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Abstract: People have known the bacteria and have used various ways to deal with them, from a long time ago. Perhaps, natural antibiotics with have been the first step 
in fighting against pathogens. However, several factors, such as dealing with unfamiliar bacteria or emergence of drug-resistant species, have motivated us to discover new 
antibiotics or  even change previous types. In this regard, a variety of natural and synthetic antibiotics with different origins, mechanism of action, structures and functional 
spectrum, have been developed and used. Some impact on the synthesis of nucleic acids and some affect protein synthesis so destroy bacteria. There is a ring in the structure of 
most of the antibiotics which gives them special properties. However, despite their numerous advantages, antibiotics also have drawbacks ehich limit their use in all situations. 
Therefore, other approaches such as photodynamic therapy (PDT) and antibacterial peptides were considered as alternatives. Photodynamic therapy (PDT) is a treatment that 
uses photosensitizing agents, along with light, to kill bacteria. The photosensitizing agents only work after they have been activated by certain kinds of light. Antibacterial pep-
tides are a unique and diverse group of molecules which have  between 12 and 50 amino acids in general.  In this paper, will reviewt hree mentioned topics, namely antibiotics, 
photodynamic therapy and antibacterial peptides and will discuss the advantages and disadvantages of each approach briefly.
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Introduction

Antimicrobial agents have been used for more than 
2000 years. There are evidences that ancient Egyptians and 
Greeks used special molds and plant extracts to control in-
fections. Although, it was not until the later half of the 19th 
century that microorganisms were found to be responsible 
for a variety of infectious diseases (1). 

Beside antibiotics, Photodynamic therapy (PDT), which 
was approved by the Food and Drug Administration in 1999 
to treat pre-cancerous skin lesions of the face or scalp (2) 
has emerged in recent years as a non – invasive therapeutic 
approach for the treatment of various infections (3).

Photodynamic therapy (PDT) is a treatment that uses a 
drug, called a photosensitizer or photosensitizing agent, and 
a particular type of light (4). Each photosensitizer is activa-
ted by light of a specific wavelength and produce a form of 
cytotoxic reactive oxygen that kills nearby cells (5). Anti-
microbial PDT can easily provide the access to the whole 
dental root surface and its application in the treatment of 
periodontal diseases has been studied extensively (6). Also, 
PDT can inactivate endotoxins such as lipopolysaccharide 
by decreasing their biological activity (7).

Antimicrobial peptides (AMPs) are some kinds of oli-
gopeptides containing a few to several hundred amino acid 
residues and have been used against a variety of microorga-
nisms such as viruses, bacteria and parasites (8). Defensin 
is the most famous Antimicrobial peptides until now. It is 
believed that in animals, AMPs are the first line of defense 
against foreign pathogens (9). Overall, more than 5,000 

AMPs are known so far of natural or synthetic origins (10). 
In following chapter, we discuss about these principle anti-
microbial agents with more details.

Antibiotics
 

The first antimicrobial agent, salvarsan, was synthe-
sized by Ehrlich in 1910 to eradicate syphilis (11). In 
1928, Fleming found that penicillium fungi would produce 
substances that could inhibit the growth of Staphylococ-
cus aureus in culture dishes. The compound was named 
penicillin and came into clinical use in the 1940s (12). In 
1935, Domagk developed sulfonamides, the synthetic com-
pounds with a broad limitation range in terms of safety and 
efficacy (13). In 1940s, streptomycin, an aminoglycoside 
antibiotic, and thereafter, chloramphenicol, tetracycline, 
macrolide, and glycopeptide (e.g., vancomycin) were dis-
covered from soil bacteria (14). Following this trend, the 
quinolone antimicrobial agent, nalidixic acid, was synthe-
sized in 1962 (15). After that, β-lactam antibiotics, a broad 
class of antibiotics, consisting of all antibiotic agents that 
contain a β-lactam ring in their molecular structures, were 
developed and introduced to the pharmaceutical market. 
This includes penicillin derivatives (penams), cephalos-
porins (cephems), monobactams, and carbapenems (16). 
Cephems, including cephalosporins and cephamycins, were 
developed in the 1960s and bases on their antimicrobial 
spectra, they are classified several generations (17). Later, 
Carbapenems were developed as a group of strong effective 
drugs not only for Gram-positive and Gram-negative bacte-
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ria but also anaerobes (18). Following the progress of deve-
lopment of new antimicrobials, Nalidixic acid, as the first 
quinolone antimicrobial, was developed to target Gram-
negative bacteria specifically with poor tissue distribution 
(19). Entering quinolones antimicrobial drugs to market 
promised the fact that it goes towards developing more spe-
cific drugs with fewer side effects. Trend of development of 
antibiotics is schematically illustrated in Figure 1.

