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Abgrad — microscopic cellular image segmentation schemesbe efficient for reliable analysis and fagrt@ess huge quantity of images. Recent
studies have focused on improving segmentatioitygSalveral segmentation schemes have good dudlityocessing time is too expensive to deal
with a great number of images per day. For segioargahemes based on pixel classification, tssifieia design is crucial since it is the one which
requires most of the processing time necessaggrtaesit an image. The main contribution of this veokbcused on how to reduce the complexity of
decision functions produced by support vector mesH{SVM) while preserving recognition rate. Veqtmintization is used in order to reduce the
inherent redundancy present in huge pixel datafiasesages with expert pixel segmentation). Hybridrespace design is also used in order to
improve data set size reduction rate and recagraitie. A new decision function quality criterisiralefined to select good trade-off between re@gnit
rate and processing time of pixel decision funciitee first results of this study show that faet efficient pixel classification with SVM is podeb
Moreover posterior class pixel probability estiomeis easy to compute with Platt method. Then asagmentation scheme using probabilistic pixel
classification has been developed. This one hasiseee parameters and an automatic selectidrdealiswith, but criteria for evaluate segmenmtatio
quality are not well adapted for cell segmentaispecially when comparison with expert pixel setgtian must be achieved. Another important
contribution in this paper is the definition olnrquility criterion for evaluation of cell segratioh. The results presented here show thatetatioseof

free parameters of the segmentation scheme bysafitimof the new quality cell segmentation @itgoroduces efficient cell segmentation.

Keywards: cell microscopic image, segmentation, pixel @tzatin, quality criterion, SVM, hybrid color sgg vector quantization. Metaheuristic.

INTRODUCTION

In recent years, computer-aided image processthg
analysis systems have played a significant part
guantitative pathology. Image analysis in the fiéldancer
screening is a significant tool for cytopathology$). Two
principal reasons can be highlighted. Firstlypiirentitative .

analysis of shape and structure of nuclei comiog fr¥ B v
microscopic color images brings to the patholegistable . P
information for diagnosis assistance. Secondlygtatity e . “ o5
of information that the pathologists must deal wih ... v ‘ . .
increasingly large, in particular when the numib@aacer s .‘ b
screening increases. That is why, segmentatiomssifer » & , ..'. 2
microscopic cellular imaging must be efficient feliable ® v
analysis and fast in order to process large quanttit > . ®
images. | d . s x

Figure 1. Microscopic cellular images with intemationabeaion
Several studies have shown that segmentation sehe  of Papanicolac

combining color pixel classification and morphatadi

operations are efficient with microscopic cellul@ages  Moreover, for some cytophathologies, the mucus
(12,13,14). Cells staining with Papanicolaou iatimnal  present in the background has the same color ascadis
staining (Fig. 1) make it possible to classifydbler pixels  (cytoplasm and nucleus). Morphological operatidike,
among three classes (Fig. 2): background, cytop@smregions growing, which take into account neightmtho
nucleus, but this classification cannot be perfledeed, a relations from the spatial repartition of pixelsaafis and

fraction of nucleus pixels have the same coloy@plasm  nucleus, can improve the quality of the segmentatio
pixels because of the variability of the nucleusiing to

the type of cells and of the chromatin distribution
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Fast segmentation scheme

possible. Our new criterion takes into accountdffiett by
counting the number of missed or artifact objettthe
automatic segmentation by comparing it with theesxp
segmentation.

The five sections of this paper are organized én th
following manner. The first section is the intrdibrc The
second section details the new learning methogeddo
build fast pixel classification by using SVMs. Tthird
section describes the segmentation scheme andsdafin
new quality criterion for cell image segmentatidine
fourth section shows some experimental resultstized
discussion of them. The last section draws a csiaoland
refers to future work.

FAST PIXEL CLASSFICATION

Figure 2 expert segmentation result on the microscopiceimag
background (blue), cytoplasm (green), nucleug

Segmentation processmg time is greatly linkedxel p

The studies mentioned before only focus on impgovirglassification processing time when used in a sefgtian
segmentation quality, this can lead to build a poive scheme. As for any classification problem, thecehof an
classifier of pixels but the computing time isdatable for a inducer which produces efficient decision functibasing
real application. Therefore, a new learning metfid) good generalization performances is crucial. Wgrkitth
which uses Vector Quantization (VQ) technique ig1achine leaming algorithms for pixel classificatio
proposed to build Support Vector Machine (SVM)sieni  involves to take into account not only the recammitate of
functions of reduced complexity, while preservifigient  the base inducer but also the processing time eheede
generalization. Moreover each decision functiors use perform a single pixel classification. SVM are pdule
adapted hybrid color space (14). The aim is tallaufast  classifier having high generalization abiliies,t dbe
and efficient Support Vector Machines classifiepiggls ~ decision function provided by SVM has a complexity
with probabilities estimation. Secondly, a new sagation Which increases with training set size (16,10. ixel
scheme is defined, based on the fast and effifleM database). Therefore, using SVMs on a huge piteletdas
pixels classification. That segmentation schemeséazesal not directly tractable for pixel classification.
parameters which must be well tuned in order tiontet To this aim, we propose a new leaming method which
the segmentation quality. makes it possible to use SVM within the pixel diastion

