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Abstract - In this communication we propose a new and autiorstrategy for the multi-scale extraction of vass
The objective is to obtain a good representatiotthef vessels. That is to say a precise charadierizaf their
centerlines and diameters. The adopted solutioninegithe generation of an image scale-space iohathie various
levels of details allow to process arteries of digmeter. The proposed method is implemented usiadgartial
Differential Equations (PDE) and differential gedmngeformalisms. The differential geometry allowsy tthe
computation of a new valley response, to charatdhie centerlines of vessels as well as the baitws of the
valleys of the image surface. The information gitgrthe centerlines and valley response at diffeseales are used
to obtain the 2D multi-scale centerlines of thedes. To that purpose, we construct a multi-sadfjacency graph
which permits to keep the K strongest detectidihen, the detection we obtain is coded as an at&ibgraph. The
suggested algorithm is applied in the scope ofkinds of angiograms: coronaries and retinal angiogr

Keywords: Medical Imaging, multi-scale analysis, PDE, wallX-ray angiograms, vessels.

INTRODUCTION steps: 1) angiogram preprocessing: this step
_ _ ) consists in enhancing the vessels in regard to the
The work presented in this paper is a part §f;cyground of the image; 2) skeletonization and
broader project, which consists in developing @Fijges extraction: this step consists in detecting
general method to detect, rebuild, analyze ange” ,gints pelonging to the virtual path going
visualize coronary arteries. The development of rough the vessels and detecting those belonging
three-dimensional (3D) synthesized image W"E the boundary of the vessels; 3) 2D features

allow to carry out blood flows simulations ongmation: the detected points must be organized
pathological arterial segments. Consequently, it orger to form the two structural entities: the

will bring out a symptomatic indication and agyeleton and the edges of the arteries. The first
better hemodynamic  evaluation — of  the, o gives the localization and the topology of the
repercussion of a stenosis on the myocardifiq ig| tree, and the second one gives the
perfusion. The medical practitioner will therefor%orphology of the detected vessels; 4) matching

be able to decide on a treatment that suits g e oD detected features: here, the point is to
pathology. Currently, the 2D X-ray angiography 1oy the detected arterial segments to the

is the most widely spread, and one of the besf esnonding anatomical structures; 5) 3D
vessels-adapted imagery systems for

: ) studying@construction: the skeleton detection from each
coronary arteries. It is able to reveal projections,ijence allows to estimate the three-

Og the artelrlesl along sbever?l_ 'n%dences'hWhed}mensional localization of the vessels skeleton.
there is only a low number of incidences, the Usf,g gqges detection provides an estimation of the

of a three-dimensional geometrical model of thgenerajized cylinders cross sections parameters.
vessels is necessary to mitigate the scarte |, yhe present work, we focus on the three
information provided by the projection. In this

_ reliminary steps of the 3D-reconstruction, by
context, the vessels are often modelized By,hoging” a new algorithm for the multi-scale
generalized cylinders. Hence, they ar

, _ nalysis of the vessels. It is based on Partial
characterized by a set of cross sections centefgffarential Equations (PDE) and

on a virtual trajectory going through the center eometryframeworks.
the vessels. According to [1], the general process
of a 3D reconstruction includes the following

differential
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This paper is organized as following: Section 2
presents previous works on vessels detection; in
Section 3, after some reminders of differential
geometry, we propose a new valley response; in
Section 4, we describe a multi-scale vessels detect
algorithm; in Section5, we present several
experimental results. Finally we draw the main
conclusion in Section 6.