Proper and successful antibiotic characteristics

An antibiotic treatment can be considered successful if 
the antibiotic agent, like other drugs, has some traits such 
as (20): 

I. It should not have any side effect or its side effect 
should be slight. On the other hand, it must have 
selected toxicity. 

II. It should have a broad spectrum effectiveness and 
can eliminate different bacteria.

III. It should have proper bioavailability and pharma-
cokinetics.

IV. It should be stable enough without loss or change 
of properties.

V. It should have an appropriate clearance rate.
VI. It should be cost-effective and available. 

Antibiotic classification

Antibiotics can be classified based on their origin, me-
chanism of action, chemical structure and activity spectrum.

Antibiotics can be classified based on their origin, me-
chanism of action, chemical structure and activity spectrum.

Origin Classification

Bacteria, fungi, plant are able to produce antibiotics. 
Some species of genus bacteria produce secondary meta-
bolites with diverse chemical structure. For example, a  
number of antibiotics are produced by different bacillus 
spp  (21). Most classes of antibiotics derived from natural 
sources, are assorted as Beta-lactam antibiotics, tetracy-

clines, aminoglycosides and macrolides. On the other side, 
synthetic antibiotics include sulfa antibiotics, quinolones 
and oxazolidinones. Many bacterial origin antibiotics inhi-
bit the growth of another bacteria (22).

Mechanism of action classification

Inhibition of DNA replication
The quinolones (comprising nalidixic acid and cipro-

floxacin) target DNA gyrase (topoisomerase II) and topoi-
somerase IV (topoIV). They actually trap these enzymes at 
the DNA cleavage stage and prevent strands from joining 
again(23). The susceptibility of these targets to quinolones, 
varies among bacterial species; while topoIV is the primary 
target of quinolones in gram-positives, DNA gyrase is the 
primary target and topoIV the secondary target of these 
drugs in gram-negative bacteria (23). Therefore, the net 
effect of quinolone treatment is to generate double stranded 
DNA breaks that are trapped by covalently linked topoi-
somerases (24). Furthermore, induction of SOS proteins 
expression following by DNA damages, could be another 
advantage that enhances the efficiency of this class of anti-
biotics. 

Inhibition of RNA synthesis
Rifamycin  category drugs, are a broad category of semi-

synthetic antibiotics. They isolated from the Gram-positive 
bacterium, Amycolatopsis mediterranei (originally Strep-
tomyces mediterranei) for the first time(25). Rifamycins 
bind to the prokaryotic RNA-polymerase enzyme with high 
affinity and inhibit DNA dependent transcription. The main 
target area of these drugs, is the subunit located within the 
channel formed by the polymerase-DNA complex, from 
which the newly synthesized RNA strand emerges (26). In 
fact, the nascent RNA strand initialization stage is inhibited 
by Rifamycins (27). 