Another problem for the design of segmentatiofiemework. This method uses the VQ principle (4) to
schemes is how to evaluate the segmentation qualiiynplify the training set and thus permits to redtie
Indeed, almost all the segmentation schemes have s@omplexity of the decision function built by SVMh&
parameters. Human observation highlights thatahees Decision Function Quality (DFQ) criterion for thexgb
chosen for those parameters are significant faqublity of ~ classification depends on two terms: the decisiontibn
the segmentation. However, for an automatic satecfi recognition rate and the decision function comilekior
the optimal parameter values, the quality of setatiem pixel classification, the decision function comitiex
must be also automatically evaluated. In literatbeze are depends on the color space used and the numbgyis
several quality segmentation criteria: Lui and Bitir§l), Vectors (seenext subsection). Classical color space
Vinet (23), classification rates and other stasistineasures representation of a pixel is denoted byRISB values,
(5). These approaches have drawbacks and are kot f@wever, depending on the application, another more
designed for the evaluation of cell image segnientatadapted color space can be cha¥dZ(ab,L'uv, ...).
quality. This choice is difficult and subjective; therefdres more
A new quality criterion is proposed for segmentedjoality  reliable to define a hybrid color space (14) whighbe
evaluation. This takes into account the fact tiffreht more adapted to optimize the DFQ criterion. Fot tha
experts cannot make exactly the same pixel segioentareason, it is essential that our learning methtettsea
nevertheless the differences occur only for pimetsr the hybrid color space adapted to each decision functio
edge of the shapes. Our new quality criterion visigh produced by SVM. This hybrid color space is bujit b
pixel classification errors according to its neafistance Selecting a set of color components which can étoany
from edge shapes of a manual expert segmentatisn. Iof the different classical color spaces (14). Thetranism
crucial that the segmentation misses the leasblgosslls used in our method for the selection of the color
and nucleus present in the expert segmentatitie kame components is similar to those which typically usétiin
way, it also is significant that the number offarts the feature selection framework (9).
produced by the automatic segmentation is as swall
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For each binary decision function produced by SVMyhere the constraint :
our learning method must thus choose the valudseof
SVM hyper-parameters, the simplification level bé t 02 0y (WW X)+ b) 21-¢,4 20
training set and the hybrid color space in ordeptimize

the DFQ criterion. Exhaustive search for modelcsete e jres that all training examples are corretissified up
being not tractable, we decided to tau search meta- 1o some slacké andC is a parameter allowing trading-off
heuristic because of its efficiency (8). between training errors and model complexity.

Decision functions built by SVM do not provide slas  Tpjs optimization is a convex quadratic programming
probabilities estimation. Pixel class probabilitsmation problem. Its whole dual problem (21) is to maxiniize
are useful for the whole segmentation schemexémngle following constrained optimization problem:

to makers extraction by watershed (12), but also fo 1

combination of SVM decision function to produceitmu v/ (N =S" a7 -=S"" aa vV K(X. X

class classifiers. For those reasons, Platt méttchas wal@) = 2,0 ZZi IECERMAC IR

been used to map SVM outputs into posterior priitizei ) m _

Two combination schemes have been used to produc';Dinll-OSC’i <C, Zizl ya =0

mulf[i-_class p(_)sterior probabilities estimation WivVM

decision function. _ _ The optimal solutionar” specifies the coefficients for
A method for posterior class probabiliies edfnaa  the optimal hyper-planew’ :;, ai* y@(x) + b in

multi-class combination scheme, a simplificati@pdy the feature spaceH an '‘Jefines the subset

using VQ, a hybrid color space selection, a newricim for h(x) = sian(f

the DFQ and dabu search meta-heuristic enables us to (X =sign(f (x))

define a new learning method which produces, atetoie f(x)= Z( s a y K(x X)+ b
X, ) I 1 r?

times, an efficient decision function with a redlce ]
complexity and an efficient pixel class posterimbpbiity <, 1 (X, Y)U §, a; >0. All data examples i§, are
estimation. The following sub-section goes deeperthe  Called support vectors. The expression of binagside
essential information needed to understand andracins function h induces by the dual optimization problem is the
that new leaming method and ends by a descripfitwat ~ follow:

one.
f(X)is called the output of SVM and its value

SVM OVERVIEW corresponds to the distance of the peinto hyper-plane
The SVM were developed by Vapnik andseparaiorw in the feature space. The threshbld is

