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Abstract - In this communication we propose a new and automatic strategy for the multi-scale extraction of vessels. 
The objective is to obtain a good representation of the vessels. That is to say a precise characterization of their 
centerlines and diameters. The adopted solution requires the generation of an image scale-space in which the various 
levels of details allow to process arteries of any diameter. The proposed method is implemented using the Partial 
Differential Equations (PDE) and differential geometry formalisms. The differential geometry allows, by the 
computation of a new valley response, to characterize the centerlines of vessels as well as the bottom lines of  the 
valleys of the image surface. The information given by the centerlines and valley response at different scales are used 
to obtain the 2D multi-scale centerlines of the arteries. To that purpose, we construct a multi-scale adjacency graph 
which permits to keep the K strongest  detections. Then, the detection we obtain is coded as an attributed graph. The 
suggested algorithm is applied in the scope of two kinds of angiograms: coronaries and retinal angiograms 
 
Keywords: Medical Imaging, multi-scale analysis, PDE, valley, X-ray angiograms, vessels. 
 
 

INTRODUCTION 

The work presented in this paper is a part of 
broader project, which consists in developing a 
general method to detect, rebuild, analyze and 
visualize coronary arteries. The development of a 
three-dimensional (3D) synthesized image will 
allow to carry out blood flows simulations on 
pathological arterial segments. Consequently, it 
will bring out a symptomatic indication and a 
better hemodynamic evaluation of the 
repercussion of a stenosis on the myocardic 
perfusion. The medical practitioner will therefore 
be able to decide on a treatment that suits the 
pathology. Currently, the 2D X-ray angiography 
is the most widely spread, and one of the best 
vessels-adapted imagery systems for  studying 
coronary arteries. It is able to reveal projections 
of the arteries along several incidences. When 
there is only a low number of incidences, the use 
of a three-dimensional geometrical model of the 
vessels is necessary to mitigate the scarce 
information provided by the projection. In this 
context, the vessels are often modelized by 
generalized cylinders. Hence, they are 
characterized by a set of cross sections centered 
on a virtual trajectory going through the center of 
the vessels. According to [1], the general process 
of a 3D reconstruction includes the following 

steps: 1) angiogram preprocessing: this step 
consists in enhancing the vessels in regard to the 
background of the image; 2) skeletonization and 
edges extraction: this step consists in detecting 
the points belonging to the virtual path going 
through the vessels and detecting those belonging 
to the boundary of the vessels; 3) 2D features 
formation: the detected points must be organized 
in order to form the two structural entities: the 
skeleton and the edges of the arteries. The first 
one gives the localization and the topology of the 
arterial tree, and the second one gives the 
morphology of the detected vessels; 4) matching 
of the 2D detected features: here, the point is to 
match the detected  arterial segments to the 
corresponding anatomical structures; 5) 3D 
reconstruction: the skeleton detection from each 
incidence allows to estimate the three-
dimensional localization of the vessels skeleton. 
The edges detection provides an estimation of the 
generalized cylinders cross sections parameters. 

In the present work, we focus on the three 
preliminary steps of the 3D-reconstruction, by 
proposing a new algorithm for the multi-scale 
analysis of the vessels.  It is based on Partial 
Differential Equations (PDE) and   differential 
geometry-frameworks.
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This paper is organized as following: Section 2 

presents previous works on vessels detection; in 
Section 3, after some reminders of differential 
geometry, we propose a new valley response; in 
Section 4, we describe a multi-scale vessels detection 
algorithm; in Section 5, we present several 
experimental results. Finally we draw the main 
conclusion in Section 6. 