Inhibition of cell wall synthesis
β-lactams and glycopeptides interfere with specific steps 

in homeostatic cell wall biosynthesis. Successful treatment 
with a cell wall synthesis and induce cellular stress res-
ponses by changing cell shape and size (28). The goal is 
achieved by inhibiting the peptide bond formation reaction  
which is catalyzed by transpeptidases and transglycosylase 
or through binding with PG units (at the D-alanyl-D-ala-
nine dipeptide) and also blocking the activity (29, 30). It 
is worth noting that β-lactams are effective in treatment of 
Gram-positive and Gram-negative infections, whereas gly-
copeptides are effective only against Gram-positive bacteria 
due to their low permeability. Antibiotics like Fosfomycin 
and Bacitracin, inhibit the cell wall synthesis by blocking 
transport of individual PG units. Lipopeptides like Dapto-
mycin, affect structural integrity via their ability to insert 
into the cell membrane and induce depolarization (31). All 
mechanisms that have been discussed here, are involved 
in a process called 'lytic cell death' in which, overgrowth 
of cell wall leads to increased pressure inside the cell and 
its bursting (32). However, it must be noted that the lysis-
dependent cell death mechanism is much more complex, 
involving many active cellular processes (33). In addition to 
lytic cell death, evidences suggest that there are some non-
lytic pathways regulated by bacterial two-component sys-
tems (34). For example, the LytSR two-component system 
can affect cell lysis by regulating autolysin activity in Sta-

Figure 1. Historical trajectory of antibiotics development.
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differences of the highly conserved ribosomal proteins and 
RNAs in the variable regions among bacterial species (47). 
The action mechanism of different types of antibiotics is 
shown in Figure 2.

Chemical structure classification

Beta-lactams
Beta-lactams including a beta-lactam 'ring' that binds 

to the active site of the bacterial enzymes. This antibiotic 
contains sub classes included penicillins, cephalosporins, 
monobactams, carbapenems (48). 

Penicillins are constructed by penicillium notatum.  Be-
ta-lactam ring in this sub class, includes a nucleus of 6-ami-
nopenicillanic acid (49).

Cephalosporins are produced by cephalosporium acre-
monium. Beta-lactam ring includes 7-aminocephalospo-
ranic acid nucleus and side chain has 3, 6-dihydro-2H-1, 
3-thiazine rings (50).

Monobactams are made by chromobacterium viola-
ceum. This antibiotic just owns  Beta-lactam ring (51). 

Streptomyces cattleya is the natural origin of. carbape-
nems The chemical structure of this sub class is  similar to 
the penicillins (52). 

Macrolides
A chemical substance constructed by saccharopolyspora 

erythraea is macrolides.  They are antibiotics with a lacton 
ring contains 14-16 atoms in their molecule. Macrolides are 
divided as  Erythromycin, Clarithromycin, oleandomycin 
and Azithromycin. In azalides (azithromycin) the atom of 
nitrogen is present in a cycle (53).

Tetracyclines
Tetracyclines are produced by various Streptomyces 

species. The chemical structure of tetracyclines, comprises 
4 hydrocarbon ring. These antibiotics act as an inhibitor of 
protein synthesis in bacteria need the amino group in posi-
tion C4 and keto-enolic tatuttomers in position C1 and C3 
of the A ring. The amino group in the C4 position is pivotal 
for the antibacterial activities. These  antibiotics have par-
tially hydrated nucleus of tetracene. Tetracyclines are clas-
sifies as first generation, second generation and third gene-
ration (54).

Aminoglycosides
These antibiotics have the cyclohexan structure with 

OH- and NH2-, or guanidino-derivatives and glycoside 
derivatives with one or certain OH- groups. Some derived 
from Streptomyces genus or Micromonospora. Example of 
these antibiotics are streptomycin, kanamycin, gentamicin 
and neomycin (55).  

Glycopeptides
Glycopeptides are glycosylated cyclic or polycyclic 

non-ribosomal peptides produced by groups of filamentous 
actinomycetes. These therapeutics target gram positive bac-
teria by binding to the acyl-D-Ala-D-Ala terminus to the 
growing peptidoglycan and then cross-linking peptides wit-
hin and between peptidoglycan on the outer surface of the 
cytoplasmic membrane (56). 

