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Abstract: MicroRNAs (miRNAs) are small endogenous non-coding RNAs with principal roles in regulation of protein expression via translation repression and 
mRNA degradation. Based on these roles they are implicated in tumourigenesis processes as well. Among them is miR-100 which can exert both tumor suppressor 
and oncogenic functions in various cancer types. In breast cancer, it has been shown to affect apoptosis, epithelial-mesenchymal transition as well as tumor-re-
lated signaling pathways. In the present study, we introduce a novel approach for identification of miR-100 target genes which are possibly implicated in breast 
cancer pathogenesis. We applied 14 online tools for prediction of miR-100 target genes and used gene expression data produced by DNA microarray technology. 
By combining these two sets of data we proposed a list of miR-100 target genes with possible involvement in breast cancer. Considering the role of miR-100 as a 
context-dependent chief regulator of the cancer-related signaling pathways and a potential target for therapeutic modalities, identification of its targets would pave 
the way for designing new approaches for cancer treatment or sensitization of cancer cells to standard treatments.
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Introduction

MicroRNAs (miRNAs) are small endogenous non-
coding RNAs with fundamental roles in regulation 
of protein expression which is exerted via translation 
repression and mRNA degradation. The function of 
miRNAs in gene expression regulation has been docu-
mented in nearly all biological pathways. Consequently, 
aberrant expressions of miRNAs are implicated in many 
human disorders including cancer. Approximately half 
of miRNA genes are located in tumor-associated geno-
mic regions which implies their participation in carci-
nogenesis (1). In addition, bioinformatics predictions of 
miRNA target genes have shown that nearly one third 
of all human protein-coding genes are supposed to be 
regulated by miRNAs. Multiple of these protein-coding 
genes participate in tumorigenesis (2). More specifi-
cally, abnormal miRNAs expression profile has been 
shown in every aspect of cancer development including 
cancer initiation and progression as well as tumor-mi-
croenvironment interactions (3). miRNAs can be classi-
fied according to their function in tumorigenesis process 
into two groups including onco-miRs which are up-re-
gulated in cancers and act as oncogenes and tumor sup-
pressor miRNAs (ts-miRs) which are down-regulated in 
tumors (4). Among miRNAs whose expression has been 
assessed in various tumors is microRNA-100 (miR-
100). miR-100 is an evolutionary conserved member of 
miR-99 family (5). The ability of miR-100 to modulate 
expression of many important molecules in tumorigene-
sis process has potentiate it to function as both a tumor 
promoter and a tumor suppressor (6).  In breast cancer 

cell lines, miR-100 has been demonstrated as an epi-
thelial-mesenchymal transition (EMT) inducer. Despite 
this function, it prevents the tumorigenicity, motility 
and invasiveness of mammary tumor cells. Its down-re-
gulation has been detected in human breast cancer as a 
result of hypermethylation of its host gene MIR100HG 
(7). In addition, down-regulation of miR-100 in breast 
cancer cells results in over-expression of the prolife-
ration- and survival-promoting oncogene insulin-like 
growth factor (IGF) 2 as well as other proteins of the 
IGF/mammalian target of rapamycin (mTOR) signa-
ling cascade (8). However, a more recent study has 
shown the role of miR-100 in breast cancer tumorige-
nesis which is exerted through preventing the apoptotic 
activity of SK-BR-3 cells. Nevertheless, miR-100 has 
the opposite effect in regulating other types of breast 
cancer cells. The same study has assessed the effects 
of miR-100-mediated apoptosis regulation on breast 
cancer tumorigenesis in vivo and has shown significant 
decrease in tumor development in mice treated with 
anti-miRNA-100 oligonucleotide (AMO-miR-100). 
Consequently, miR-100 antagonism has been suggested 
as an inhibitory modality for the development of breast 
cancer (9). On the other hand, miR-100 has been shown 
to prevent maintenance and expansion of breast cancer 
stem cells in basal-like cancer via inhibition of Polo-like 
kinase1 (Plk1). Such action leads to differentiation of 
cancer stem cells changing a basal like phenotype into 
luminal phenotype which is responsive to hormonal the-
rapy (10). Considering the distinctive role of miR-100 
in breast cancer subtypes, in the present study we intro-
duce a novel bioinformatics approach for identification 
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of miR-100 targets in each breast cancer subtype.