Colaborators (22). They are based on the struptu@gpuﬁd Vé?ﬁ tc?gnltjngcl)ugﬁﬁﬁ(ais IEICC): )(i%?p%r;gecggsn
risk minimization principle from statistical leang ; 9 Y

theory (22). SVM express predictions in terms of gﬁnements (2,3) were proposed to solve the doilin.

linear combination of kernel functions centeredaon n important remark is that SVM algorithm produees

- decision functiorh which only depends on support vector
subset of the training data, known as SuPpoéEamples in the training set. So complexity of SVMs

vectors. Given the training data s8f 1{( X y)} »  decision functions is directly linked to the numlmgr
. ER" B support vectors and therefore the training dataset The
O, o % O{-L +1}, SVM maps complexity of the decision function is also linkiedthe
the input vectorx into a high-dimensional feature dimensionalityn of input vectorx .

space H through some mapping functionsThe choice of kemel functioi is important for the
@:R™ = H nd builds an optimal  separatin efficiency of SVM decision function. Radial BasigEtion

h | i thi Th U RBF) is generally greatly efficient with SVM. For
yper-plane in this space. The mappigg IS incomporation of hybrid color space selectiseefext

performed by a kernel functiorK(LI) which subsection 5 and 6 for more details), an exterelsibu of
defines an inner product ifH . The separating RBF kemeKghas been used{(is thel ™ attribute of vector

hyper-plane given by a SVM isv[gAX) + b=0. xand 3 indicates if thé" attribute is used or not):

The optimal hyper-plane is characterized by the —zn_ Iﬁ;()g',%)z
maximal distance to the closest training data. The Kz(X,X)=¢€x =
margin (distance to the nearest examples) is g
inversely proportional to the norm o#. Thus

computing this optimal hyper-plane is equivalent t&VM PROBABILITIES ESTIMATION

minimize the following optimization problem: The output of an SVM is not a probabilistic valoet
1, 2 m non-calibrated distance measurement of an exarjite
V(w, b ¢) = E” W+ CY- & the separating hyper-plan® . Platt proposed a method

(17) to map the SVM into the positive class pasteri
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probability by applying a sigmoid function to th¥ N8  set size. One possibility for doing this is to prod

output: prototypes which sums up efficiently many
a a 1 examples near of those ones. The Vector
p(y=+1] X)_1+ealtf(x)+az Quantization is a classification technique used in

the compression field (4) which can perform this.

The parameters, and &, are determined by minimizing VQ maps a vectorx to another vectorx' that
the negative log-likelihood under a test set (17). belongs tom' prototypesvectors which is called
MULTICLASS SVM METHOD codebookThecodebookS' is built from a training

. e ml’ .

SVM are binary classifiers and multi-class decisio%et S, of sizem (™ ). The algorithm must
functions using that SVM are usually designed kyroduce a seb' of prototypesx' which minimizes
combining several two-class SVM decision functid®. the distortiond ':

The one-versus-alimethod using winner-takes-all strategy _— ,

and theone-versus-ongr pairwise) method implemented d'=—» _min_.d(x,X)

by max-wins voting are generally used for this psgp m

There are many other methods, but those ones loeuld i o ) )
interesting altematives when muti-class problemgeta With d(LI) a distance norm (Euclidian distance). LBG is
greater number of classes, which is not the case he one of those algorithms (4) which can build tuidebook
When multi-class probabilities must be estimatesie two Itis an_lterafuve algorithm which produc@§ prototypes
previous mentioned methods must be adaptedcibe  after Kiterations.

the set of all multi-class labél, ( ,c 0 w, n, = w)|). Let The dataset simplification method produces a mokess

@ p(S_V_h)/I (X) and (b) p(S;/ (X) the class posterior Simplified version 6Y) of the initial training set in function
probably of X produced by mapping the SVM output witrPf the parametér value and can be formalized by:

the Platt method after training SVM on a modifiedsion

of the initial training set. k — »

For (a) training sets that have only examples afscl > CLDJ LBG( R I) {k

i andj with respectively class label of +1 and -1. SVM . _ .
binary decision functions products with those imgirsets exavrwnthlei(gei)g )?n( )'[‘o%h?a C%‘:nghﬁé%t re sugs(ie; of
are used in thene-versus-oneombination scheme . For P nging : c)’

the result ofk iterations of LBG algorithm with feature.