Polyenes
Polyenes have differences in the number of conjugated 

phylococcus aureus (35). So, until now it has become clear 
that antibiotics can destroy the cell wall of bacteria through 
lytic, non-lytic or both processes. But another mechanism 
by which some antibiotics result in the destruction of the 
bacterial cell, is induction of SOS response. For instance, 
β-lactams that inhibit Penicillin binding protein 3 (PBP-3), 
induce filamentation and stimulate the DpiAB two-compo-
nent system, which can activate the SOS response (36). On 
the other hand, DNA damaging antimicrobiotics, such as 
quinolones, may cause filamentation through induction of 
the SOS response (37). 

Inhibition of protein synthesis
Macrolides (e.g., erythromycin), lincosamides (e.g., 

clindamycin), streptogramins (e.g., dalfopristin/quinupris-
tin), amphenicols (e.g., chloramphenicol) and oxazolidi-
nones (e.g., linezolid) inhibit 50S compartment of ribosome 
(38). Actually, they block either initiation of protein trans-
lation (39) or peptidyl-tRNAs translocation, which serves 
to inhibit the peptidyltransferase reaction that elongates the 
nascent peptide chain. Several models are proposed to ex-
plain the mechanism by which these antimicrobial classes 
act; including inhibition the access of peptidyl-tRNAs to the 
ribosome, blocking the peptidyltransferase elongation reac-
tion by steric inhibition, and dissociation of the peptidyl-tR-
NA (40). Also, it is demonstrated that these classes of anti-
biotics lose their activity when elongation has progressed 
beyond a critical length (41). Tetracyclines and aminocy-
clitols are accounted as 30S ribosome inhibitors by bloc-
king the access of aminoacyl-tRNAs to the ribosome (42) 
and binding to the 16S rRNA component, respectively (43). 
Spectinomycins, inhibit elongation factor-catalyzed translo-
cation (44), while aminoglycosides interact with 16S rRNA 
compartment hence induce conformational alternation of 
the mRNA-codon complex and its cognate charged ami-
noacyl-tRNA at the ribosome. It leasds to tRNA mismatch 
promotion that could be followed by protein mistranslation 
(45). Macrolides, streptogramins, spectinomycin, tetracy-
clines and chloramphenicol are typically used as ribosome 
inhibitors, but behave in a species-specific or treatment-
specific fashion (46). This must be related to the sequence 

Figure 2. The mechanism of action of different types of antibi-
otics. Antibacterial action generally falls within one out of four 
mechanisms, three of which involve the inhibition or regulation 
of enzymes involved in cell wall biosynthesis, nucleic acid me-
tabolism and repair, or protein synthesis, respectively. The fourth 
mechanism involves the disruption of membrane structure. Many 
of these cellular functions targeted by antibiotics are most active in 
multiplying cells.  
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carbon-to-carbon double bonds in their molecule, the size of 
the conjugated ring and the presence or absence of a hexo-
samine sugar or aromatic moiety in the molecule (57). 

Activity spectrum classification

Depending on the range of susceptible bacterial species, 
antibiotics are classified as broad-spectrum, intermediate-
spectrum, or narrow- spectrum (58). Note that the spectra of 
activity may change with acquisition of resistance genes, as 
will be discussed in the next module.

Broad spectrum antibiotics are active against both gram-
positive and gram-negative microorganisms. 

Narrow spectrum antibiotics have limited activity and 
are only useful against particular species of microorganisms 
primarily. 

