 89,76% 4 
H2SL2 95.93 % 3 84,94% 6 89,90% 9 
Y3CBCR 95.38 % 2 86,17% 149 90,13% 5 
Average 95.63 % 2,6 84,92% 34,3 89,62% 5,0 
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Table 5. Recognition rate, number of support vector, training time 
and classification time by image for multi-class decision function 
produce by pairwise combination scheme with only hybrid color 
space (cp1=0.01 and cp2=0.01). 
 

HCS RR |Sv| TT IST κκκκi 
Ru* v* 86.67 % 10 1069 1.71 HW 
RGB 85.97 % 15 1128 0.81 SW 

 

SEGMENTATION RESULTS 

Segmentation results are obtained with the segmentation 
scheme previously presented. Free parameters of this  

 

scheme have been selected by a model selection procedure 
similar to the one used in pixel decision function selection 
except that  the cell segmentation criterion is the one 
optimized. For model selection, the four first cell 
microscopic images of pixel database have been used and 
their average cell segmentation criterion defines the efficacy 
of the model. Free parameters have been fixed as follows 
after model selection: ws=3, T1=42%, T2=64% , T3=56%, 
ne=2. 
The results in table 6 correspond to a comparison between  
optimized segmentation scheme and direct classification 
(label class of a pixel is the one which has the higher 

 
probability estimated by pixel decision function). For all 
images, the segmentation scheme improves cell 
segmentation quality. Moreover, those results show that cell 
shapes are improved for all images and at the same time 
artefact elimination is performed. Those results show the 
usefulness of spatial information to improve pixel 
classification as compared to using only color information. 
 

Table  6. Cell segmentation quality  (qseq ), shape quality (qshape) 
and  miss-artefact  trade-off quality (q’= qseq - qshape) with the 8 cell 
microscopic images which have expert segmentation reference for 
direct classification and segmentation scheme.  

  

 Direct classification Segmentation scheme 

Image qseg qshape q' qseg qshape q' 

0 17.24 1.04 16.20 4.60 0.80 3.80 
1 6.11 1.01 5.10 4.36 0.96 3.40 
2 11.00 0.90 10.10 6.26 0.66 5.60 
3 24.59 2.19 22.40 4.89 1.49 3.40 
4 6.34 0.24 6.10 2.30 0.20 2.10 
5 6.42 0.52 5.90 2.45 0.45 2.00 
6 7.33 0.73 6.60 4.58 0.68 3.90 
7 13.99 0.79 13.20 3.17 0.57 2.60 

average 11.63 0.93 10.70 4.08 0.73 3.35 

 
 
 
 
 

Fig.ure  6.  Cell microscopic images (up), segmentations produce by our method (middle) and expert segmentation (buttom). 
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Images in figure 6 show segmentation result with our 
segmentation scheme in comparison with expert 
segmentation. Globally automatic segmentations have good 
matching with expert segmentation. Mucus present in all 
images are correctly identified as background except for 
some regions which have generally cytoplasm debris 
produced by medical sampling process (c.f. Fig. 7).  Nuclei 
segmentation are mainly well achieved, but some problems 
remain. When several cells are organized in clusters with 
overlapping cells, image regions containing the clusters 
look darker and the cytoplasm color look like nuclei in 
regions without overlapping. This problem can be avoided 
by using smear refined technique which limits overlapping. 
Nuclei segmentation does not work well even when nuclei 
are very sallow. The main reason is that the chromatin has 
low density for this type of cell. Most of nuclei pixel have 
colors similar to the cytoplasm by transparency effect 
except nuclide and membrane nucleus regions (c.f.  Fig 8). 
Actually this problem can be only corrected by high level 
module which makes the assumption that a small nucleus 
which is surrounded by a tall size cytoplasm region could 
be a sallow nucleus.  

For all images segmentation time is under 3 seconds2. 
Taking into account that great parts of C++ code are not 
specifically optimized, these results show that fast and 
efficient segmentation of cell microscopic image can be 
obtained.  

 
 
 

 
 
 
 

 

                                                 
3 All analyses were performed with a P4 at 2.4 Ghz and 
with 1 GB of memory.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

CONCLUSION AND FUTURE WORK 

 
A new learning method is proposed to build fast and 

efficient decision functions using SVM and estimating pixel 
class probabilities. A new segmentation scheme using pixel 
class probabilities has been developed. To tune efficiently 
free parameters of that segmentation scheme, a new 
segmentation quality criterion well adapted to characterize 
cell microscopic image segmentation quality is defined. 
Experiment results show that segmentation and pixel 
classification are fast and efficient, in particular when a 
good combination scheme of binary decision function is 
used and an adapted color space selected. Resulting 
segmentation will be helpful for analysis, in particular for 
cancerous diagnostic-aiding. Automatic hybrid color space 
selection could be also helpful for testing the segmentation 
influence of different staining process.    

For future work, we have to take into account that even 
if  background identification is achieved, in particular 
mucus artifacts influence is greatly reduced, the nuclei 
segmentation of sallow nucleus is problematic. One way we 
will have to investigate is to split segmentation scheme in 
two main steps. At first, cell segmentation with no 
distinction of nucleus or cytoplasm class membership 
relation. That given a mask where nucleus and cytoplasm 
object can be found. Secondly, to perform a classification of 
cells in function of nucleus type (cuts cells which are in 
contact before, if necessary) and to select an adapted 
nucleus segmentation scheme (for example: free parameters 
could have different values as a function of nucleus type). 
Alternatively, we will classify the small region obtained by 
an over-segmentation method (partition fine for example) in 
preference to pixel. The first advantage is that the number of 
objects to classify is reduced, thus if over-segmentation 
method is fast enough, it will be possible to speed-up our 
method. The second advantage is that more features can 
describe those regions like average and standard deviation 

Cytoplasm debris 

Figure. 7. Cytoplasm debris problem for mucus identification. 
  

Figure. 8.  Sallow nuclei where color of cytoplasm is observed 
by transparency. 

Sallow nucleus 
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of color, size, texture, etc. that could help to classify those 
regions as background, cytoplasm or nucleus. 

To conclude, we have to test theses approaches with 
several cytopathological specimens and define a global 
framework to build automatically a segmentation scheme as 
a function of type of pathology and coloration parameters.     
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