 
PREVIOUS WORKS 

To process 2D X-ray angiograms, several 
constraints and difficulties must be taken into 
account: the luminance of these images depends 
greatly on the capturing conditions (x-ray intensity, 
angle of incidence, x-ray absorption of the organs...); 
the ribs, the vertebrae and the catheter, which have no 
interest for a coronographic examination, but look 
like blood vessels and can therefore disturb the 
automatic detection processes; the non-uniform 
diffusion of the contrast agent; the variability of the 
arteries size; the X-ray system noise. All of these 
constraints led to develop specialized detection or 
segmentation techniques. One can distinguish five 
main categories of techniques: 

1) Mathematical morphology techniques: 
Toumoulin et al. [2] use a combination of closing and 
opening mathematical morphology operators to 
enhance the vessels of subtracted angiograms. They 
use a modified grey-level skeleton algorithm and a 
top-hat operator to extract local maxima. A binary 
skeleton is extracted. Finally they use successive 
dilations and comparisons with the local gradient 
magnitude to detect the edges. Eiho et al. [3] use a 
top-hat operator with a structuring element whose 
size is related to the size of largest vessels, an erosion 
operator to enlarge the vessels and to reduce the 
noise. The resulting image is thresholded and 
skeletonized by thinning operations. Finally the 
authors use a watershed transform based on the 
centerline and background markers. 

2) Tracking techniques: these techniques require 
user interactions to define beginning, ending or in-
between points or cross-sections [4,5]. A least cost 
algorithm is then ran to connect the manually selected 
points. The cost function is generally based on 
greylevels [5,6,7] and edge information like the 
gradient norm, Laplacian zeros, parallelism 
response... [8,9]. The least cost algorithms are related 
to the research of the least cost path in a valued 

graph. Suggested solutions are based on the A* 
algorithm [4,5,9], on recursive sequential 
tracking [8,7,10], or front propagation [11,12]. 

3) Deformable models techniques: these 
techniques consist in a manual initialization of an 
opened skeleton or edge, generally modelized by a 
spline, which is iteratively deformed in such way that 
the points belonging to the spline minimize a global 
deformation energy function. This energy function is 
divided between an internal deformation term, 
controlling the “tension” and the “rigidity” of the 
spline, and an external deformation term which 
defines the attraction of the spline on the skeleton or 
on the edge. The choice of this external energy 
usually depends on the applications and the authors. 
For example Klein et al. [13]  use “stretched-Gabor” 
filters [14], whereas Chen et al. [15] prefer using the 
local minima of the image intensity. 

4) Multi-resolution techniques: these techniques 
give images at several resolutions allowing to 
simplify or accelerate some “conventional” image 
processing tasks. Different approaches, like 
wavelets [16,17] or Gaussian pyramids [18] are used 
to provide the different resolutions. The main 
drawback of these techniques is the difficulty to 
follow the structures across different image 
resolutions. Some applications of these techniques to 
vessels detection have been suggested by [19], [20] 
and [21]. 

5) Multi-scales techniques: these approaches 
consist in computing a response of the sought 
structure at different chosen scales. The scale giving 
the highest response is related to the size of this 
structure. A multi-scale analysis is generally 
composed of two main steps: a feature extraction step 
where the skeleton or edges are extracted at different 
scales and a scale-space fusion step where the 
meaningful information of the scale-space is 
summarized from all of the scales in one image to 
simplify the decision step (Fig. 1). Numerous works 
for vessels detection use these 
techniques [22,23,24,25,26,27,28,29]. 

Among all these techniques, most of them first 
extract the edges and then define the skeleton as the 
centerline of the detected edges while others prefer to 
detect the skeleton first and then the edges. We 
consider that this latter solution is the most adapted to 
our application. In fact, near stenosis area, edge 
points on both sides of the vessels may not always be 
detected simultaneously. Besides, it has been shown 
that the center points localization depends on the 
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edge operator. Here, we aim at detecting the whole 
arterial tree, first of all to simplify the matching step, 
but also to limit as much as possible the surgeon’s 
work. Contrary to most of the literature techniques, 
we propose an automatic detection where the surgeon 
can quickly select good and bad detections. This way, 
no fastidious and time expensive initialization step is 
needed. 

Here we chose to use a multi-scale approach for 
the following issues: 1) it allows an automatic and 
global detection of vessels of various diameters; 2) it 
does not require initialization steps; 3) it provides a 
family of same sized images which simplify the 
fusion process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The general scheme of a multi-scale analysis detection. 