(b) all examples in training sets are kept bubties which L . :
belong to the clasis have the labels +1 and the others h a\,/%s the level of simplificatiot cannot be easily fixed in an

the label —1 in binary corresponding problem. Syivéry arbitrary way, a significant concept in our metfido

S . . -~ considerk as variable. In our new learning metitod a
decision functions products with those other tngisiets are parameter which must be tuned by a model selection

SVM process.
P < v O
p(c=1i]x)= m MODEL REPRESENTATION

= 0) Each SVM binary decision functioh involved in a

used inthe one-versus-all schemes. multi-class combination scheme is linked to therittyb
For one-versus-all combination schemes, all Clas‘?%“for space selection), the level of training dataset
probabilities estimation are computed by: .

o reduction k) and hyper-parameter values of SVM
For one-versus-one combination, there are sevetabls )" a|'those parameters are summed up in a global
for class probabilities estimation (24). All ofthenust take 461 ted and a binary decision function produced by
into account the restricted two class probabByT@tion  q\/v for  given moded is notedh, . The representation
values (B;;;y (X)) for computing the individual class e for 2 model & is a integers vector

probabilities. One fast and efficient way to de,tisi to use v -
the following Price formulation (18): (C':[’:LD{—gnEklg g )C - 2c'V,VIthU. 0 {_]'%D{Ol(l)}}
DATASET REDUCTION SIZE o =2? . The quantization o€ and ¢ is a classical
reduction of model space used in SVM field andsit i
p(c=i|X) = 1 commonly called “grid search” techniques (2).
Z”w Svt -(n,-2) DECISION FUNCTION QUALITY (DFQ)
i »
TR (%) The DFQ(Q of a specific binary decision functidin

The main idea for reducing the complexity of

SVM decision functions is to reduce ttnnlng 'We h.ave added |nd|ce§ for some color components to
differentiate them when being denoted by the saatterl but

Sé"‘ = U |_BG( S, I)x{ Ic not being identically computed.

fSie!
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produced by SVM algorithm for a given mod&ldepends n
on the recognition rat&, but also on the complexifg, costHZ )=) " * Bk
of a decision functiot, when processing time is crucial.
The DFQ q can be modeled by: MODELSELECTIONMETHOD
Q=R(N-G(h). N o
When the decision function is built by SVM wittiieed The research of the exagt which optimizes the DFQ
kernel, the complexity of this decision functiopeleds on criterion is not tractable by exhaustive searctbstrathother
the number of support vectors and the hybrid ggace way classic gradient descent cannot be applieslnseta-
used. We have chosen to model this complexity Beuristic technique must be used.
following: Tabu Search (TS) is a meta-heuristic approach for
— v difficult optimization problems. The roots of TS lgack to
Colh) =, Iogzq S D)D * G log, (cost( H ). the 1970s; it was first presented in its actuahfoy Glover
o , _ (6). TS belongs to iterative neighborhood seardhads.
ConstantsC, and C, are weighting coefficients which The general step, at thile iteration, consists in searching
respectively represent the importance of the nurober from a current solutio®" a next best solutiod"** in the
support vectors and the choice of the hybrid cgiace  neighborhood. This new solution may be less effidiean
(C05t0'|_.%h )) in the complexity ofh, . _ the previous one, however it avoids local minimum
The I”" color componentsi3) of a pixel are trapping problems. That is why, TS uses short metoor
computed by linear or not linear transformatiotheffirst  gyoid creating cycles. The use of this short meni®ry
three RGB components (20). The time cost to congut@elpful to avoid moves which might lead to recevitited
given color component is more or less expensivegasds - solutions fabu solutions). Although the basic idea of TS is
the kind of transformation (linear or not, software straightforward, the choice of solutions codingectve

hardware). ~ Letk; denote the transformation cost tGunction, neighborhoodabu solutions definition depends
compute the value af” color components, the value ofon the application problem.

costH£ ) linked to the hybrid color spadé” has been
defined as:

|
N ]
Prototypal !
Training simplification |
set_ I, 2ciass || T g "
~) Training |}* —— SVM (SMO) ‘.!"‘
~— *., set IS simplified | Agorithm =7 l
K |~. Hybrid color [,.¢* Training |
*, : | space selectio L set Co ll I Recognition
2class [ SN N . 1 rate
idat labeli R =2 . ‘
Validation abeling . o T Te~al Se )i |
set and . TTm-el S e h I
selection I ~.|____‘_~-:.~.a__.| 7
. I Tabu search model selection J- - |
/ 2 class :— 6=(Bk,C" ,0) - I‘-~._ |
. . - ] - ® -
M 7 | Validation = Ve | 1
v set I —_— o —_— = I
/ | I
Test || Initial o e _______ a
set dataset
N~

Figure 2. Synopsis of the new leaming training methdectin of binary decision functidiy which optimize the DFQ criterion.