PREVIOUSWORKS

To process 2D X-ray angiograms, several
constraints and difficulties must be taken into
account: the luminance of these images depends
greatly on the capturing conditions (x-ray inteysit
angle of incidence, x-ray absorption of the organs.
the ribs, the vertebrae and the catheter, whicle hav
interest for a coronographic examination, but look
like blood vessels and can therefore disturb the
automatic detection processes; the non-uniform
diffusion of the contrast agent; the variability tbie
arteries size; the X-ray system noise. All of these
constraints led to develop specialized detection or
segmentation techniques. One can distinguish five
main categories of techniques:

1) Mathematical morphology techniques
Toumoulinet al.[2] use a combination of closing and
opening mathematical morphology operators to
enhance the vessels of subtracted angiograms. They
use a modified grey-level skeleton algorithm and a
top-hat operator to extract local maxima. A binary
skeleton is extracted. Finally they use successive
dilations and comparisons with the local gradient
magnitude to detect the edges. E#toal.[3] use a
top-hat operator with a structuring element whose
size is related to the size of largest vesselgrasion
operator to enlarge the vessels and to reduce the
noise. The resulting image is thresholded and
skeletonized by thinning operations. Finally the
authors use a watershed transform based on the
centerline and background markers.

2) Tracking techniqueshese techniques require
user interactions to define beginning, ending or in
between points or cross-sections [4,5]. A least cos
algorithm is then ran to connect the manually setéc
points. The cost function is generally based on
greylevels [5,6,7] and edge information like the
gradient norm, Laplacian zeros, parallelism
response... [8,9]. The least cost algorithms detae
to the research of the least cost path in a valued
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graph. Suggested solutions are based on the A*
algorithm [4,5,9], on recursive sequential
tracking [8,7,10], or front propagation [11,12].

3) Deformable models techniquesthese
techniques consist in a manual initialization of an
opened skeleton or edge, generally modelized by a
spline, which is iteratively deformed in such wagtt
the points belonging to the spline minimize a globa
deformation energy function. This energy functien i
divided between an internal deformation term,
controlling the “tension” and the “rigidity” of the
spline, and an external deformation term which
defines the attraction of the spline on the skeleto
on the edge. The choice of this external energy
usually depends on the applications and the authors
For example Kleiret al. [13] use “stretched-Gabor”
filters [14], whereas Cheet al. [15] prefer using the
local minima of the image intensity.

4) Multi-resolution techniquesthese techniques
give images at several resolutions allowing to
simplify or accelerate some “conventional” image
processing tasks. Different approaches, like
wavelets [16,17] or Gaussian pyramids [18] are used
to provide the different resolutions. The main
drawback of these techniques is the difficulty to
follow the structures across different image
resolutions. Some applications of these technidoies
vessels detection have been suggested by [19], [20]
and [21].

5) Multi-scales techniquesthese approaches
consist in computing a response of the sought
structure at different chosen scales. The scaliegiv
the highest response is related to the size of this
structure. A multi-scale analysis is generally
composed of two main steps: a feature extractiep st
where the skeleton or edges are extracted at eliffer
scales and a scale-space fusion step where the
meaningful information of the scale-space is
summarized from all of the scales in one image to
simplify the decision step (Fig. 1). Numerous works
for vessels detection use these
techniques [22,23,24,25,26,27,28,29].

Among all these techniques, most of them first
extract the edges and then define the skeletoheas t
centerline of the detected edges while others ptefe
detect the skeleton first and then the edges. We
consider that this latter solution is the most aelépo
our application. In fact, near stenosis area, edge
points on both sides of the vessels may not aleays
detected simultaneously. Besides, it has been shown
that the center points localization depends on the
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edge operator. Here, we aim at detecting the whole
arterial tree, first of all to simplify the matchijrstep,

but also to limit as much as possible the surgeon’s
work. Contrary to most of the literature techniques

FEATURESEXTRACTION

Characterizing vessels by a response function
Coronary arteries obtained by X-ray angiography

we propose an automatic detection where the surgeon are elongated and dark structures on the image

can quickly select good and bad detections. Thig wa
no fastidious and time expensive initializationpsie
needed.

Here we chose to use a multi-scale approach for
the following issues: 1) it allows an automatic and
global detection of vessels of various diameteyst 2
does not require initialization steps; 3) it prasda
family of same sized images which simplify the
fusion process.

