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Abstract: miRNAs are key regulators that bind to target genes to suppress their gene expression level. The relations between miRNA-target genes enable users 
to derive co-expressed genes that may be involved in similar biological processes and functions in cells. We hypothesize that target genes of miRNAs are co-ex-
pressed, when they are regulated by multiple miRNAs. With the usage of these co-expressed genes, we can theoretically construct co-expression networks (GCNs) 
related to 152 diseases. In this study, we introduce ARNetMiT that utilize a hash based association rule algorithm in a novel way to infer the GCNs on miRNA-tar-
get genes data. We also present R package of ARNetMiT, which infers and visualizes GCNs of diseases that are selected by users. Our approach assumes miRNAs 
as transactions and target genes as their items. Support and confidence values are used to prune association rules on miRNA-target genes data to construct support 
based GCNs (sGCNs) along with support and confidence based GCNs (scGCNs). We use overlap analysis and the topological features for the performance analysis 
of GCNs. We also infer GCNs with popular GNI algorithms for comparison with the GCNs of ARNetMiT. Overlap analysis results show that ARNetMiT outper-
forms the compared GNI algorithms. We see that using high confidence values in scGCNs increase the ratio of the overlapped gene-gene interactions between the 
compared methods. According to the evaluation of the topological features of ARNetMiT based GCNs, the degrees of nodes have power-law distribution. The hub 
genes discovered by ARNetMiT based GCNs are consistent with the literature.

Key words: Gene co-expression network; Association rule based algorithms; GNI algorithms; miRNA-target genes.

Introduction

Advances in sequencing technologies equip resear-
chers for further investigation and understanding of 
underlying mechanisms in disorders. Sequencing tech-
niques like microarray gene expression data, RNA-
sequencing data (RNA-seq), ChIP-sequencing (ChIP-
seq), microRNA (miRNA) give detailed overview of 
entire genomes and transcriptomes. These high-through-
put techniques reveal molecular interactions and allow 
them to be represented as networks. In these networks, 
molecules and their interactions are represented as 
nodes and edges. We know that molecular relations can 
take active role in regulation of biological processes that 
are related to the pathogenesis of cancer. For this reason, 
understanding the structure of molecular interactions is 
the key to reveal the cause of disorders. 

miRNAs are small non-coding RNA molecules that 
bind to messenger RNA (mRNA) transcripts and post-
transcriptionally regulate expression of target genes. 
Cell growth, differentiation, proliferation, apoptosis, 
migration and similar processes are associated with can-
cer. miRNAs play important role in regulation of these 
processes by controlling expression of target genes. 
The inferred networks of miRNAs and target genes are 
involved in many cancer related biological processes. 
Recent studies (1-3) use miRNA expression data to infer 
co-expression networks and regulatory networks. Infor-
mation based Network Inference (NI) (1), Bayesian 
Networks (2), Differential Equation (3) are some of the 

popular methods that use miRNA expression data for 
inferring gene networks. 

In this study, CoMeTa (4) project inspired us to de-
rive gene networks from miRNA-target genes dataset. 
CoMeTa infers GCNs by using miRNA-target genes 
data and microarray gene expression data. First, target 
genes of miRNAs are retrieved. Afterwards, the relation 
between the target genes and other genes are obtained 
from microarray gene expression data to construct the 
gene co-expression networks. 

Co-expressed genes are involved in similar biologi-
cal processes and functions in the cells. Identification 
of co-expressed genes is important since Transcription 
Factors (TFs) and miRNAs have tendency to regulate 
the co-expressed genes. This point motivates us to infer 
gene co-expression networks of miRNA targets that are 
related to different disorders. In this study, we use the 
experimentally validated interactions of miRNA targets 
for GCN construction. We hypothesize that target genes 
of miRNAs are co-expressed, when they are regulated 
by multiple miRNAs. In addition, the strength of the 
correlation between co-expressed genes increase when 
the number of common regulating miRNAs increase. 