Materials and Methods

The bioinformatics pipeline employed in the current 
study is shown in Figure 1.

Bioinformatics analysis of miR-100 target genes
Fourteen online tools were applied for prediction of 

miR-100 target genes. TargetScan prediction is based on 
sequence complementarity to target sites with specific 
attention to perfect base-pairing in the seed region and 
sequence conservation (11). The miRBase tool consi-
ders sequence annotation such as genomic location, 
precursor sequences and literature citations (12). MiR-
map combines thermodynamic, evolutionary, probabi-
listic and sequence-based characteristics of miRNAs to 
predict their targets (13). MiRWalk algorithm first exa-
mines perfect matches in the seed and then extends it till 
a mismatch is detected (14). DIANA-microT searches 
for 7-, 8- or 9-nucleotide long seed-complementaries, 
or 6-nt seeds with one G:U wobble and calculate the 
weighted quantity of conserved and non-conserved sites 
of a gene (14). PITA finds seed complementary of 6 to 8 
nucleotides, permitting up to one G:U wobble in 7 and 
8-mers and up to one mismatch in 8-mers (14). PACC-
MIT–CDS identifies potential miRNA targets within 
coding sequences (CDS) by exploring conserved motifs 
that are complementary to the miRNA seed region and 
also overrepresented in comparison with a background 
model preserving both codon usage and amino acid 
sequence (15).  Rna22 is another prediction tool which 
does not depend on cross-species conservation and 
first searches for putative miRNA binding sites in the 
sequence of interest, then detects the targeting miRNA 
(16). miRTarBase has gathered more than three hundred 
and sixty thousand miRNA-target interactions (MTIs) 
by manually searching relevant literature (17). The 
MIRZA-G uses evolutionary conservation in predicting 
canonical miRNA target sites and in addition, it predicts 
non-canonical miRNA target sites (18). MBSTAR uses 
a multiple instance learning approach for predicting 
specific functional binding sites in mRNA targets (19). 
miRDB is a miRNA target prediction and functional 
annotation tool in which miRNA functional annotations 
are demonstrated with a major emphasis on mature 
miRNAs, which are the functional carriers of miRNA-
mediated gene expression regulation (20).  The microR-
NA.org predicts miRNA targets based on advancement 
of the miRanda algorithm and scores the targets for 
probability of mRNA down-regulation using mirSVR, a 
regression model that is trained on sequence and back-
ground characteristics of the predicted miRNA::mRNA 
duplex (21). Finally, the microRNA Data Integration 
Portal-mirDIP has been constructed through integration 
of prediction databases, comparison of predictions to in 
vitro data, and application of cross-database predictions 
to model the microRNA:transcript interactome (22). Af-
ter application of all above mentioned tools we selected 
genes which have been predicted as miR-100 targets in 
at least two prediction tools.

Experimentally validated miR-100 target genes
Due to the pitfalls associated with the predictions 

of miRNA target sites with the computational algo-
rithms (23), in order to find functionally relevant targets 
in breast cancer, we focused our search on researches 
which accomplished functional studies for identifica-
tion of miR-100 targets.

Microarray data analysis
Using the Gene Expression Omnibus (GEO) repo-

sitory at the National Center for Biotechnology Infor-
mation (NCBI) archives (24), we got access to gene ex-
pression data produced by DNA microarray technology. 
By entering "breast cancer" and "transcriptome" key 
words and selection of "Expression profiling by array" 
as the filter and the minimum sample size of 100 for 
datasets, 10 datasets were retrieved. Two of them with 
similar array platforms (GPL570) and inclusion of four 
molecular subtypes of breast cancer (luminal A, lumi-
nal B, Her2+ and triple negative) have been selected for 
the current study (GSE45827, GSE65194). The pipeline 
used for selection of these datasets is shown in Figure 2.

Table 1 shows the summary of datasets used in the 
study.

Identification of differentially expressed genes in 
breast cancer subtypes

GEO2R web tool (https://www.ncbi.nlm.nih.gov/
geo/info/geo2r.html) was used for comparison of ex-
pression profile of each breast cancer subtype samples 
with normal samples in order to identify genes that 
are differentially expressed across samples. Based on 
Log2-fold change between two experimental condi-
tions (LogFC) and adjusted P values provided by the 
software, we selected 300 genes in each subtype with 
the most significant differential expression compared 
with normal samples.