Scale-space iqformation fusign

v
Structural entity formation

Figure 1. The general scheme of a multi-scale analysis tietec
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background. Arteries tubular nature implies a gneat
absorption of X-ray in the axial part of the armsri
than on their wall. Therefore, if we study the ity
along a profile perpendicular to the local direotiaf

an artery, the skeleton appears to be locatedén th
same place that the local minima of the intensity
function (Fig. 2). Besides, if we consider the imas

a surface ofRs, thenthe coronary arteries become
valleys within the relief of the image surface. o,
extract the skeleton means to locate the pointhén
bottom of these valleys. Besides, as shown by Chen
and al. [30], even if bottom points do not genegrall
correspond to centerlines points, their detecti®on i
highly stable. Throughout this article, we use the
following notations and terminology to design peint
or sets of points of the relief map. A valley is an
elongated depression between mounts. The set of
points located in the bottom of a valley is called
bottom-line.  Differential geometry allows to
generalize the research of local extrema on one-
dimensional real functions to multidimensional
functions. This is the reason for using this
mathematical framework in this article.

Figure 2. The profile of intensity following a perpendicular
direction to the vessel.

We consider the image | as the mapQOR? - R.
The first and second local partial derivatives loé t
image are defined byl , | [ [

y? Ixx! yy Xy *

t . .
O =(% ,%y) denotes the gradient operator. Given a

vector in R2 we denote the first derivative aloag
l,=01&a. Given Y a two-dimensional manifold

Copyright© 2006 C.M.B. Edition
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locally embedded i|R3, the image is then modelized
by amaps: Y > R,
S=(Ul,02)=(Xl(al,02),Xz(al,az),xs(al,az)), Q)

o' and ¢? being the curvilinear coordinates of the
image surface. For each point®the tangent spade

1.2
is the plane created by the vectoBs, :aS(U—,la) and
lilo
2
S, :% . The first fundamental form allows to
o

define a metricgs; on 2. It can be written as a
positive definite symmetric form:
2
dé = Zdijglo_lg:fz ()
i=1j=1
which associated matrix is:

9,,9
F = 11712 3)
1 \9%9%
The second fundamental form represents the

curvature of curves drawn on the surface. It isngef
by the matrix:

<n,S,> =<nS, >
F,= @)

<n,S, > =<ni,S, >

where < .,.>is the inner-product defined dﬁs

and i is the normal vector to the surface such that
(S,1..S,2,M) is a direct basis. The principal curvatures,

ki,i0{12}, and the principal directions of the extrema
of the image’s surface;,i0{12}, are respectively the
eigenvalues and eigenvectors af=F,'F, .

k2
ombilic

flat

saddle—valley

ombilic peak crest  saddle—crest minimal
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Figure 3: The classification of the image’s surface points i
regard with lfL and l&

We present in Table 1 the calculation of the
fundamental forms, according to two conventional
choices of gs for

S(x,y) = (Xl(al,az) =x,X%(01,0,) = y, X3(01,07) = 1 (%, Y))D
W and 4 are respectively called the Weingarten and
Hessian matrices. We notice that both metrics are

invariant to translations and rotations in the igpat
variables transformations, but the metric inducgd b

R3 is the only one giving the invariance with regard
to the spatial unit transforms.

The great interest with the principal curvatures is
that they allow to classify the points of the soea
according to the following categories: valley, tres
flat, pit, peak, saddle and minimal (see Fig. 3).
Consequently, a point of the valley is mathemaitcal
a point of the image’s surface such that>0 and

k2 =0.
In practice, the luminance variations and the noise

in real images make the detection of pure valleys
almost impossiblek; >0 and k, =0). In regard with

the previous definitions, the search domain ofexall
pointsV is such thatk, >0 (Fig. 3). That is to say
the points that verify:

K, z k,
K, z -k,
max(lk, [k, ) = K

Table 1. Differential characteristics in regard with theo@e of
the metrici].