For hardware transformation, the number of thercolbas an impact on the cost of a hybrid color spsiog it.
components used have a great impact on silicaie have chosen to crudeiyodel it by:

implementation cost. We have chosen to crudely initode _ ne

as: Ui : k; =1. For software trasformation, theprocessing Ko=ng 4/ Z j:ltj

time ;) necessary to compute a specific colorcomporentx

Crudely because some color components are hegpful
compute other color components.
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Our problem is to choose an optimal model (solutiogrowing (whatershed). The segmentation schemethave
6 which can be represented by a set of integetblesia following five steps:
0=,....6,) with Oi0f1,---,nt, 1) Color image Pixel classification with posterior
8 O{min(@),...,max@ )}. The objective function probabilities estimation.
g, to be optimized represents the quality of therpina2) Smoothing pixel probabilites image with gaussian
decision functionh,. One move in TS corresponds to filter.
addingA O0{-1, +1i to the value o] , while preserving 3) Extraction of confident marker by using different

the constraints on that model. From these corisrtiia list threshold probability values for each class.
of all possible neighborhood solutions is compuiedm 4) Removal of not sufficiently confident markers by
these possible solutions the one which has thel)be3t morphological operations.

and which is notabu is chosen. The set of @B, 5) Marker growing with watershed using smoothed

solutions@ which aretabuat theit iteration step of TS is probabilistic image.

defined as following:

" o The first step use a fast probabilistic SVM pixegision

Owpy ={OUQ| Lt UL, ..., 1, function which is built by the new leaming algumit

it-1 _ pt-t+1) 4t A4t-¢+1) presented in the previous section. The aim ofriestep is
g#40q=¢ hg™ =4 } to capture color information by using adapted kiyboior

_ _ _ space for a primary identification of semantic cibje

with Q the set of all solutions antl an adjustable background, cytoplasm and nuclei. The next fopssise

parameter for the short memory used by TS. spatial information for refined shape of identifigojects

NEW LEARNING METHOD and remove artifact elements. Mucus presence, rcarbo

, _ ) . , remains and intrinsic noise in image acquisiticatesy are
Using previously mentioned details of different,o principal raison of artefact effect.
techniques and theory domains, the synopsis afiéhe  Steps 2, 3 and 4 have several parameters which must
learning method is the following: efficiently be selected to improve the segmentaiasity
L _ . of that scheme. For step 2, the widow sizedf gaussian

1) To build pixel dataset using expert segmentation ffer  For step 3, the thresholdg) (at which a pixel is
several microscopic images. , belong potentially to a marker. For step 4, thebeirfi)

2) To select a SVM combination multi-Class scheate ( of momhological opening operations (those are irsed
subsection 0, a software or hardware configureion orger to remove the too small markers which coatefa
hybrid color space preference ; ( values, Cf.  high probability to being artifacts). All those @aeters are
subsectiorErreur ! Source du renvoi introuvable.  ~posen by #abusearch method which optimizes ‘tk%g

and fix values afy,andc,; constants. . cell segmentation quality criterion as definedhie bext
3) For each binary decision function involved in thepsection.

multi-class scheme the algorithm illustrated iorig3
is used (see previous subsection for details), aghen
efficient decision function as regards QFD critei®  * 4%.
produced. ,"- . &
4) For each binary decision function, to determinaesl 0,?;;‘\-
of coefficientsa; anda, by minimizing the negative j o™ o"".' 1
log-likelihood unde® class validation sét.f. Fig. 3). -": - % .
s e,
. ® e

@ ¢

5) Atthis final step an efficient and low complexiyel
svm with posterior class probabilities estimatiouiilt g« X
(cf.fig. 4 for illustration). )

CELL SEGMENTATION

SEGMENTATION SCHEME

The segmentation scheme globally is classicallasel cj
to segmentation schemes described in (12,13) %ef pig
classification. The main difference is that att fstep it
compute pixel class probabilities directly fromocainage

e} OF {1y e .

Figure 4. Pixel probabilies estimation of background (up-
right), cytoplasm (down-eff) and nucleus (dowhdigby

(with help of _hybrid color space) without USing\‘mGSIY decision function produce with our leaming metiadi applied
color smoothing process (13). In the next stepsgitonly on a cell microscopic image (upJeft). Processing of the
probabilistic pixel class estimations without neittn to whole image take less at 2 seconds.

intial image color information, in particular feegions
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whered, ( p, I,) corresponds to the distance between the
pixel p and the nearest pixel @f belonging to the shape
edges in expert segmentatibp. d_,, value aims at
restricting the effect of weighting decrease wtirelpare
close to expert segmentation boundaries. Taking int
account the actual size (752x574) of microscopayes,

the current value afl_, is 4.

Figure 5 illustrates where the errors of clastifina are the
least serious in function of expert segmentation.

EXPERIMENTAL RESULTS

PIXEL CLASSIFICATION RESULTS

To build the pixel dataset ground truth, 8 micrp&co
images of bronchial tumors (RGB, 752x574 pixelgh wi
expert segmentation have been used. Pixels cardisgo
to background, cytoplasm or nucleus objects have
respectively class label 1,2,3. Pixel dataset &éas split to
produce training, validation and test sets by using
respectively the 2 first , 2 second and 4 lastésiad\s the
number of pixels in each class is not balancedages (1:
89%, 2: 7%, 3: 4%), only a subset of pixel of eagdsand 2
was selected by random to build the training alidatian
sets, so that each class has the same numbengilesa
(around 60000 pixel examples by class). This duoee

Figure 5. From expert segmentation (up-left) pixel error
weighting map image (up-ight) is compute in acord to

ChrepdOMUlation. Direct pixel dassification image dafie-lef has also the advantage to speed-up vector quentizat
has alepe= 0.769 (middie-right) and image segmentation process anthbumodel search.