It is known that association rule mining algorithms 
can detect relations in large datasets and can specify 
most relevant items (5-8). In addition, they serve for 
constructing graphs with these relevant items. For this 
reason, we use a hash based association rule algorithm 
to infer gene-gene interactions from miRNA-target 
genes. In the initial phase, we assume miRNAs as tran-
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sactions, and the targets of miRNAs as items. Next, we 
use support and confidence values to extract association 
rules from miRNA-target genes data. Finally, we esti-
mate co-expressed genes on the validated miRNA-tar-
get genes relations. We evaluate the proposed approach 
through overlap analysis of the gene network with 
literature data, which consist of Protein-Protein Inte-
ractions (PPI). Additionally, we examine topological 
features of the inferred gene networks and the relations 
between hub nodes of networks and cancer types. Using 
the miRNA-target gene relations, we compared the si-
milarities between the GCNs of our proposed approach 
with the GCNs of information based gene network infe-
rence (GNI) algorithms. Besides these similarities that 
give information about the shared relations between the 
derived GCNs, we also compared their performances on 
validation data.

In the next Section, we introduce the dataset and the 
association rule mining method. Section 3 presents the 
experimental results. Finally, Section 4 discusses the 
results and concludes the paper.

Materials and Methods

We use a hash based association rule mining algo-
rithm in a novel way to infer the GCNs on miRNA-tar-
get genes data. In this section, we introduce our dataset 
and our method.

 
Dataset

We obtain miRNA relations for diseases from the 
manually curated miR2Disease database (9). The miR-
2Disease database contains 2,429 unique miRNA-di-
sease relations, associated with 477 miRNAs and 152 
diseases. 

We gather the miRNA-target gene relations from 
two sources. The first resource is the 6.1 release of the 
miRTarBase (10) database that contains experimentally 
validated 322,389 unique miRNA-target gene interac-
tions, between 2,649 miRNAs and 14,894 target genes. 
Second resource is again the miR2Disease database, 
containing 637 unique miRNA-target gene instructions 
between 180 miRNAs and 397 target genes. 

Our integrated dataset consists of experimentally 
validated 322,994 unique miRNA-target gene interac-
tions. These interactions are related to 2,801 miRNAs 
and 15,059 target genes. We generate the disease related 
miRNA-target genes data from the relations between 
disease-miRNAs and miRNA-target genes. We match 
these relations based on miRNA names. After data re-
trieval, we apply our association rule based algorithm to 
construct GCNs.

Association rules based gene network of miRNA tar-
gets (ARNetMiT)

We aim to construct disease related co-expression 
gene network on miRNA-target genes data. We also 
give users the option of selecting any disease to get the 
related GCN. We name the proposed model as Asso-
ciation Rules based Gene Network of miRNA Targets 
(ARNetMiT). The overview on the design of ARNet-
MiT is given in Figure 1.

Association rule based algorithms work effectively 
on discovering hidden relations between items, espe-

cially in big datasets. Apriori (11) and Eclat (12) are the 
most popular and widely used association rule based 
algorithms and they are applied in many different areas. 
These two algorithms differ on search methods when 
traversing a tree. While Apriori traverses a prefix tree 
with breath first search, Eclat favors depth first search. 
Because of this difference, Apriori has a disadvantage 
of scanning the dataset multiple times. Eclat prevents 
the multiple scanning problem by intersecting rows to 
discover hidden relations in the itemset (13). In this 
study, we modified the hash based Eclat algorithm and 
used in GCN construction. Since our dataset consists of 
miRNA-target gene relations, Eclat transposes the data 
to find the common miRNAs that regulate the co-ex-
pressed genes. We solve the excessive size problem of 
the integrated miRNA-target genes data by using a hash 
function. The hash table produced by the hash function 
enables us to rapidly retrieve data of the candidate items. 

In order to eliminate insignificant interactions, asso-
ciation rule based algorithms use several parameters 
such as support, confidence and lift. In this study we 
use support value, which is calculated by (1) and (2), to 
detect the frequent genes that are regulated by the same 
miRNAs. We find the frequent genes that are regulated 
by more than a number of miRNAs with (1). The mi-
nimum number of regulating miRNAs are determined 
using a threshold value (minsup1). In (1), G is the set of 
all genes, n(x) is the number of miRNAs that regulate 
the gene x, N is the total number of miRNAs and F1 is 
the frequent 1-itemset of genes. 