Penicillins are one of the antibacterials that kill bacte-
ria by inhibiting formation of the bacterial cell wall. These 
antibacterials are effective in treatment of disease in poultry 
(49). Cephalosporins are beta lactams antibiotics and struc-
turally are similar to penicillins. This antibacterial complex 
with bacteria cell walls and disrupt the synthesis of the pep-
tidoglycan. Cephalosporins are divided into first, second, 
third, fourth and fifth generations. Each generation has a 
broader spectrum of activity than the one before. Cephalos-
porins include cefazolin (1st generation), cefoxitin (2nd 
generation), ceftriaxone (3rd generation), cefepime (4th ge-
neration) and ceftaroline (5th generation) (53). Aminogly-
cosides are produced by several species of Streptomyces. 
This agent blocks synthesis of essential protein for growth 
of the bacteria and used for treatment of anaerobic gram 
negative bacilli infections. They are useful for treatment sta-
phylococcal and enterococcal infections as well. Example 
of aminoglycosides are streptomycin, gentamicin, spectino-
mycin, neomycin and kanamycin (53). Glycopeptides inhi-
bit bacterial cell wall peptidoglycan synthesis. These anti-
biotics are effectives against gram positive cocci including 
S.aureus and S.epidermidis. Teicoplanin and vancomycin 
are two instances of glycopeptides (3-5). Tetracyclines are 
one of the broad spectrum antibiotics that are effective for 
treatment of intestinal infections and chlamydial infections 
(53).

Carbapenems have the broadest spectrum among all 
beta-lactams. This antibiotic binds to the PBPs just like 
cephalosporin and penicillin thus preventing the bacterial 
cell wall synthesis. Carbapenems are effective against many 
gram-positive bacteria and gram negative bacteria (59).  

Activity spectrum of Oxazolidinones encircles gram-
positive bacteria (MRSA, penicillin resistant streptococci, 
VRE) .This antibacterial can bind to 50S subunit of ribo-
some and prevent protein synthesis (60). Polymixins have 
cyclic peptide with a long hydrophobic chain. They attach 
to phospholipids of bacteria and disrupt cell membrane. 
These antibiotics are produced using non-ribosomal pep-
tide synthetase systems in gram-positive bacteria (60). 
Quinolones are one of the antimicrobials that are effective 
for treatment of intestinal infections. Quinolones inhibit of 
DNA replication. These antibiotics have been classified in 
four generations based on their activity spectrum (60). 

Photodynamic therapy (PDT)

Antimicrobial photodynamic therapy (PDT) represents 
an effective alternative method to inactivate bacteria, fungi, 

viruses and protozoa (61). PDT is applied through irradia-
tion of the light to an infected tissue that has been exposed 
to a photo-sensitive dye (PS) which is often derived from 
pigments such as heme, chlorophyll and bacteriochloro-
phyll containing tetrapyrrole aromatic nucleus (62). The 
PS should have relatively high absorption bands (>20,000–
200,000 M−1cm−1), a high yield of excited electronic tri-
plet state, singlet oxygen and low levels of dark toxicity 
(62). Following the excitation of the PS by visible light into 
the long-lived triplet state, ROS will be generated through 
two mechanisms. In type I mechanism, this particular state 
of the PS interacts with molecular oxygen by electron trans-
fer and forms superoxide anions that may lead to produce 
more reactive species such as hydroxyl radicals. While in 
type II mechanism, the PS interacts with molecular oxygen 
by energy transfer following by singlet oxygen production 
(63). So, both processes irreversibly alter vital components 
of cells resulting lethal damage. Mechanism of action of 
photodynamic therapy is schematically illustrated in Figure 
3.

Of course, this point should kept in mind that PS should 
selectively be uptaken by bacterial cells and does not ope-
rate in the dark (64). PTD mainly damage cell membrane 
and DNA. Damage to the plasma membrane usually is fol-
lowed by uncontrolled release of metabolites into and out 
of the cells and damage to DNA is usually irreversible (65). 
Some common photosensitizers display anti-microbial pho-
tocydal action are listed in Table 1.