(dowrHeft) with efficient parameters choice hegage= 0492 To reduce biais in model selection the recognitite R7)
(downright). Visual improves of segmentation yiperison is evaluated from testing set. For validation s datasets

of direct pixel classification is also highlightdgycriterion. Srecognition rate is evaluated by:

_1¢l I8
CELL SEGMENTATION QUALITY R(h 9 e i:lm (), V)

This new cell segmentation quality criteriap,) must

take into account the good adequagy,{..) between the i, S, @ Subset o8 which only containe examples of
shape of the objects produced by the automaligsg, i next tables, some abbreviations have been used
segmentation I(; ) and those produced by the expe@inary Decision Function (BDF), Hybrid Color Space
segmentation (). That criterion must also take 'nto(HCS), Classical Color Space (CCS), Training TifB,(
account the number _of missing Objemﬁ]igsmg') and the  jassification Time by Image (CTI), hardware (HW),
number of artifact objects ). The definition of that guyare (SW).
critenion Is: The first experiment (Table 1) illustrates thevanattic
— _ tuning of binary decision functions involved in ane-

Gseg = Asapst A T missind” (1= A)M arte again-all combination scheme£0.01 andk; =1). The
_ , _ first remark is that globally the increase of pigndibr
with A 0[0,1] . The constandl makes it possible to favor number of support vectors reduce greatly that buk,
a segmentation which limits the number of missijgats  recognition rates have very low decrease. Sopissible
as compared to the number of artifact objects &l Vi produce efficient decision functions with lovirmexity.
versa. In the case of the segmentation of ceiseéisential \oreover, the simplificationk] and hybrid color space
that no cell is lost, even if that forces to keapes artifacts gelection depend on discrimination problems. Famgie,
like bronchial carbon remains (those artifacts'(mgtiﬁed the discrimination of cytoplasm versus background a
by a next module which works on more high levejycleus|fy) is the most difficult. The decrease of penalty

information than pixels), so we have choger 0.9. has for effect to increase recognition rate ne¥o2but
The good shape adequady,, is defined as only by using a lesser-simplified training set. Tiect
following: drawback is an expensive increase to the evallgaiirof
1 . 2 the decision function.
qshape: |_ Z mln(de( P, le) ’ dmax)
| a |a(Pp)D¢||e(D) 57
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Tablel Automatic model selection of hybrid color spatE$)
and level of simplificaionkj in function of discrimination
problem ) and penalty levelgg). The number of support
vectors |S) and the recognition rat&J performance are also

recorded.

Ca BDF HCS ISl k Rg

0.00: ha RY, 12 3 96579
0.00: ho GLl, 262 1 87.029
0.00: he B 6 2 89.85Y
0.01( ha us 2 1 96.249
0.0 ho uCh 8 3 84949
0.01( hae B 2 0 8956 Y

Table 2. Recognition rate and number of support vector for

decision functions produced by our leaming digorifor 9
different classical color spaces$0.01 and=0.01).

search must to adjust. Another important remarkas
image processing time is greatly dependant in eplace
choice for each multi-class combination schemee it
when value ofg,; penalty increases, the processing time
variation between the two combination schemeslisesl,

but pairwise method remains better. To concludevtior
segmentation scheme, pairwise combination scheng us
Price for probability estimation has been retained.

The last experimental results consider the trefde-of
variation between recognition rate and procesding t
when penaltyc, is increased with pairwise mutli-class
method (Table 5).

Table3. Recognition rate, number of support vector, tigitime
and classification time by image for multi-classision function
produce byne-again-al combination scheme with classical color

hy hg hg space and hybrid color spacg~0.003 and,=0.01).
CCS Re ISl Re IS Re ISl

RGE %52y 2 8435 17| 8974y 4 CCs R IS 1T CTI
XY ,Z 95299 2 8446 12| 9010 5 RGE 86559 | 47¢ 263¢ 103
L*a*b* 486y 2 8358% 7| 8868% 2 XY ,Z 8680Y | 136 1201; 29.2.
L*urv | 9%841% 4 8490% 1C| 8925 8 L*a*o* 8674y | 74 385¢ 16.8(
LCH;, 9586% 4 8476% 6C| 8925% 4 LHurv* 86359 | 268 576: 61.9¢
Y,ChCh, | 96009 2 8574y  4€| 882% 4 LCH, 85979 | 123¢ 678t 274
4145 9573y 2 | 841% 6| 8976% 4 Y,ChCh,| 8709% | 303 6404 658
H,SL, 9593y 3 8494% 6| 8990 9 Il 86859 | 258¢ 476( 54.1:
YCeCr | 95389 2 86,17% 14¢| W% 5 H.SL, 86.02% | 25X 289¢ 55.5;
Average | 95639 26 | 8492 347 8962% 5( Y.CeCr | 8667% | 51¢ 266¢ 11.0¢
Average | 8656% | 138 531( 30.3