                                                                        (1) 

Candidates of co-expressed genes are the pairs of 
frequent genes in F1. We find the co-expressed genes 
that are regulated by more than a number of common 
miRNAs with (2). In this equation, {x,y} gene pair is a 
candidate of co-expressed genes and F2 is the frequent 

Figure 1. The overview of the proposed ARNetMiT system.
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Figure 2 shows an example sGCN illustration, ob-
tained by using only the support value. The scGCN 
in Figure 3 is obtained by using the support and the 
confidence values. ARNetMiT builds graphs as in the 
examples given in Figures 2 and 3. By using these gra-
phs, ARNetMiT can theoretically derive GCNs of 152 
diseases. 

The steps of ARNetMiT are comprehensively il-
lustrated in Figure 4. The first part of the illustration 
describes the miRNA-target gene relations. We trans-
formed the raw binary miRNA-target genes data into 
matrix format in order to proceed to the calculation of 
the most regulated genes. 

In the second part, we introduce the gene occur-
rences, which describe the number of miRNAs regula-
ting each gene. Since the total number of miRNAs are 
same for each gene, the denominators (N) of (1) and 
(2) can be omitted. The minimum support value for the 
example in Figure 4 is 2 (minsup1=0.5, maximum oc-
currence value (MOV)=4). In this example, we removed 
the genes having less than 3 regulators from F1.

The third part of the illustration shows the co-ex-
pressed genes, which consist of possible interactions of 
the genes in F1. For instance, this part shows that GeneB 
and GeneC are regulated by 3 common miRNAs. At the 
next step, we use the minimum support value (minsup2) 
to prune the gene-gene interactions. Similar to 1-item-
set pruning, the minsup2 value for F2 in Figure 4 is 1.5 
(minsup2=0.5, MOV=3). At this step ARNetMiT pro-
duces sGCN. 

In our example, if a gene-gene interaction is regula-
ted by at least 2 common miRNAs, we assume that them 
as co-expressed genes. We calculate confidence values 
of these co-expressed genes by using (3). We eliminate 
the co-expressed genes having confidence value below 
minconf (in this example, 0.5). At the last step, we make 
the gene-gene interaction matrix symmetric to form the 
scGCNs of ARNetMiT.

At this point, we introduce ARNetMiT R package, 
which enables the users to infer sGCNs and scGCNs. 
The datasets mentioned in Section 2.1 are also given 
in the ARNetMiT R package. ARNetMiT can give the 
lift values of gene-gene pairs to calculate the relevance 
score of gene-gene interactions. The package can also 
list the all regulator miRNAs of the co-expressed genes. 
ARNetMiT uses RedeR R package (14) to visualize the 
GCNs. Researchers can access ARNetMiT R Package 
and the user manual from https://sites.google.com/site/
arnetmit/.

Results

For the performance analysis of ARNetMiT GCNs, 
we use overlap analysis, GNI network comparison, and 

2-itemset of gene pairs. The minimum number of miR-
NAs (minsup2) that regulate {x,y} are determined using 
the same thresholding in (1). 

                                                                               (2)

Higher support value for the co-expressed genes 
implies that there are many common miRNAs regula-
ting both genes. Thus, higher support value drives us to 
say that both genes have tendency to be co-expressed. 
The minimum support value (minsup) is a mandatory 
parameter of ARNetMiT, including the options of first 
quartile, median, mean and third quartile values of the 
patterns’ abundance distributions. The default minsup 
choice is rank support type, where the user defined coef-
ficient is multiplied by the maximum abundance value 
of the patterns. The minsup1 and minsup2 values are cal-
culated in the same way for F1 and F2 respectively.

Association rule mining algorithms can offer various 
parameters in addition to support value to prune weak 
hidden relations. Confidence (3) is such a parameter to 
eliminate weak gene-gene relations. The confidence 
value defines the conditional dependencies between 
co-expressed genes that are regulated by common miR-
NAs. According to (3), when gene x is given, the condi-
tional probability of gene y is calculated with the divi-
sion of the number of miRNAs that regulate the gene 
pair {x,y} to the number of miRNAs that regulate x. If 
the conditional probability approximates to 1, we can 
infer that x and y are likely co-expressed genes, when x 
is given. The minconf value in (3) is a user defined para-
meter and Fc is the set of gene-gene interactions whose 
support and confidence values are higher than minsup 
and minconf. 