The use of PDT to eliminate gram-positive bacteria is 
fairly easy, because their cell wall is a porous layer. Howe-
ver, due to the existence of an outer wall with a low permea-
bility, elimination of Gram-negative bacteria is a bit more 
complicated (66). To overcome this difficulty in Gram-ne-
gative bacteria, methods such as the use of outer membrane 
disorganizing agents, photosensitizers with cationic charges 
and optimization of the chemical structure of PS are pro-
posed (67). Generally, the main advantages of PDT are its 
specificity, limited side effects, the prevention of infection 
recurrence and the lack of development of multidrug resis-
tant microorganisms (68). PTD method has been used to 
eliminate a variety of bacteria such as periodontopathoge-
nic bacterial species (Porphyromonas gingivalis, Fusobac-

Figure 3. Mechanism of action of photodynamic therapy. When 
a photosensitizer (PS) is in its excited state, it can interact with 
molecular triplet oxygen and produce radicals and reactive oxygen 
species (ROS) and highly reactive single oxygen. These species 
can interact with cellular components including unsaturated lipids, 
amino acid residues and nucleic acids and result in target-cell death 
(only within the illuminated area).
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terium nucleatum, and Capnocytophaga gingivalis) (69), 
endodontic pathogens (Enterococcus faecalis) (70), Propio-
nibacterium acnes (71), Proteus mirabilis and Pseudomonas 
aeruginosa (72). 

Antimicrobial peptides (AMPs)

Antimicrobial peptides (AMPs) are a group of oligopep-
tides containing a few to several hundred amino acid resi-
dues and have been used against a variety of microorga-
nisms such as viruses, bacteria and parasites (8). The first 
recognized antimicrobial peptide was extracted from soil 
Bacillus bacteria in 1939 by Dubos and Hotchkiss. They 
found that the extract can protect mice against pneumo-
coccal infections and after closer investigation, it was dis-
covered that active component of the extract is a peptide 
and named that gramicidin (73). Tyrocidine, another AMP, 
was discovered in 1941 and found to be detrimental against 
gram-positive and gram-negative bacteria (74). However, 
after a while it turned out that tyrocodine is toxic for human 
blood cells (75). In the same year, another AMP ,which later 
named purothionin, was extracted from the plant Triticum 
aestivum and its damaging effects against fungi and bacteria 
were proved (76). In later years, AMPs were also extracted 
from animal sources; for example, defensin was isolated 
from rabbit leukocytes (77), bombinin from epithelia (78), 
and lactoferrin from cow milk (79). It is believed that AMPs 
are the first line of defense against foreign pathogens in ani-
mals (9). In addition, it was demonstrated that the human 
leukocyte lysosomes also contain AMPs (80). Overall, 
more than 5,000 AMPs are known so far with natural or 
synthetic origins (10). Some AMPs genes expression is in 
housekeeping manner, while for others, the gene expression 
is inducible. For instance, Wang and colleagues demons-
trated that the rate of defensin mRNA transcription in rat 
will be increased following by infection with Pseudomonas 
aeruginosa (81). 

It’s also known that AMPs are involved in regulation of 
inflammatory responses in the host during infections. For 
example, it is found that bacterial lipopolysaccharides can 
induce the production of AMPs in mammals which, in turn, 
can modulate the inflammatory response. (82). In contrast, 
antibiotics may cause severe inflammatory reactions due 
to lack of immunomodulatory capability (83). It should be 
noted that the production of AMPs in eukaryotic cells such 
as lymphocytes (9), phagocytes (84) and epithelial cells 
(85) has been demonstrated. 

Structure of AMPs

According to the conducted studies so far, AMPs struc-
tures are as β-sheet, α-helix, loop and extended form from 
which, α-helix is the most common structure (86). AMPs 
like magainin, protegrin and coiled indolicin have α-helix 

structures (87). It should be noted that the structure of many 
AMPs change based on environmental conditions. For 
example, indolicin has a globular structure in hydrophilic 
environment and is wedge-shaped in hydrophobic condi-
tions (88). 