The second experiment (table 2) is similar to itise f :gi - 87'1% 2'2“4'; 715_{55 égsg 5
1 1 - qLlo . 0 - .

one, but color space choice is fixed. For eactr eplace ROBYL. | 8691% | 253 iy eax | sw

training, only the level of simplification and SViper-

parameters must be tuned. If maximization of QDF  Tayjes. Recognition rate, number of support vector, trgitime
and classification time by image for multi-classisitan function

criterion of each binary decision function invohiacthis
one-again-all combination scheme is searched, itthien
necessary to use 3 different color spaces (L*ufyls

produced bypairwise combination scheme with classical color

space and hybrid color spacg~0.003 and,=0.01).

YCGsCr) and 15 supports vectors. In comparison with th
solution produced by an automatic hybrid color epac
selection (Table 1,,£0.01), which uses only 4 color
components and 12 support vectors for a recogmiien
very close (lower decrease around 0.5%), we casiucten
that automatic hybrid color space selection worlk exen
if classical color space,b,15) globally work better K is a
little lower buthy, andhg are a little higher, moreover only
three color components are used) for this appiicatith
this combinational scheme and penalty configuration

The third experimentation highlights the influerafe
combination scheme when processing time is ciftiiale
3and 4). One-again-all and pairwise combinatiberses
produce multi-class decision function with similar

recognition rate, but time for classifying all fé&xef one Although QDF with software preference always preduc
image (CTI) is generally more important with onatiagill ~ decision functions which are faster than the oraguped

ccs Rs IS/ T CTI
RGE 86.86% | 98¢ 96¢ 21.3¢
XY .Z 87.06% | 88 125¢ 20.1¢
L*a'b* | 8669% 50 1269 197
Lrurv* 80.00% | 1t 517 107
LCH, 86249 | 12¢ 81z 38
Y,ChCh, | 84579 | 3¢ 42¢ 14:
e 8657% | 85I 148¢ 190«
H,SL, 8636% | 14¢ 762 38
Y.CCr | 86289 | 3¢ 731 15:
Averagr | 8563% | 347 o1t 8.2¢
HCS Rs [ T IST K
RBUY; | 8597% © 462 213 | HW
RGBU | 8613% 1 443 187 | SwW

scheme. The main reason is that for pairwise methda by using QDF with hardware preference, the software

binary problem used only a subset of trainingaset ¢lass
is removed), so discrimination problems are giplasbsier
and have fewer examples. Moreover training tinmadse

preference produces also decision function witke lit
decrease in recognition rate. Therefore, we hieeiethe
pixel decision function of table 5 which is obtainey

tractable with pairwise method, especially whenrilyb hardware preference for the first step of our satatien

color space selection must be dealt with. Althoimall

scheme. To finish with pixel classification restible 5

case training time is not detrimental, especialty ishows that for some penalty configuration the lgstid
consideration of number of parameters that the Imodelor space could be the initial RGB color space.
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TableS. Recognition rate, number of support vector, tigitime scheme have been selected by a model selecti@tiprec
a”rgddass'bﬁca!nor? tme b%’. Ir;]uagesi;or: m“'“ﬂfmhm“%nonl similar to the one used in pixel decision functefection
&é&;fg{g’iﬁgbﬁ on scheme with only hybrid color oy ot that  the cell segmentation criterion is dhe
optimized. For model selection, the four first cell
HCS Re 5 T IST P microscopic images of pixel database have beenanskd
Ru'v 8667% | 10 1069 171 | HW their average cell segmentation criterion definegfficacy
RGB &% | 15 12 08l | SwW of the model. Free parameters have been fixedi@asgo
after model selectiom=3, T:=42%, T,=64% , T-=56%,
SEGMENTATION RESULTS n=2.