Euclidiar Inducec
F 10 1+1F 1y
1 01 Iy 1415

| e Iy 1 H
E H_[I I, | JL+12+12
x'y vy X y

A "

Metric

w=FF,

In other words we have extended the search
domain to saddle-valley and hole points excluding

Copyright© 2006C.M.B. Edition



TREMBLAIS B.etal.

ombilic and minimal points. Among the points\6f

we need now to extract the points belonging to the
bottom-lines. For each point, we can define a Inotto
line membership degree functindepending on the
principal curvatures. In the following, we will ¢td

a valley response. A few functions have alreadybee
suggested in the literature, such as

D1 (kl' k2) = V k12 + k22 and Dz(kl, kz) = (klz + k22)2 by
Lindeberg [23], andD;(k;, k,) =k, by Nasser [23]. It is
worth noticing that the functionle D, and Dy may

have very high values where the local surface does

not correspond to a valley. So we suggest thabDthe

function should rather verify the following propes

for the points oW
1-D(k11k2) = D(k1v_k2)
2 lim D(k.k,)=0

Ky 0,k, -0

3.D(k;, k,) increasingn k;

4.D(k,, k,) decreasingn k, (bothsidesof thek, axis)

Those conditions are verified by the function
D(k1,k2)=|k1-k2||k1+k2| (see Fig. 4). According to
us, a bottom-line point is then a point of V whisha
local maximum of the response D in the direction of
V.

(6)

Figure 4. D(k1,k2)=|k1-k2||k1+k2].

Definition 1. A bottom-line point verifies:

Ky 2 k

kl E k2 (7)
max(lky ka2 [) = kg
0D = 0

Our experiments [31] show that using the
eigenvalues of the Weingarten matrix for the calsul
of D and the eigenvectors of the Hessian matrix,
which are less noise sensitive, gives better r&sult
especially in regard with the continuity of the
extraction. Fig. 5 gives an example of the vessels
centerlines extraction on an angiogram. One can see
that vessels are well localized. Besides, their
detection is almost continuous.
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Figure 5. Superimposition of the extraction with an angiogra

MULTI-SCALE EXTRACTION OF
ELONGATED STRUCTURES

Multi-scale detection of the bottom-lines
In order to study vessels of various sizes and to
regularize the calculus of the derivatives, we deci
to perform a linear multi-scale analysis based on a
PDE process coming from the heat equation [32,33]:
al (x,
o ®
(%, y,t)
al
%BQ
Where lq(x,y) is the initial image andQ is the
boundary of Q. In order to process the image at
different scales and to take into account largéesca
this equation is approximated by an iterative iekpl
discretization scheme.

= Al(xy,t),0(x y)0Q

lo

=0

Scale-space parameters setting

At this point, we now have to set the humpeof
scales and their distribution in the ran@e;,,oma] -
The ideal case would be to know the various vessels
sizes and then to choose the study scale accotraling
that. But in practice, the task is more difficutdause
we just have an estimation of the widest arteries. s
To determine the minimal scale,,,, we have taken

into account the sampling problems (i.e. aliasimg)
choosing o, =10. As many authors did before

[24,22], we modelized the vessels by generalized
cylinders with a symmetric bar-profile of widda, in

Copyright© 2006 C.M.B. Edition
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order to estimate the optimal detection scale. rAfte
some calculus, we deduce the optimal scale
expression:s,opt (w) = w(zﬁ)'l. The maximal scale

omax 1S empirically set according to the size of the

widest arteries, that is to say about twenty pixdls
width in the studied angiograms. So
O pax = Sop (20) = 5.77 -

In the scope of our application, we aim to follow
the detected bottom-lines across the scale-space. A
logarithmic sampling seems to be more coherent with
the evolution of the image changes across the
iterative process. However, to achieve this, wetmus
take care of avoiding too high sampling steps.
Experiments have indicated that for the small scale
logarithmic sampling fails with these requirements.
Therefore, we suggest to use an uniform sampling
towards a particular scaler, and then to use a
logarithmic sampling for superior scales. This aino
logarithmic sampling allows to better follow the
detected bottom-lines across the scale-space. We
present in Table 2 the sampling sequence usetidor t
linear multi-scale analysis of the coronary arterie