 
 
 

FEATURES EXTRACTION 
 
Characterizing vessels by a response function 

Coronary arteries obtained by X-ray angiography 
are elongated and dark structures on the image 
background. Arteries tubular nature implies a greater 
absorption of X-ray in the axial part of the arteries 
than on their wall. Therefore, if we study the intensity 
along a profile perpendicular to the local direction of 
an artery, the skeleton appears to be located in the 
same place that the local minima of the intensity 
function (Fig. 2). Besides, if we consider the image as 

a surface of 
3R , then the coronary arteries become 

valleys within the relief of the image surface. So, to 
extract the skeleton means to locate the points in the 
bottom of these valleys. Besides, as shown by Chen 
and al. [30], even if bottom points do not generally 
correspond to centerlines points, their detection is 
highly stable. Throughout this article, we use the 
following notations and terminology to design points 
or sets of points of the relief map. A valley is an 
elongated depression between mounts. The set of 
points located in the bottom of a valley is called a 
bottom-line. Differential geometry allows to 
generalize the research of local extrema on one-
dimensional real functions to multidimensional 
functions. This is the reason for using this 
mathematical framework in this article.  

 

 
 

Figure 2.  The profile of intensity following a perpendicular 
direction to the vessel. 

 
We consider the image I as the map  RRI →⊂Ω 2: . 
The first and second local partial derivatives of the 
image are defined by 

xI , yI , xxI , yyI , xyI . 
t

yx 




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

∂
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∂=∇ , denotes the gradient operator. Given  a 

vector in R2, we denote the first derivative along a, 
aII a ⋅∇= . Given ∑ a two-dimensional manifold 

Features extraction 

Scale-space information fusion 

Structural entity formation 
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locally embedded in R3, the image is then modelized 
by a map S : ∑ � R3. 

( )),(),,(),,(),(S 21321221121 σσσσσσσσ XXX== , (1) 
1σ  and 2σ  being the curvilinear coordinates of the 

image surface. For each point of S the tangent space T 

is the plane created by the vectors 
1
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The second fundamental form represents the 

curvature of curves drawn on the surface. It is defined 
by the matrix:  
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where fp .,. is the inner-product defined on R3 

and n
r  is the normal vector to the surface such that 

),,( 21 n
r

σσ SS  is a direct basis. The principal curvatures, 

{ }2,1, ∈iki , and the principal directions of the extrema 
of the image’s surface, { }2,1, ∈ivi , are respectively the 

eigenvalues and eigenvectors of  2
1

1 FFA −= . 
 

 
 

Figure 3: The classification of the image’s surface points in 
regard with k1 and k2. 

 
We present in Table 1 the calculation of the 

fundamental forms, according to two conventional 
choices of Σg  for 
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WWWW and HHHH are respectively called the Weingarten and 
Hessian matrices. We notice that both metrics are 
invariant to translations and rotations in the spatial 
variables transformations, but the metric induced by 

R3 is the only one giving the invariance with regard 
to the spatial unit transforms. 

The great interest with the principal curvatures is 
that they allow to classify the points of the surface 
according to the following categories: valley, crest, 
flat, pit, peak, saddle and minimal (see Fig. 3). 
Consequently, a point of the valley is mathematically 
a point of the image’s surface such that  01 >k  and  

02 =k .  
In practice, the luminance variations and the noise 

in real images make the detection of pure valleys 
almost impossible ( 01 >k  and 02 =k ). In regard with 
the previous definitions, the search domain of valley 
points V is such that 01 >k  (Fig. 3). That is to say 
the points that verify: 
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Table 1. Differential characteristics in regard with the choice of 
the metric �. 
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In other words we have extended the search 

domain to saddle-valley and hole points excluding 
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ombilic and minimal points. Among the points of V, 
we need now to extract the points belonging to the 
bottom-lines. For each point, we can define a bottom-
line membership degree function D depending on the 
principal curvatures. In the following, we will call D 
a valley response. A few functions have already been 
suggested in the literature, such as 

2
2

2
121 ),(1 kkkk +=D  and  ( )22

2
2

1212 ),( kkkk +=D  by 

Lindeberg [23], and  1213 ),( kkk =D  by Nasser [23]. It is 
worth noticing that the functions D1, D2 and D3 may 

have  very high values where the local surface does 
not correspond to a valley. So we suggest that the D 
function should rather verify the following properties 
for the points of V:  
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Those conditions are verified by the function 
D(k1,k2)=|k1-k2||k1+k2|  (see Fig. 4). According to 
us, a bottom-line point is then a point of V which is a 
local maximum of the response D in the direction of 
V1.  