Mechanism of action

AMPs specifically target bacterial lipopolysaccharide 
layer and unlike antibiotics, have fewer side effects for 
eukaryotic cells (89). In addition, AMPs exert their killing 
effect much faster than antibiotics and can also increase 
the effect of antibiotics in a synergic manner. For instance, 
the combination of ampicillin with nisin Z kill Pseudomo-
nas fluorescens with 155-fold lower minimum inhibitory 
concentration (MIC) (90). Other advantages of AMPs com-
pared to antibiotics are the possibility of chemical synthesis 
and easily changing the structure to modify their functions 
(91). 

AMPs (cationic AMPs) that target bacterial cell mem-
branes, degenerate the lipid bilayer structure (92) and final-
ly kill bacteria by inhibiting DNA replication and protein 
synthesis (93). Most AMPs are amphipathic, which means 
that they have both hydrophilic and hydrophobic faces. This 
feature gives them the ability to penetrate the cell membrane 
(94). Also, some of them could create holes in the cell mem-
brane and facilitate the entrance of others (Figure 4).

Class of compounds Name Site of action in prokaryotic cells

Natural products
Furanocoumarin DNA intercalation
Perylenequinonoin hypericin Inhibitor of protein kinase C

Phenothiazines
Methylene blue DNA interaction
Toluidine blue Plasma membrane
Acridine DNA interaction

Cyclic tetrapyrroles Phthalocyanine porphyrine Membrane/cytosolic sites

Table 1. Common photosensitizers displaying anti-microbial photocydal action with their origins.

Figure 4. Schematic representation of some action mechanisms 
of AMPs. (A) Due to the amphipathic structure, AMPs penetrate 
into the cell perpendicularly. (B) Carpet model. AMPs molecules 
coat the membrane as their hydrophobic part faces external creat-
ing pores in the membrane. (C) Toroidal pore model. In this model, 
several AMP molecules form the barrel-shaped structure, So that 
the hydrophobic parts placed outside and the hydrophilic sides 
placed inside the barrel.
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Some AMPs are able to  kill antibiotic resistant bacte-
ria (95). Antimicrobial peptides have mitogens properties. 
These properties including ability to stimulated growth of 
fibroblast and epithelial cells in vitro for antimicrobial acti-
vity and preventing microbial infection (96). The main anti-
microbial structures along with their functions are shown in 
Table 2.

The resistance strategies of microorganisms to Anti-
microbial peptides (AMPs)

It is not unbelievable that bacteria utilize various 
resistance strategies to avoid antimicrobial peptide 
(97). Some microorganisms change their net surface 
charges. For instance, Staphylococcus aureus trans-
ports D-alanine from the cytoplasm to its teichoic acid it 
means the negative charge is declined by amine groups 
(98).This bacterium can also modify its anionic mem-
branes via MprF with L-lysine and make it positive 
(98). Klebsiella pneumonia polysaccharide capsule can 
hinder the interaction of these peptides with membrane 
(99). Salmonella species benefit from another survive 
strategy. They add myristate to Lipid A with 2-hydroxy-
myristate that ends to hepta-acylated Lipid A formation 
by adding palmitate. In this regard, their outer mem-
brane fluidity decreases due to hydrophobic interaction. 
This interaction can repulse AMPs insertion and pore 
formation. 

A number of gram-negative bacteria, change in their 
outer membrane proteins (100). Non-typeable Hemo-
philus influenzae carry AMPs inside the cell and deterio-
rate them. H. influenzae convert its membrane in a way 
that seems to be under attack of AMPs. (101). Other 
strategies are ATP-binding cassette transporters and the 
resistance-nodulation cell-division efflux pump which 
carry out these peptides (102); which are fundamental 
tools for AMPs resistance. Bacterial proteases can also 
be beneficial way to eliminate AMPs (103). Gram-ne-
gative bacteria can produce outer membrane vesicles 
which attach to peptides and push them away (104).
These vesicles also contain lytic enzymes as proteases 
and peptidases that can act on extracellular. Cyclic-di-
GMP signaling had also been developed in the regula-

tion of  Pseudomonas aeruginosa  resistance to AMPs 
(105).