The results in table 6 correspond to a comparietmeln

Segmentation results are obtained with the segiientaoptimized segmentation scheme and direct clasisifica
scheme previously presented. Free parameters of thi  (label class of a pixel is the one which has thleshi

probability estimated by pixel decision functioRpr all Direct dassification Segmentation cheme
images, the segmentation scheme improves Cf - -
segmentation quality. Moreover, those results shatcell e l(;ﬂz y idgz 12 >0 :_1; ?f;f 32]0
shapes are improved for all images and at the tianme 611 100 151001 23 | 0% | 320
artefact elimination is performed. Those resulsasthe 110 | 0% ool 65 | 06 | 560
usefulness of spatial information to improve pixel 2 4'59 2'19 22' 20 4'89 l ) 3' 0
classification as compared to using only colormétdion. B 34 0'2 7 6 '10 2'30 020 2'10

Table 6. Cell segmentation qualityc,), shape qualityoga 642 052 | 590| 245 05 | 2
and miss-artefact trade-off qUAIYH( Ckey~ Gl With the 8 cell 733 | 073 | 660| 458 | 088 | 39
microscopic images which have expert segmentafieiemce: for 7 13.99 079 | 1320 317 057 | 260
direct dlassfication and segmentation scheme. averagd 1163 | 093 | 1070 408 | 073 | 3%

O W|IN|F|O
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Fast segmentation scheme

Images in figure 6 show segmentation result with ¢
segmentation scheme in comparison with exg o
segmentation. Globally automatic segmentationsdfzae
matching with expert segmentation. Mucus preseatl in
images are correctly identified as background ¢xcep
some regions which have generally cytoplasm del
produced by medical sampling procedsKig. 7). Nuclei
segmentation are mainly well achieved, but sorralqurs
remain. When several cells are organized in ciustith
overlapping cells, image regions containing thestefs
look darker and the cytoplasm color look like nuitie
regions without overlapping. This problem can hmded
by using smear refined technique which limits aygaing. i
Nuclei segmentation does not work well even wheatenu :
are very sallow. The main reason is that the chilotnas
low density for this type of cell. Most of nucléxg have
colors similar to the cytoplasm by transparencgceff
except nuclide and membrane nucleus regohsHg 8).
Actually this problem can be only corrected by heylel
module which makes the assumption that a smatbumicl
which is surrounded by a tall size cytoplasm regiuid
be a sallow nucleus. CONCLUSON AND FUTURE WORK
For all images segmentation time is under 3 setonds
Taking into account that great parts of C++ codenat A new learning method is proposed to build fast and
specifically optimized, these results show that &l efficient decision functions using SVM and estingafixel
efficient segmentation of cell microscopic image te class probabilities. A new segmentation schemg psisl
obtained. class probabiliies has been developed. To tuinieetfy
free parameters of that segmentation scheme, a new
segmentation quality criterion well adapted to attarize
cell microscopic image segmentation quality is ngefi
- Experiment results show that segmentation and pixel
| classification are fast and efficient, in particukghen a
good combination scheme of binary decision fundson
used and an adapted color space selected. Resulting
segmentation will be helpful for analysis, in oaitr for
cancerous diagnostic-aiding. Automatic hybrid cejmaice
selection could be also helpful for testing thersagation
influence of different staining process.
For future work, we have to take into accounteiah
if background identification is achieved, in mattr
mucus artifacts influence is greatly reduced, thelen
segmentation of sallow nucleus is problematic.\Znewe
will have to investigate is to split segmentatiohesne in
two main steps. At first, cell segmentation with no
‘; s distinction of nucleus or cytoplasm class membershi
o= relation. That given a mask where nucleus and legtop
object can be found. Secondly, to perform a dizetgiin of
cells in function of nucleus type (cuts cells whighk in

Sallow nucleus

Figure 8. Sallow nuclei where color of cytoplasm is obsnve
by transparenc

Cytoplasm debris

Figure. 7. Cytoplasm debris problem for mucus identification.  contact before, if necessary) and to select anteablap

nucleus segmentation scheme (for example: freenptas
could have different values as a function of nsctgpe).
Alternatively, we will classify the small regiontalmed by
an over-segmentation method (partition fine formta) in
preference to pixel. The first advantage is tieahtimber of
objects to classify is reduced, thus if over-seggtion
method is fast enough, it will be possible to spgedur
method. The second advantage is that more featames

3 i ; . X o
AII analyses were performed witha P4 at2.4 Gt a  Jescribe those regions like average and standéiadiaie
with 1 GB of memory.
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of color, size, texture, etc. that could help &ssfy those
regions as background, cytoplasm or nucleus.
To conclude, we have to test theses approaches

10. Lebrun, G., Charrier , C. and Cardot, H., SVMhitngi time reduction
using Vector Quantizatiol;PR 2004(1): 160-163.
Lebrun, G., Charier, C., Lezoray, O., Meuriea@d Cardot, H., Fast
| Classification by SVM Using Vector Quantizafi Tabu Search and

several cytopathological specimens and define BalgIopyiyid Color SpacAIP2005 NCS3691: 685-692.

framework to build automatically a segmentatioes@has
a function of type of pathology and coloration paeters.

12. Lezoray, O. and Cardot, H., Cooperation of colel gilassification
schemes and color watershed: a study for microsbapiages|EEE

transactions on Image Processing 200¢7): 783-789.

13. Meurie, C., Lezoray, O., Charier , C. and Emo#&aZ_ombination of
multiple pixel classifiers for microscopic imaggreentationintermational
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