 
 
Figure 4. D(k1,k2)=|k1-k2||k1+k2|. 
 
Definition 1. A bottom-line point verifies: 
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Our experiments [31] show that using the 

eigenvalues of the Weingarten matrix for the calculus 
of D and the eigenvectors of the Hessian matrix, 
which are less noise sensitive, gives better results, 
especially in regard with the continuity of the 
extraction. Fig. 5 gives an example of the vessels 
centerlines extraction on an angiogram. One can see 
that vessels are well localized. Besides, their 
detection is almost continuous.  

 

 
 
Figure 5. Superimposition of the extraction with an angiogram. 

 
MULTI-SCALE EXTRACTION OF 

ELONGATED STRUCTURES 
 
Multi-scale detection of the bottom-lines 

In order to study vessels of various sizes and to 
regularize the calculus of the derivatives, we decide 
to perform a linear multi-scale analysis based on a 
PDE process coming from the heat equation [32,33]:  
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Where I0(x,y) is the initial image and Ω∂  is the 
boundary of Ω . In order to process the image at 
different scales and to take into account large scales, 
this equation is approximated  by an iterative explicit 
discretization scheme. 

 
Scale-space parameters setting 

At this point, we now have to set the number p of 
scales and their distribution in the range [ ]maxmin ,σσ . 
The ideal case would be to know the various vessels 
sizes and then to choose the study scale according to 
that. But in practice, the task is more difficult because 
we just have an estimation of the widest arteries size.  
To determine the minimal scale minσ , we have taken 
into account the sampling problems (i.e. aliasing) by 
choosing 0.1min =σ . As many authors did before 
[24,22], we modelized the vessels by generalized 
cylinders with a symmetric bar-profile of width ω , in 



 Algorithms for the extraction of various diameter vessels  
 

67 
Copyright © 2006 C.M.B. Edition 

 

order to estimate the optimal detection scale. After 
some calculus, we deduce the optimal scale 
expression: ( ) 1

32)(
−

= ωωoptS . The maximal scale 

maxσ  is empirically set according to the size of the 
widest arteries, that is to say about twenty pixels of 
width in the studied angiograms. So 

77.5)20(max == optSσ . 

In the scope of our application, we aim to follow 
the detected bottom-lines across the scale-space. A 
logarithmic sampling seems to be more coherent with 
the evolution of the image changes across the 
iterative process. However, to achieve this, we must 
take care of avoiding too high sampling steps. 
Experiments have indicated that for the small scales a 
logarithmic sampling fails with these requirements. 
Therefore, we suggest to use an uniform sampling 
towards a particular scale σc, and then to use a 
logarithmic sampling for superior scales. This almost 
logarithmic sampling allows to better follow the 
detected bottom-lines across the scale-space. We 
present in Table 2 the sampling sequence used for the 
linear multi-scale analysis of the coronary arteries.  

 
Table 2. Scales chosen for the multi-scale analysis of the 
coronary arteries 
 

t 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 

σ 1.00 1.22 1.41 1.58 1.73 1.87 2.00 2.12 2.23 

t 2.75 3.50 4.50 5.75 7.50 9.25 12.25 15.75 - 

σ 2.34 2.64 3.00 3.39 3.87 4.30 4.95 5.61 - 

 
. 
The multi-scale detection algorithm 

Now, we present a new multi-scale algorithm for 
the detection of the vessels. Let { }{ }pi ,...,1∈=∑ σ  be a 

set of p scales. Let { } { }pi

r

i
V

,...1∈σ  and { } { }pii
BL

,...,1∈σ  

respectivly be the set of the valley response and the 
bottom-lines detection at scale iσ  which we will call 

the valley scale-space and the bottom-lines scale-
space. Notice that the dimension of these spaces is 
N+1. Fig.  7 gives some scales of these scale-spaces 
for a left coronary artery. One can see the progressive 
disappearance of the small vessels when the scale is 
growing.  