Identification of miR-100 targets among differential-
ly expressed genes in breast cancer subtypes

The R statistical program (25) was used for compa-

Figure 1. The bioinformatics pipeline employed in the current 
study.
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rison and identification of miR-100 target genes which 
are differentially expressed in each cancer subtype com-
pared with normal samples.

Enrichment annotation analysis and network 
construction

For the network construction and the enrichment 
annotation step, we used FunRich analysis tool version 
3 (26) which provides a schematic clusterization of the 
gene list with demonstration of the related pathway.

Results

Experimentally validated miR-100 target genes
In order to assess the sensitivity of miRNA target 

prediction tools and validation of data provided by these 
tools we compared the list of experimentally validated 
miR-100 target genes to target genes predicted by the 

GEO Number Year Samples Chip type

GSE65194 2015

N:130
41 TNBC
30 Her2
30 Luminal B
29 Luminal A
11 normal breast tissue samples

Affymetrix Human Genome U133 
Plus 2.0 Array

GSE45827 2016

N:155
11 normal
41 TN
30 Her2
29 Luminal A
30 Luminal B

Affymetrix Human Genome U133 
Plus 2.0 Array

Table 1. Microarray datasets used in the current study.

Target gene Tools predicted the target gene Disease Reference

PLK1 Mirbase, EXIQONE Mirsearch

Lung adenocarcinoma
Cervical cancer
Non-small cell lung cancer
Nasopharyngeal cancer

(27)

EGR2 MBStar, EXIQONE Mirsearch Oral squamous cell carcinoma (28)
ID1 3 tools Oral squamous cell carcinoma (28)
FGFR3 >10 tools Pancreatic cancer cells (29)
MMP13 3 tools Oral cancer cells (28)
ATM >10 tools Glioma (30)

IGF1R >10 tools
Head and neck squamous cell carcinoma
Pancreatic cancer
Adrenocortical cancer

(31, 32)

BMPR2 5 tools Adipose derived mesenchymal stem cells (33)
CTDSPL >10 tools Acute myeloid leukemia (34)
HS3ST2 >10 tools Gastric cancer (35)

MTOR >10 tools Bladder cancer,
Acute myelocytic leukemia, ovarian cancer, endometrial (36)

RPTOR 3 tools adrenocortical cancer (28)
FOXA1 3 tools Bladder cancer (37)
AGO2 >10 tools Prostate cancer (38)
NCOR2 Microrna.org, mirwalk Glioblastoma (39)
Ciy61 RNA22, Mirwalk Osteosarcoma (40)
RAP1B 5 tools Colorectal cancer (41)
BAZ2A >10 tools Prostate cancer (42)
THAP2 >10 tools Prostate cancer (42)
FKBP5 6 tools Acute lymphoblastic leukemia (43)

Table 2. Experimentally validated target genes of miR-100 in all cancers.

Figure 2. Flow chart of the protocol used for the search of breast 
cancer microarray datasets from the GEO database.
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mentioned bioinformatics tools. Tables 2 and 3 show 
the experimentally validated miR-100 target genes in all 
cancer types and breast cancer as well as the number of 
bioinformatics tools predicted each gene respectively. 
All of genes demonstrated in Table 2 have been predic-
ted by miRTarBase as a target of miR-100. However, 
among those demonstrated in Table 3, only MTOR has 
been strongly predicted by miRTarBase as a target of 
miR-100.

miR-100 target genes implicated in breast cancer
Based on the novel approach of combining microar-

ray data analysis and bioinformatics prediction tools we 
identified miR-100 target genes which are differentially 
expressed in breast cancer tissues compared with nor-
mal tissues and are possibly implicated in breast cancer 
(Table 4).

Network construction
Both functional enrichment and interaction network 

analysis were performed using FunRich tool. The final 
datasets were analyzed against three different back-
ground databases namely FunRich, UniProt and Cus-
tom. Figure 3 shows the schematic interaction diagram. 
Interaction network provided by this tool demonstrates 
that miR-100 regulates numerous genes participating in 
apoptosis, DNA repair and cell cycle control in breast 
cancer. Bioinformatics tools have also shown simi-
lar expression pattern for these genes in breast cancer 
tissues which implies a similar regulatory process for 
them. In addition, several of these genes have important 
interactions with others which complicate the network 
of miR-100 targets. Consequently, miR-100 is anticipa-
ted to directly or indirectly control expression of nume-
rous genes which highlights its role in the development 
of breast cancer.