Table 2. Scales chosen for the multi-scale analysis of the
coronary arteries

t [0.50
o [1.00
t[2.78
o [2:34

0.75
1.22
3.5C
2.64

1.25
1.58
5.7¢
3.39

1.50
1.73
7.5C
3.87

1.75
1.87
9.2¢
4.30

2.00
2.00
12.2¢
4.95

2.25 | 2.5(
2.12 | 2.23
1578 | -
5.61 -

1.00
1.41
4.5C
3.00

The multi-scale detection algorithm
Now, we present a new multi-scale algorithm for

set of p scales. Let{V;i }i .y and {BLU}I o

respectivly be the set of the valley response aed t
bottom-lines detection at scatg which we will call

the valley scale-space and the bottom-lines scale-
space. Notice that the dimension of these spaces is
N+1. Fig. 7 gives some scales of these scale-space
for a left coronary artery. One can see the praiyes
disappearance of the small vessels when the szale i
growing.

As Mongaet al did in [34], we construct a multi-
scale adjacency graph from those two scale-spaces.
The nodes of the graph are the points P detected at
least once across the bottom-lines scale-space¢idha
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to say, the points for which & exists such that
BL,. (P) =1. Each node contains all the scafés

verifying BL, (P) =1, as well as the valley

response and the directions of the principal
curvatures. An edge connects two nodes if the point
are adjacent or neighbors in the bottom-lines scale
space. Let NE(B), NE(P) and NE(P") respectively
be the set of the neighbors of P in the bottomsline
map at scaleg,_;, g,and o,,,.We define the set of

neighbors of Pi in the bottom-lines scale-spacthas

set N(® = {NE(P™") O P*,NE(P),NE(PY) O P*.

Thus, in the two-dimensional case, nodes have 26
neighbors. By studying the bottom-lines scale-
space [31], we can notice that the used detector
relatively preserves the localization of the detect
across the scales (the offsets do not exceed one or
two pixels). Consequently, the stability hypothesis
first planed by Witkin [33], “the structures which
survive over a broad of scales tends to leap aait th
eye...”, is suitable to our purpose. According h t
property we decide to prune the graph, keeping the
nodes which have been detected at I&afimes. A

lot of insignificant bottom-lines are eliminatedish
way. The experience shows that the value Nof
directly depends on the kind of image to process. |
other words, this parameter can be fixed for a
particular application.

Copyright© 2006C.M.B. Edition
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Figure 6. Left: some scales of the normalized valley scakcs,
Right: some scales of the bottom-lines scale-space.

Let #C be the number of connected components of
the graph, we denote uy:ck}, k{1, I#C} the set

of these connected components. To each connected
component we attribute the following response:

Z POCG, R(P)

M(CCy) = o)

(9)

where #CG, and R(P) respectively denote the

number of nodes belonging to the connected
components CC and the valley response

corresponding to thdé® point, M(Cck) being the

mean of the responses corresponding to the corthecte
component CCk. Thereafter, we also sort the

connected components by decreasing order according
to the M(Cck) values. By tuning the number K

between 1 and #C, we can keep the K "strongest"
connected components. The choice of K can be
leaved to the user’s appreciation. Fig. 8 shows the
impact of the choice df on the multi-scale detection
results. Projecting these components onto the image
plane, we obtain the “shadow” of th€¢ strongest
connected components. In fact, this step allongeto

a better connected arterial tree.
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K=100 K=300
Figure 7. Some bottom-lines extractions for different valwds
K

Then, a homotopic thinning algorithm [36] allows
to transform the bottom-lines into one pixel widh
connected paths. Finally, the remaining detection
artifacts are eliminated by deleting low length eslg
Fig. 9 shows a more synthetic description of our
algorithm. It is worth noticing that this algorithia
very easy to implement comparing with a marching-
line algorithm [35,37].