As Monga et al. did in [34], we construct a multi-
scale adjacency graph from those two scale-spaces. 
The nodes of the graph are the points P detected at 
least once across the bottom-lines scale-space. That is 

to say, the points for which a iσ  exists such that 

1)( =PBL
iσ . Each node contains all the scales iσ  

verifying 1)( =PBL
iσ , as well as the valley 

response and the directions of the principal 
curvatures. An edge connects two nodes if the points 
are adjacent or neighbors in the bottom-lines scale-
space. Let NE(Pi-1), NE(Pi) and NE(Pi+1) respectively 
be the set of the neighbors of P in the bottom-lines 
map at scale 1−iσ , iσ and 1+iσ .We define the set of 

neighbors of Pi in the bottom-lines scale-space as the 
set N(Pi) = {NE(Pi-1) ∪ Pi-1,NE(Pi),NE(Pi+1) ∪ Pi+1}. 
Thus, in the two-dimensional case, nodes have 26 
neighbors. By studying the bottom-lines scale-
space [31], we can notice that the used detector 
relatively preserves the localization of the detection 
across the scales (the offsets do not exceed one or 
two pixels). Consequently, the stability hypothesis 
first planed by Witkin [33], “the structures which 
survive over a broad of scales tends to leap out the 
eye...”, is suitable to our purpose. According to this 
property we decide to prune the graph, keeping the 
nodes which have been detected at least N times. A 
lot of insignificant bottom-lines are eliminated this 
way. The experience shows that the value of N 
directly depends on the kind of image to process. In 
other words, this parameter can be fixed for a 
particular application. 
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Figure 6. Left: some scales of the normalized valley scale-space, 
Right: some scales of the bottom-lines scale-space. 

 
Let #C be the number of connected components of 

the graph, we denote by {CCk}, k∈{1,⋅⋅⋅,#C} the set 

of these connected components. To each connected 
component we attribute the following response: 

 

k

CCP
k CC

PR
CCM k

#

)(
)(

∑ ∈=   (9) 

 
where #CCk and R(P) respectively denote the 

number of nodes belonging to the connected 
components CCk and the valley response 

corresponding to the P point, M(CCk) being the 

mean of the responses corresponding to the connected 
component CCk. Thereafter, we also sort the 

connected components by decreasing order according 
to the M(CCk) values. By tuning the number K 

between 1 and #C, we can keep the K "strongest" 
connected components. The choice of K can be 
leaved to the user’s appreciation. Fig. 8 shows the 
impact of the choice of K on the multi-scale detection 
results. Projecting these components onto the image 
plane, we obtain the “shadow” of the K strongest 
connected components. In fact, this step allows to get 
a better connected arterial tree.  

 

 

K=10  K=50 

 

K=100  K=300 
Figure 7. Some bottom-lines extractions for different values of 
K. 

Then, a homotopic thinning algorithm [36] allows 
to transform the bottom-lines into one pixel width 8-
connected paths. Finally, the remaining detection 
artifacts are eliminated by deleting low length edges. 
Fig. 9 shows a more synthetic description of our 
algorithm. It is worth noticing that this algorithm is 
very easy to implement comparing with a marching-
line algorithm [35,37].  