Discussion

Breast cancer as the main cause of cancer death in 
women (46) has been accounted as an important area for 
identification of cancer biomarkers among both protein 
coding RNAs (47-49) and non-coding RNAs (50-53). 
miRNAs as a novel group of non-coding RNAs have 
also attained attention of researchers in the field of can-
cer biomarker discovery (6). miR-100 has been known 
as a significant player in the development of breast can-
cer. It has been shown to prevent the apoptotic activity 
of SK-BR-3 cells but induce apoptosis in other types of 
breast cancer cells (9). Another study has shown that the 
forced expression of this miRNA inhibits the replica-
tion capability of basal-like cancer stem cells (CSC) and 
alters an aggressive phenotype of cancer into a pheno-

type with a better prognosis (10). The role of miR-100 
in inhibition of CSC self-renewal and induction of their 
differentiation in breast cancer has been emphasized by 
others as well (54). In addition, miR-100 reduced ex-
pression has been detected in both human breast cancer 
primary tumors and cell lines while its forced expres-
sion has been shown to promote the effects of paclitaxel 
in MCF-7 cells (44).

Considering the role of miRNAs in regulation of 
expression of multiple genes, different approaches have 
been evolved for prediction of their putative target. Ex-
perimental data provide valuable lines of evidence but 
they are time consuming. On the other hand, computatio-
nal algorithms for the predictions of miRNA target sites 
have been associated with pitfalls (23). Consequently, 
in the present study we applied a novel approach for 
prediction of miR-100 targets in breast cancer based on 
both computational algorithms and experimental data 
available from previous microarray analyses. Although 
microarray studies are regarded inferior to RNA seq/
Western blot, the high throughput nature of this tech-
nique as well as availability of its results in public data-
bases were the initiatives for selection of this technique 
in the current study. Furthermore, we constructed an 
interaction network demonstrating genes and signaling 
pathways controlled by miR-100 in breast cancer. Expe-
rimental techniques such as microarray are frequently 
used to measure gene expression following up-regula-
tion or down-regulation of a certain miRNA. However, 
based on the regulatory effect of miRNA on both mRNA 
expression and protein expression, such approach 

Target gene Tools predicted the gene Reference
IGF2 MirMAP, Mirwalk, PITA (8)
MTMR3 >10 tools (9)
MTOR >10 tools (44)
SMARCA5 >10 tools (10)
HOXA1 >10 tools (7)
FZD8 >10 tools (45)

Table 3. Experimentally validated target genes of miR-100 in breast 
cancer.

Figure 3. The schematic interaction diagram of miR100-targets in 
breast cancer. Direct targets of miR-100 interact with several genes 
implicated in cell cycle control (demonstrated by green cycles with 
orange shadow), apoptosis (demonstrated by blue cycles) and 
ATM pathway (demonstrated by yellow cycles).
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 Genes Luminal A Luminal B Her2+ TNBC Function of the gene Tools predicted the gene

SAE1 regulates protein structure and 
intracellular localization >8 tools

SRSF3
a member of the serine/arginine 
(SR)-rich family of pre-mRNA 
splicing factors

>5 tools

HN1L Jupiter microtubule associated 
homolog 2 >5 tools

CYYR1 cysteine and tyrosine rich 1 >5 tools

PPIF part of the mitochondrial 
permeability transition pore >5 tools

DESI2
inhibits proliferation through S phase 
arrest and apoptosis >5 tools

TMEM30A transmembrane protein 30A >5 tools

ME2
catalyzes the oxidative 
decarboxylation of malate to 
pyruvate

>5 tools

NIPBL role in developmental regulation >3 tools

SULF1 an extracellular heparan sulfate 
endosulfatase MBStar, MirMAP, PITA

FOXA1 forkhead class of DNA-binding 
proteins DIANA, MirMAP, PITA

ARFGEF1 intracellular vesicular trafficking MBStar, MirMAP, PITA

LARP4B RNA metabolism and translation Targetscan, MirMAP, 
PITA

TPM3 actin-binding protein Mirbase, PITA, MBStar

GPRC5A may play a role in epithelial cell 
differentiation Targetscan, MirMAP

FIGN microtubule severing factor Targetscan, MirMAP
PDE2A phosphodiesterase 2A MirMAP, PITA
MUC3A epithelial glycoprotein Targetscan, MirMAP