Whereas they are variety natural ways of resistance, 
worries are raised due to the fact that Amps resistance 
can happen at faster rates than before. It means we 
should be concerned about their clinical use and also 
physiological functions. (106). Further researches are 
essential to decide whether it is worth it or not.

Conclusion and future perspective

The combat with different kinds of microbial infections 
alike bacterial, fungal etc., constitutes a huge challenge for 
medical sciences. The scope and number of anti-microbial 
agents with different mechanisms is too much but a few of 
these technics have been executable in medicine until now. 
So, more studies are required to attain more effective and 
executable agents. Here, we elaborated on the three famous 
and applicable anti-microbial mechanisms and described 
their details. 

For many years, people have knon bacteria as pathogens 
and have adopted various ways to deal with them (107) 
Studies have shown that the use of antibiotics dates back 
to ancient times. For example, human skeletal remains 
from ancient Sudanese Nubia dating back to 350–550 CE 
was found with some traces of Tetracyclines (108). Howe-
ver, several factors have encouraged the development of 
antibiotics and among them, is the emergence of resistant 
strains to antibiotics. So, there has to be a constant rege-
neration of new antibiotics to go after these progressively 
more resistant bacteria. Today, different antibiotics are in 
use based on origin, mechanism of action, structure and 
activity spectrum. Although most antibiotics are extracted 
from natural origins, some are synthetic or produced by 
changing natural antibiotics (109). Three basic mechanisms 
of antibiotic action against bacterial cells are inhibition of 
cell wall synthesis, inhibition of nucleic acids synthesis and 
inhibition of protein synthesis (31). Based on their chemi-
cal structure, antibiotic are categorized as several classes 
including β-lactams, Macrolides, Tetracyclines, Aminogly-
cosides, Glycopeptides and Polyenes (110). Also, based on 
their activity spectrum, some antibiotics kill Gram-negative 
bacteria, some deteriorate gram-positive bacteria, and some 

AMP Structure Example Activity Type Disruption Model
Alpha- helices’ peptides Cecropin

Magainin

Most alpha-helical AMPs disrupt 
bacterial membranes by forming 
amphipathic helix in membranes

Carpet

Barrel slave
Beta-sheet peptides Pexiganan

Alpha-Defensins

Many AMPs with beta-sheet structure 
exert antimicrobial activity by 
disrupting bacterial membranes

Toroidal

Toroidal
Extended peptides Protegrin

Indolicidin

Beta-Defensins

Most extended AMPs are not active 
against membrane of pathogens and 
penetrating across membranes

Interaction with 
intracellular proteinsb

Loop peptides Bac7

Bac5

Lactoferricin B

Thanatin

Bactenecin-1

Disrupting bacterial membranes -

Table 2. Antimicrobial peptides structures and the relationship between peptide structure and antibacterial activity.
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kill both (111). In addition to antibiotics, other approaches 
have been developed and used to eliminate bacteria. Photo-
dynamic therapy or PDT utilizes photosensitizing agents, 
oxygen and light, to create a photochemical reaction that 
selectively destroys target cells. Photosensitizing agents are 
drugs that are administered into the body through topical, 
oral or intravenous routs. In the body, they concentrate in 
target cells and only become active when light of a certain 
wavelength is directed onto the area where the target is. The 
photodynamic reaction between the photosensitizing agent, 
light and oxygen kills the target cells (112). Antimicrobial 
peptides (AMPs) are oligopeptides with five to over a hun-
dred of amino acid residues. AMPs target a broad spectrum 
of organisms. Historically, they were also known as host de-
fense system's cationic, anionic or amphipathic molecules.

The better understanding of these anti-microbial mecha-
nisms opens up new avenues for progress towards a new 
invention in targeting infections.
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