 
Structural entities formation 

To form the structural entities it is necessary to 
find a data structure that first, allows to code the 
vascular tree, then acts on the detection, and finally, 
matches detected structures. The coronarian tree can 
anatomically be modelized, quite obviously, by a 
three-dimensional binary tree. But the projection of 
this tree on the X-ray sensor generally rises 
superimpositions and junctions. The structure of the 
proposed detection is consequently more complex 
than a simple binary tree. That is why we decide to 
modelize the coronarian tree by an attributed graph 
structure. The nodes of this graph are the detected 
singular points: the ending, the forks, and the junction 

 
 
Figure 8.  Fusion algorithm. 
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points (see Tab. 3). These singular points have been 
detected using the hit-or-miss operators [31]. An edge 
is defined by a discrete path connecting two singular 
points and containing the following attributes: the 
path points list with their own attributes (diameter, 
localization, principal curvatures directions...), its 
length and an anatomic name of the detected 
structure. The latter attribute allows a manual 
matching.  

 
Table 3. Some local configurations of singular points. (a) end 
point; (b) end points; (c) bifurcation point; (d) junction point. 

 

 
 

 
Diameter estimation of the vessels 

Theoretically, the multi-scale analysis allows to 
get an estimation of the arteries’ diameters by the 
optimal scale determination. When one samples the 
scale variable, it turns out that the scale giving the 
maximal response is rough: the scale samples are too 
spaced, especially with the use of a logarithmic 
sampling. According to this, if we denote the scale 
giving the maximal response maxσ , we can only 
affirm that the optimal scale belongs to the range of 
scales ],[ 1max1max +− rr σσ . That is why we prefer to 

localize the edges on both sides of the skeleton point. 
In order to do that, we have to analyze the profile of 
the image gradient in a direction perpendicular to 
those of the vessel. As the maximal curvatures 
directions are quite stable across the scale-space, we 
approximate it by the mean of the maximal principal 
curvatures directions on the whole selected scales. 
The gradient of the profile has been previously 
smoothed using a Gaussian filter to limit the noise 
influence. The pixels giving the maximal response to 
the image gradient on both sides of the skeletons will 
then be considered as edge points. Finally, the local 
diameter of the vessel is estimated by computing the 
Euclidean distance between these two edge points (cf. 
Fig. 10).  

In spite of its simplicity, the suggested technique 
gives nevertheless a good preliminary estimation of 
the vessels diameters and may serve as a pathology 

indicator. For further works we may imagine, as 
suggested by Chen et al. [38], an estimator based on 
several diameter estimation techniques.  

 

gradient

gray−level profile

 
 
Figure 9. Diameter estimation. 

 
EXPERIMENTAL RESULTS 

X-ray coronographies 
In this section, we present the results obtained 

using our skeleton detection algorithm applied here to 
two clinical angiograms selected from two 
cineangiograms provided by the University Hospital 
Center of Poitiers, France. The cineangiograms have 
been acquired by a single plane angiographic system 
and digitized into 512 × 512 images with 8 bits of 
gray-level resolution. Fig. 11(a) and fig. 12(a) show 
two of the digitized coronary angiograms. The first 
one concerns a left coronary artery angiogram with 
RAO/CRA=12°/20°, the second one concerns a right 
coronary artery angiogram with LAO/CRA=89°/2°. 
We respectively call them “LCA-RAO12-CRA20” 
and “RCA-OAG89-CRA2”. The size of the widest 
searched artery is almost the same from one 
angiogram to another. So, we can  use the same 
number of scales p for each multi-scale analysis. 
Furthermore, the parameter N is here fixed to 5 for 
this kind of images. The parameter K is individually 
adapted so as to favor the detection of the principal 
arteries, since they are the most interesting ones for 
the surgeon. The proposed algorithm has been 
implemented using the C/C++ programming 
language on a personal computer with CPU: AMD 
K7 Thunderbird 1Ghz, and 256Mo RAM running 
under the Linux operating system. The overall 
execution time for the analysis of 16 scales is usually 
less than 25 seconds1 . 