                                                                               (3)

Example: Consider the following association rules, de-
rived from F1 = {Gene1, Gene2, Gene3, Gene4, Gene5} 
and minsup2=0.5, minconf=0.5.
rule1: (P(Gene1|Gene2) > minsup2), then Gene2 ⇔ Gene1
rule2: (P(Gene2|Gene3) > minsup2), then Gene3 ⇔ Gene2
rule3: (P(Gene4|Gene1) > minsup2), then Gene1 ⇔ Gene4
rule4: (P(Gene5|Gene1) > minsup2), then Gene1 ⇔ Gene5

rule1: (P(Gene1|Gene2) > minsup2 & P(Gene1|Gene2) > 
minconf), then Gene2 ⇔ Gene1
rule2: (P(Gene2|Gene3) > minsup2 & P(Gene2|Gene3) > 
minconf), then Gene3 ⇔ Gene2
rule3: (P(Gene4|Gene1) > minsup2 & P(Gene4|Gene1) > 
minconf), then Gene1 ⇔ Gene4
rule4: (P(Gene5|Gene1) > minsup2 & P(Gene5|Gene1) ≤ 
minconf), then {Gene1, Gene5} is not co-expressed.

Figure 2. Example of sGCN obtained by using the support value.

Figure 3. Example of scGCN obtained by using the support and 
the confidence values.
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topological features of gene networks. First, we focus 
on overlap analysis using the literature data. Then we 
compare the GCNs of ARNetMiT with the GCNs of 
GNI algorithms. Later on, we examine the topological 
features of ARNetMiT. 

Overlap analysis of ARNetMiT based gene networks 
using the literature data

In overlap analysis, previous studies use synthetic 
and real biological datasets for performance analysis of 
the gene networks (15, 16). PPI datasets that consist of 
interactions are frequently used in overlap analysis with 
real biological data (17, 18). Thus, we use PPI datasets 
for evaluating the performance of GCNs. The valida-
tion data consists of 1,594,366 unique biologically 
validated interactions. This number creates high false 
negative rates in the results of gene network inference 
(GNI) algorithms. For this reason, we use both number 
of true positives (TP) and precision in performance ana-
lysis. Afterwards, we utilize Fisher’s Exact Test (FET) 
to determine whether our overlap analysis is statistically 
significant or not. We discard all gene interactions that 
have significance lower than 0.05. We use GAnet R pac-
kage (19) for the precision and p-value calculations. 

We utilize data associated with breast, colorectal, 
pancreatic and prostate cancers, which are derived from 
miRNA-target genes data of ARNetMiT R package in 
order to construct the GCNs. We choose minsup1,2={0.1, 
0.2, 0.3} for sGCN inference using the rank type para-
meter. The result patterns for each of the four cancers 
are similar. When the support value is 0.3, precisions 
of all selected cancer related GCNs are higher, which 
can be observed in Figure 5. Although the precision is 

high, the true positive rates are lower as the number of 
interactions decrease. However, these strong associa-
tion rules lead us to derive more accurate and robust 
gene-gene interactions. Figure 5 shows that ARNetMiT 
scores nearly 10,000 TPs when minsup=0.1 but the pre-
cision is below 0.1. This result implies that ARNetMiT 
predicts many false positives when the support value is 
chosen low. The inverse proportion between precision 
and number of TPs is valid for all GCNs. 

As we mentioned before, ARNetMiT enables users to 
utilize both support and confidence values to eliminate 
the insignificant association rules, when constructing 
the GCNs. After the support value, the confidence value 
provides a second pruning step for weak associations. 
Since higher support values provide strong filtering, we 
choose minsup=0.1 and minconf={0.5, 0.7, 0.9} in order 
to construct scGCNs. 