Structural entities formation

To form the structural entities it is necessary to
find a data structure that first, allows to code th
vascular tree, then acts on the detection, andhfina
matches detected structures. The coronarian tnee ca
anatomically be modelized, quite obviously, by a
three-dimensional binary tree. But the projectidn o
this tree on the X-ray sensor generally rises
superimpositions and junctions. The structure ef th
proposed detection is consequently more complex
than a simple binary tree. That is why we decide to
modelize the coronarian tree by an attributed graph
structure. The nodes of this graph are the detected
singular points: the ending, the forks, and thejiam

| Almost Logarithmic Sampling|

Valleys scale-space g g Bottom lines scale-space

| Multi-Scale adjacency |

v

Graph prunning

K strongest
connected
components

Number of —p

- |+
detections: N

| Graph projection onto the plan}a

v

| Projection thinning |

v

| Cleaning |

Figure 8. Fusion algorithm.
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points (see Tab. 3). These singular points hava bee
detected using the hit-or-miss operators [31]. Agee

is defined by a discrete path connecting two siagul
points and containing the following attributes: the
path points list with their own attributes (dianrete
localization, principal curvatures directions..ijs
length and an anatomic name of the detected
structure. The latter attribute allows a manual
matching.

Table 3. Some local configurations of singular points. éad
point; (b) end points; (c) bifurcation point; (dinction point.

OO0 EEE ONEC0 ECON
OO0 OO EENE COEO

OO OO0OO EOE ECON

(a) (&) (e) (d)

Diameter estimation of the vessels
Theoretically, the multi-scale analysis allows to

get an estimation of the arteries’ diameters by the
optimal scale determination. When one samples the
scale variable, it turns out that the scale giving
maximal response is rough: the scale samples are to
spaced, especially with the use of a logarithmic
sampling. According to this, if we denote the scale
giving the maximal response,,,, we can only

affirm that the optimal scale belongs to the ranfe
scales [0 max_1. Ormaxsg] - That is why we prefer to

localize the edges on both sides of the skeletamt.po
In order to do that, we have to analyze the praffle
the image gradient in a direction perpendicular to
those of the vessel. As the maximal curvatures
directions are quite stable across the scale-spaee,
approximate it by the mean of the maximal principal

curvatures directions on the whole selected scales.

The gradient of the profile has been previously
smoothed using a Gaussian filter to limit the noise
influence. The pixels giving the maximal resporse t
the image gradient on both sides of the skeletatis w
then be considered as edge points. Finally, thal loc
diameter of the vessel is estimated by computirg th
Euclidean distance between these two edge poifats (c
Fig. 10).

In spite of its simplicity, the suggested technique
gives nevertheless a good preliminary estimation of

the vessels diameters and may serve as a pathology
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indicator. For further works we may imagine, as
suggested by Chest al.[38], an estimator based on
several diameter estimation techniques.

Figure 9. Diameter estimation.

EXPERIMENTAL RESULTS

X-ray coronographies

In this section, we present the results obtained
using our skeleton detection algorithm applied here
two clinical angiograms selected from two
cineangiograms provided by the University Hospital
Center of Poitiers, France. The cineangiograms have
been acquired by a single plane angiographic system
and digitized into 51 512 images with 8 bits of
gray-level resolution. Fig. 11(a) and fig. 12(apwh
two of the digitized coronary angiograms. The first
one concerns a left coronary artery angiogram with
RAO/CRA=12°/20°, the second one concerns a right
coronary artery angiogram with LAO/CRA=89°/2°.
We respectively call them “LCA-RAO12-CRA20”
and “RCA-OAGB89-CRA2". The size of the widest
searched artery is almost the same from one
angiogram to another. So, we can use the same
number of scalep for each multi-scale analysis.
Furthermore, the parametBris here fixed to 5 for
this kind of images. The parametgrs individually
adapted so as to favor the detection of the prahcip
arteries, since they are the most interesting doies
the surgeon. The proposed algorithm has been
implemented using the C/C++ programming
language on a personal computer with CPU: AMD
K7 Thunderbird 1Ghz, and 256Mo RAM running
under the Linux operating system. The overall
execution time for the analysis of 16 scales isalkgu
less than 25 seconids

Y1t is worth noticing that the algorithm has not get the
optimization stage yet.