NTRK2 phosphorylates members of the 
MAPK pathway MBStar, MirMAP, PITA

DTL E3 ubiquitin protein ligase homolog microrna org, MBStar, 
PACCMIT

WDR48 interact with ubiquitin specific 
peptidase 1 (USP1)

microrna org, DIANA, 
PACCMIT

COG5 required for normal Golgi 
morphology and function MBStar, MirMAP, PITA

PREX1 activate RAC1 by exchanging bound 
GDP for free GTP DIANA, MirMAP, PITA

CELSR1 Positive Regulator of Endothelial 
Cell Migration and Angiogenesis. MirMAP, PITA

ZNF595 transcription factors that can regulate 
developmental and cellular processes

microrna org, Mirbase, 
PITA

GABRP
multisubunit receptor chloride 
channel that mediates the fastest 
inhibitory synaptic transmission

Mirbase, PITA, MBStar

LGR6
glycoprotein hormone receptor that 
potentially functions as a tumor 
suppressor

MirMAP, PITA

ATP1A2
responsible for maintaining the 
electrochemical gradients of Na and 
K ions across the plasma membrane

MirMAP, PITA

BIRC5 inhibitor of apoptosis Mirbase, PITA
CBX2 initial evidence of an oncogenic role Mirbase, PITA
ZBTB16 involved in cell cycle progression DIANA, PACCMIT

CIRBP inhibits DNA damage-induced 
apoptosis by regulating p53

Exiqone Mirsearch, 
Targetscan, MirMAP

HSPA12B involved in susceptibility to 
atherosclerosis

Targetscan, MirMAP, 
PITA

TTYH3 function as chloride anion channels MirMAP, PITA

Table 4. miR-100 predicted target genes with differential expression in breast cancer subtypes based on the log2-transformed fold change. The 
over- and under- expression are shown in green and red, respectively.
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would leave out targets which are regulated at the level 
of mRNA translation into protein (23). Multiple data-
bases have been evolved with the purpose of deposition 
and sharing experimental data among them is the GEO 
DataSets which stores original submitter-supplied re-
cords (Series, Samples and Platforms) as well as curated 
DataSets. The latter produces the groundwork of GEO's 
advanced data presentation and analysis characteristics 
such as tools to detect differences in gene expression 
levels and cluster heatmaps. The second strategy for 
identification of miRNA targets has been provided by 
computational algorithms of miRNA target prediction. 
The most commonly applied algorithms are ab initio 
algorithms and machine learning approaches. In the for-
mer approach, the high number of false positives is the 
most important limitation while for the latter it is the 
reduced number of negative interactions with experi-
mental support (23). In the present study, we combined 
bioinformatics prediction tools as well as GEO based 
differential expression analyses to find the most relevant 
miR-100 targets in breast cancer. The documentation of 
shared features for targets and specific sites with signi-
ficant experimental validation is necessary to reveal the 
rules of miRNA–mRNA interactions (23). The result 
of the present study is of practical value in this regard. 
In addition, our dataset provides more miR-100 targets 
with possible implication in breast cancer compared 
with available experimentally validated targets in breast 
cancer. As the experimental validation of miRNA tar-
gets by available techniques such as western blotting or 
luciferase assay are relatively expensive and cumber-
some, the proposed approach in the current study would 
be an effective way for suggestion of possible miRNA 
targets in distinctive contexts. In addition, due to com-
plex miRNA-mRNA interactions, miRNA regulation 
should be considered as a complex network composed 
of genes targeted by many miRNAs and often having 
several sites for the same miRNA. The context-de-
pendent manner of such network makes it challenging 
to rebuild reliable miRNA-mRNA interactions in expe-
riments carried out in vitro (55). So, computational ana-
lyses are helpful in this regard. Considering the role of 
mir-100 as a context-dependent chief regulator of the 
cancer-related signaling pathways and a potential target 
for therapeutic modalities (8), identification of its tar-
gets would pave the way for designing new approaches 
for cancer treatment or sensitization of cancer cells to 
standard treatments.
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