The same literature data, which we used in perfor-
mance evaluation of sGCNs, is used for overlap ana-
lysis of scGCNs. Figure 6 proves that lower minimum 
confidence values do not produce lower precisions. This 
is different from the relation between support values 
and precisions in sGCNs. Precisions of scGCNs obtai-
ned with lower minconf values are generally higher than 
or equal to the precisions acquired with higher minconf 
values. On the other hand, number of TPs and interac-
tion predictions between sGCNs and scGCNs are si-
milar when higher thresholds are chosen. Thus, lower 
minconf values produce higher TPs, as a result of low 
pruning. When we observe Figure 6, we see that the pre-
cisions and TPs of sGCNs and scGCNs are very close. 
However, the ability of using both support and confi-
dence values in ARNetMiT enables users to fine tune 
the parameters for any data. 

We compare the performance of GCNs obtained 
with ARNetMiT and popular information based GNI 

Figure 4. The main steps of ARNetMiT, explained with an 
example.

Figure 5. Precisions and the number of TPs of four cancer related 
sGCNs. 

Figure 6. Precisions and the number of TPs of four cancer related 
scGCNs. 
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algorithms using the same miRNA-target genes data. 
The buildmiRNATargetTable function of ARNetMiT 
enables us to transform miRNA-target genes data to the 
format that the GNI algorithms use. Among the popu-
lar GNI algorithms, we choose ARACNE (20), C3NET 
(21), CLR (22), MRNET (23), and WGCNA (24) for 
the comparison. The minet R package (25) provides 
ARACNE, CLR and MRNET algorithms. Figure 7 pre-
sents the comparison of the GCNs obtained with the 
selected GNI algorithms and the GCN of ARNetMiT 
(a sGCN with minsup=0.1) on four cancer types. CLR 
outperforms other GNI algorithms on breast, colorec-
tal and prostate cancers. The highest precision of GNI 
algorithms is obtained by ARACNE on prostate can-
cer. On the other hand, GCNs of ARNetMiT produce 
slightly higher precision values than GNI algorithms on 
breast and pancreatic cancers. Additionally, ARNetMiT 
significantly outperforms the compared methods on co-
lorectal and prostate cancers. Besides the superiority on 
precision, the number of gene-gene interactions inferred 
by ARNetMiT is very close to the compared methods, 
which makes it preferable for the researchers.  

We investigate the overlapped interactions to com-
pare the similarities between gene-gene interactions 
of the GCNs obtained with ARNetMiT and GNI algo-
rithms. On this analysis, we used three GCNs of ARNet-
MiT, which are inferred with {minsup=0.1, minsup=0.1 
& minconf=0.5, minsup=0.1 & minconf=0.7} and com-
pared them with the most successful GNI method on 
each of the four cancer types. Figure 8 shows that the 
estimated interactions of ARNetMiT and the compared 
algorithms are closely overlapped, when both minsup 
and minconf filters are employed. A closer inspection of 
Figure 8 reveals the sensitivity of choosing filter values 
in ARNetMiT. When we use only minsup, the overlap 
ratio is at minimum. Integrating a lower minconf value 
enhances the ratio. However, the usage of minsup with 
higher values of minconf boosts up the overlapping 
gene-gene interactions.

 
Topological features of ARNetMiT based gene 
networks

Biological networks are scale-free networks, where 
the nodes approximate power-law degree distribution. 
These networks contain a few number of hub nodes that 
have significantly more connections than other nodes. 
In gene networks, hub genes are involved in many bio-

logical processes associated with cancers. For this rea-
son, it is crucial to identify these hub genes in order to 
discover the disease related genes. Besides hub genes, 
the structural features of gene networks are supplemen-
tary elements to measure the fitness of GCNs to scale-
free networks. For this topological assessment, we use 
three parameters. The first one is the average number 
of neighbors for the nodes. This parameter indicates in-
terconnectivity of genes. Network heterogeneity (NH) 
is the second parameter and measures the variance of 
node degrees. High heterogeneity implies whether the 
network is relevant to the power-law degree distribution 
or not. The third parameter is clustering coefficient (CC), 
which gives information about the clustering tendency 
of nodes. We use NetworkAnalyzer tool in Cytoscape 
(26) to obtain these three topological parameters. The 
GCNs are evaluated with respect to the topological 
features with minsup=0.2. This support value supplies 
moderate balance between number of predictions and 
the precision. 