Copyright© 2006C.M.B. Edition
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It is worth noticing that the skeletons are
successfully and automatically extracted as onehpix
wide near continuous 8-connected paths. That is eve
the case for strong stenosis like the one localimed
the white circle on fig. 11(a). Besides, the result
presented in fig. 12(b) shows the algorithm
robustness to low contrast angiograms. One would
expect such results, as throughout the whole
processing sequence, we took great care about the
continuity of the detection. Some arterial segments
are however still disconnected when it should lee th
case, according to the surgeon knowledge on the rea
topology of the coronarian tree. In this situatibare
are three possibilities: 1) either the connexioghmi
effectively exist at the “visible” intersection dlfie
arterial segments (in this case the algorithm ¥afl}
either the connexion might exist but considering th
vessels overlapping its localization is uncertei;
either the connexion might not exist because the
vessels cross each other. Conversely, two vessels
could have been connected despite the fact thgt the
should not have been. Most of the time, it happens
the case of a crossing or of an overlapping. Bsside
sometimes our algorithm may detect uninteresting
objects like the catheter, the patient ribs or scliank
areas localized near the arteries. Under such
circumstances it seems difficult to remove all thes
detection ambiguities having a single angiogram. We
feel that at this stage it would be interestindetahe
surgeon manually decide.

We show on fig. 13(b) an example of the edge
detection obtained from the multi-scale skeletons
detection. One can notice that edges are quite well
localized and relatively continuous. This is whae
would expect, since the skeletons detection was
continuous itself. We notice that this method fails
when the vessels are too close to one another.
However, it is not really an drawback since most of
the time, the surgeon chooses the projection ierord
to obtain an emerged sight of the studied arterial
segment.

Retinal angiograms

In this application, the problems are quite similar
to the analysis of coronary angiograms. The main
differences principally concern the imagery system
and the network vessels complexity. Fig. 14(a) show
an example of a retinal angiogram. For this image,
the maximal vessel diameter is nearly inferior to
twelve pixels. Resuming the previous calculous we
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obtaino, ., = 346. We choose the sampling sequence
presented on Table 4.

Table4. Scales used for the analysis of a retinial angiogr

0.0 | 0.75/1.00| 1.25| 1.50| 1.75| 2.00

1.00{1.2211.41|1.58|1.73|1.87| 2.00

2.25|2.50[2.75|3.50]450| 5.75| 2.25

t
(9)
t
(9)

2.12|12.23|2.34| 2.64| 3.00| 3.39| 2.12

The overall execution time for a 59803 image
and 12 scales is almost less than 25 seconds. The
results of the detection of retinal vessels arevshon
fig. 14(b). One can notice that the quality of the
results is higher than the coronary angiograms ones
because we have a better contrast.

CONCLUSION

In this paper we first have introduced a valley
response depending on the two principal curvatures.
Doing that, we have been able to characterize point
of the image surface looking like valleys as bottom
lines points. Then, we have suggested an automatic
strategy for the multi-scale detection of the blood
vessels going through the detection of these bettom
lines points. The proposed algorithm gives good
results both in continuity terms and in localizatio
terms, even in the case of strong stenosis and bad
contrasted angiograms. Besides, the algorithm has a
low computational cost, and we have shown that it i
suitable to other imagery modalities. However,
concerning the arteries detection, the interventibn
the surgeon can still be useful to remove some
ambiguities. In the future we aim at using the
deformable models frameworks to reconstruct the
three-dimensional representation of the interesting
arterial segments.
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(b)
Figure 10. (a) “LCA-RAO12-CRA20" angiogram, (b) bottom-linesgteaction of 11(a) with K=100 and N=5.

(a) (b)
Figure 11. (a) “RCA-OAG89-CRA2” angiogram, (b) bottom-linesteaction of 12(a) with K=80 and N=5.
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(@) (b)
Figure12. (a) “LCA-RAO12-CRA20" angiogram, (b) diameter estition of “LCA-RAO12-CRA20".

D8:08.00 . T b8:08.00

(€Y

Figure 13. (a) A retinal angiogram, (b) Skeleton extractidnhe vessels.
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