                                                 
1It is worth noticing that the algorithm has not passed the 

optimization stage yet.  
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It is worth noticing that the skeletons are 
successfully and automatically extracted as one-pixel-
wide near continuous 8-connected paths. That is even 
the case for strong stenosis like the one localized in 
the white circle on fig. 11(a). Besides, the result 
presented in fig. 12(b) shows the algorithm 
robustness to low contrast angiograms. One would 
expect such results, as throughout the whole 
processing sequence, we took great care about the 
continuity of the detection. Some arterial segments 
are however still disconnected when it should be the 
case, according to the surgeon knowledge on the real 
topology of the coronarian tree. In this situation there 
are three possibilities: 1) either the connexion might 
effectively exist at the “visible” intersection of the 
arterial segments (in this case the algorithm fails); 2) 
either the connexion might exist but considering the 
vessels overlapping its localization is uncertain; 3) 
either the connexion might not exist because the 
vessels cross each other. Conversely, two vessels 
could have been connected despite the fact that they 
should not have been. Most of the time, it happens in 
the case of a crossing or of an overlapping. Besides, 
sometimes our algorithm may detect uninteresting 
objects like the catheter, the patient ribs or some dark 
areas localized near the arteries. Under such 
circumstances it seems difficult to remove all these 
detection ambiguities having a single angiogram. We 
feel that at this stage it would be interesting to let the 
surgeon manually decide.  

We show on fig. 13(b) an example of the edge 
detection obtained from the multi-scale skeletons 
detection. One can notice that edges are quite well 
localized and relatively continuous.  This is what one 
would expect, since the skeletons detection was 
continuous itself. We notice that this method fails 
when the vessels are too close to one another. 
However, it is not really an drawback since most of 
the time, the surgeon chooses the projection in order 
to obtain an emerged sight of the studied arterial 
segment.  

 
Retinal angiograms 

In this application, the problems are quite similar 
to the analysis of coronary angiograms. The main 
differences principally concern the imagery system 
and the network vessels complexity. Fig. 14(a) shows 
an example of a retinal angiogram. For this image, 
the maximal vessel diameter is nearly inferior to 
twelve pixels. Resuming the previous calculous we 

obtain 46.3max =σ . We choose the sampling sequence 
presented on Table 4. 

 
 

Table 4.  Scales used for the analysis of a retinial angiogram. 
 
t 0.0 0.75 1.00 1.25 1.50 1.75 2.00 
σ 1.00 1.22 1.41 1.58 1.73 1.87 2.00 
t 2.25 2.50 2.75 3.50 4.50 5.75 2.25 
σ 2.12 2.23 2.34 2.64 3.00 3.39 2.12 

 
 
The overall execution time for a 596×603 image 

and 12 scales is almost less than 25 seconds. The 
results of the detection of retinal vessels are shown on 
fig. 14(b). One can notice that the quality of the 
results is higher than the coronary angiograms ones 
because we have a better contrast.  
 

CONCLUSION 

In this paper we first have introduced a valley 
response depending on the two principal curvatures. 
Doing that, we have been able to characterize points 
of the image surface looking like valleys as bottom-
lines points. Then, we have suggested an automatic 
strategy for the multi-scale detection of the blood 
vessels going through the detection of these bottom-
lines points. The proposed algorithm gives good 
results both in continuity terms and in localization 
terms, even in the case of strong stenosis and bad 
contrasted angiograms. Besides, the algorithm has a 
low computational cost, and we have shown that it is 
suitable to other imagery modalities. However, 
concerning the arteries detection, the intervention of 
the surgeon can still be useful to remove some 
ambiguities. In the future we aim at using the 
deformable models frameworks to reconstruct the 
three-dimensional representation of the interesting 
arterial segments.  
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Figure 10. (a) “LCA-RAO12-CRA20” angiogram, (b) bottom-lines extraction of 11(a) with K=100 and N=5. 

 

 

 
(a)  (b) 

Figure 11. (a) “RCA-OAG89-CRA2” angiogram, (b) bottom-lines extraction of 12(a) with K=80 and N=5. 

 

(a)  (b) 
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(a)  (b) 

Figure 12. (a) “LCA-RAO12-CRA20” angiogram, (b) diameter estimation of “LCA-RAO12-CRA20”. 

 

 

 

(a)  (b) 

Figure 13.  (a) A retinal angiogram, (b) Skeleton extraction of the vessels. 
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