Table 1 shows the topological features of ARNetMiT 
based GCNs. In the table, the first four rows report the 
sGCNs that are inferred with minsup=0.2. The last four 
rows of Table 1 list the scGCNs, inferred using min-
sup=0.2 and minconf=0.5. 

In biological networks with power-law degree distri-
bution, NH and CC values are close to 1. These values 
are close to 0 in random biological networks. Table 1 
indicates that the nodes of networks are tightly cou-
pled, having high average number of neighbor nodes. 
Maximum of this parameter is for the sGCN of pan-
creatic cancer, also approved by the highest clustering 
coefficient value of 0.945. In biological networks, high 
average number of neighbors are in direct proportion 
to high clustering coefficient values. The nodes of all 
GCNs have high CC values that emphasize their clus-
tering tendency. Although two-step pruning in scGCNs 
decreases the average number of neighbors of nodes, it 
increases NH and CC values, due to the elimination of 
weak associations between genes.

The hub genes of GCNs derived only by degree of 
nodes are listed in the last column of Table 1. Hub genes 
of sGCNs and scGCNs of breast cancer are same except 
one gene. Studies prove that XIAP and PARD6B genes 
are involved in breast cancer related processes and their 

Figure 7. Performance comparison of ARNetMiT and GNI 
algorithms on four types of cancer. 

Figure 8. Comparison of overlapping interactions between 
ARNetMiT and best performing GNI algorithm on four types of 
cancer. 
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mutations cause breast cancer (27, 28). BCL2 and MYC 
are apoptosis associated and regulator genes in many 
of the tumor cells that belong to a variety of cancers 
(29, 30). The role of ITGA2 polymorphism and the ove-
rexpression of GLO1 gene in tumor cells are important 
issues in colorectal cancer (31, 32). The overexpression 
of NR2F6 and NAP1L1 are associated to colorectal 
cancer (33, 34). The overexpression of PLAG1, STX6 
genes and low-expression of ELK4 gene in tumor cells 
are associated to pancreatic cancer (35, 36). YWHAZ 
and ACSL4 genes promote prostate cancer and they are 
defined as prostate cancer biomarkers (37, 38). For all 
of these four cancers, the hub genes of gene networks 
inferred by ARNetMiT are related to the genes mentio-
ned above. This shows that the hub genes discovered by 
ARNetMiT based gene networks are consistent with the 
literature.

Discussion

The main objective of ARNetMiT is to construct 
disease related GCNs. In order to achieve this, a hash 
based association rule algorithm is used to find the hid-
den relations that reveal the co-expressed genes. When 
the user chooses the disease type in ARNetMiT, miR-
NA-target genes are determined using miRNA names, 
which are the pairing keys between disease-miRNA and 
miRNA-target genes data. The disease-miRNAs and 
miRNA-target genes data are both validated. Hence, the 
results do not contain any noisy samples. We assume 
miRNAs as transactions and genes as items. ARNetMiT 
uses support and confidence values to extract the asso-
ciation rules, which show the gene-gene interactions. 
Users have two options for building GCNs. ARNetMiT 
produces sGCNs when only support value is used. Uti-
lizing support and confidence values together results in 
scGCNs. The R package for ARNetMiT enables users 
to construct GCNs of selected diseases. 

Previous studies use the miRNA expression data to 
infer GCNs by using graphical models and information 
based GNI algorithms. Our contribution is to construct 
GCNs of 152 different diseases on validated miRNA-
target genes data by using hash based association rule 

algorithm. The R package of ARNetMiT provides the 
visualization of the GCNs to the users. Besides its 
advantages, the drawback of ARNetMiT is parameter 
selection, as it works relatively slow with lower support 
and confidence values. This is due to the computational 
complexity of the association based algorithm. 

The results of ARNetMiT emphasize the efficiency 
of our approach. Initial evaluation is carried through 
the overlap analysis with literature data. We labeled the 
overlapping interactions of ARNetMiT and literature 
data as true positives. When the literature data contains 
over 1 million gene-gene interactions, false negatives 
in gene networks are high. For this reason, we use pre-
cision and p-values of FET in performance evaluation. 

Precisions of sGCNs and scGCNs vary between 
0.05 and 0.30 on PPI data, which resemble the preci-
sions reported before (17, 18). In sGCNs, lower minsup 
values increase the number of gene-gene interactions. 
However, these associations are weak and produce 
lower precision. When less interactions are predicted 
by using high minsup values, precisions of sGCNs in-
crease. However, this inverse proportion is not exactly 
the same for scGCNs. Two-step pruning by using both 
support and confidence values in scGCNs have minor 
impact on precision. 

We compared the GCNs of ARNetMiT with the 
GCNs inferred by popular GNI algorithms on the same 
miRNA-target genes data of four cancer types. ARNet-
MiT is able to transform miRNA-target genes data to 
the format that the GNI algorithms use. This function 
enables us to compare the methods, which is perfor-
med with overlap analysis on literature data. Our results 
prove that GCNs of ARNetMiT outperforms GNI based 
GCNs. The overlap analysis of these GCNs reveals that 
ARNetMiT and GNI algorithms predict many common 
gene-gene interactions. The interactions predicted with 
ARNetMiT and GNI algorithms become identical when 
pruning in ARNetMiT increase. This situation is clearly 
visible in scGCNs that use two step pruning with high 
confidence values. 

Our second performance evaluation of ARNetMiT 
based GCNs is based on their topological features. As 
we mentioned before, biological networks are scale free 

Gene Network & types Average # of 
Neighbors 

Network 
Heterogeneity

Clustering

Coefficient
Hub Genes

Breast Cancer, sGCN 25.141 0.802 0.868 NUFIP2, XIAP, PARD6B, PRRG4, MYC, BLC2

Colorectal Cancer, sGCN 34.033 0.417 0.809 GLO1, BCL2, GIGYF1, NCOA3, PAIP1, ITGA2

Pancreatic Cancer, sGCN 124.5 0.346 0.945 BCL2, PLAG1, STX6, RAB10, PTEN, GATA6

Prostate Cancer, sGCN 20.8 0.665 0.73 BCL2, SF3B3, GIGYF1, CPOX, TP53, GRPEL2

Breast Cancer, scGCN 24.786 0.814 0.872 NUFIP2, XIAP, PARD6B, PRRG4, MYC, MLLT1

Colorectal Cancer, scGCN 12.417 0.721 0.721 NR2F6, THBS1, NUFIP2, NAP1L1, SF3B3, WDR82 

Pancreatic Cancer scGCN 114.122 0.398 0.924 TP53, MYC, ELK4, PER1, ASH1L, HIF1A 

Prostate Cancer, scGCN 19.043 0.721 0.732
SF3B3, GIGYF1, ACSL4, YWHAZ, RAB10, NRBP1

Table 1. Topological features and hub genes of ARNetMiT based GCNs.
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and the degrees of nodes show power-law distribution. 
In power-law distribution, degrees of the hub genes are 
significantly higher than the degrees of the remaining 
nodes. Hub genes, which are few in number, regulate 
many cancer related biological processes. We see that 
the hub genes of ARNetMiT based GCNs are consistent 
with the previous studies. The overexpression or muta-
tions of BCL2, MYC, TP53, and RAB10 genes are in-
troduced as cancer biomarkers in the literature (29, 30, 
39) and ARNetMiT also found these hub genes. 

In contrast to random networks, biological networks 
have higher clustering coefficient and network hete-
rogeneity values that approximate to 1. The clustering 
coefficient scores of ARNetMiT based GCNs empha-
size that the nodes of inferred GCNs are modular and 
highly coupled. The degree of these nodes show power-
law distribution, since their network heterogeneity va-
lues approximate to 1. Thus, our topological features fit 
the topological features of biological networks. 

We used literature data and topological features of 
gene networks to evaluate their performances. We plan 
to use RNA-seq data and microarray gene expression 
data for the performance comparison of ARNetMiT 
based GCNs in our future work.
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