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Abstract: Amitraz, a formamidine pesticide, and their metabolites have the potential to disrupt endocrine homeostasis in a variety of organisms, nevertheless 
there is a lack of information concerning such effects and underlying mechanisms in any fish species.To evaluate the potential impacts of Trasil (EC; active consti-
tuent 200 g amitraz/L), a commercial product of amitraz, on thyroid hormone (TH) homeostasis of rainbow trout (Oncorhynchus mykiss); mRNA levels of thyroid 
hormone receptors (TRs), TRα and TRβ, were determined by RT-PCR soon after sub-lethal administration in a static bio-assay system. The sub-lethal exposure 
of 0.84 mg/L amitraz resulted in upregulation of both TRαand TRβgenes for muscle and liver, respectively in a tissue-manner, though the differences were found 
statistically insignificant (P>0.05). The present results emerged an endocrine interaction between amitraz based formulation and TH homeostasis, but still needs 
further detail studies to a better understanding of TH mechanism in teleosts in response to environmental compounds.
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Introduction

The extensive pesticide applications in agriculture 
and urban areas possesses the risk for aquatic environ-
ments, due to the contamination and persistency poten-
cial of themselves or their metabolites. A great deal of 
these compounds revealed endocrine disrupting effects 
on organisms by interfering the endocrine signaling via 
blocking, mimicking or synergizing endogenous hor-
mones through binding their respective receptors (ge-
nomic pathway) or by a rapid non-genomic signaling 
pathway (1).

In respect to the new reported data substantiated by 
US Environmental Protection Agency (USEPA) (2)and 
a few researches that compiled in a comprehensive re-
port by Pino et al. (3), regard amitraz as a Endocrine 
Disrupting Compound (EDC). 

A m i t r a z , N ' - ( 2 , 4 - d i m e t h y l p h e n y l ) - N -
[ [ ( 2 , 4 - d i m e t h y l p h e n y l ) i m i n o ] m e t h y l ] - N -
methylmethanimidamide(Figure 1)is a formamidine 
insecticide and acaricide, which is commonly used in 
control of ectoparasites (mites, ticks and protozoans) 
as a veterinary medicine (4) and pest management 
for fruits and cotton (5).It is metabolized into 2,4-di-
methyphenylformamide and N-2,4-dimethylphenyl-N-
methylformamidine and they were further both degrada-
ted to 2,4-dimethylaniline (6,7) and in some occurents, 
their influence on organisms can be more drastic com-
parison to amitraz, itself (3,8,9).It is highly liposolub-
le, thus rapidly absorbed through the skin and mucous 
membranes, distributed, metabolized and eliminated by 
the urine in the case of exposure (3,5).

Depending on the recent commercialization and 
comparatively the increased production and use of amit-

raz, it is not puzzling that the number of studies and 
the incidences concerning amitraz poisoning escalated 
in by a majority of human (10-12) and animals (13,14). 
Notwithstanding, few reports of critical toxic effects of 
amitraz on mammalian physiology which can be ela-
borated as neurotoxicity (15,16) reproductive toxicity 
(17) and genotoxicity were presented (5). As reported 
by Pino et al. (3) and according to USEPA (2), the toxi-
cological database is insufficient for a detailed unders-
tanding of molecular mechanisms of amitraz toxicity, 
particularly emphasizing on aquatic organisms and ne-
eds further exhaustive studies to cover the lack of in-
formation. To the best of our knowledge, this paper is 
the first report on the molecular mechanism of amitraz 
toxicity in a fish species.

The thyroid hormones (THs; T4, T3) regulate a wide 
range of cellular functions, including growth, develop-
ment, differentation, metabolism and maintenance of 
homeostasis, in almost every tissue of teleost (18-20). 
Their pleiotropic effects are mediated via throid hor-
mone receptors (TRs) (21) which are ligand-activated 
transcription factors termed nuclear receptors-NRs (22). 
NRs are phylogenetically related proteins clustered into 
a large superfamily, along with steroids, retinoids and 

Figure 1. The chemical structure of amitraz.
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fatty acids (23). Two principal isoforms namely TRα 
and TRβ are encoded for TRs and they can enhance 
or inhibit gene expression subjecting to the nature of 
thyroid hormone response elements, the hormonal sta-
tus and the cellular environment (24).The functioning 
of the thyroid system is intervened by EDCs through 
exposure, accumulation or food chain and lead to alte-
rations in TSH expression (25). Therefore, the present 
paper aimed to unveil the endocrine disrupting potency 
of a commercial product of amitraz (Trasil) in a well-
known teleost, Oncorhynchus mykiss, with respect to 
TH mechanism.

Materials and Methods

Pesticide
The commercial formulation tested, Trasil (EC), is 

manufactured by Bio Tarım & Agro Ankara, Turkey. It 
is an emulsifiable concentrate formulation containing 
200 g amitraz/L.

Experimental setup
Rainbow trout, Oncorhynchus mykiss, (mixed sex) 

with a mean body weight of 77.27±15.24 g (Mean±S.D., 
n=252) were obtained from Cifteler Sakaryabasi Aqu-
aculture and Research Station of Ankara University in 
Eskişehir, Turkey where the experiments were conduc-
ted. Prior to experiments for acclimatization, fish were 
kept in 200 L tank, aerated consistently, for two weeks 
and fed daily with commercial trout feed (45% crude 
protein) to satiation. Fish deprived of feed for 48 h be-
fore and during the experiment. To eliminate the fish fa-
eces and excess feed, the water in the tanks were chan-
ged (10%) by siphoning and replaced with fresh water 
in the acclimatization period. All tanks were shielded 
with netting material to prevent fish from escape and 
minimize stress during the trials. The maintenance of 
the animals and the experiments were performed under 
approved protocols in accordance with the principles of 
Ankara University Animal Ethics Committee (Date/No: 
16.02.2011/2011-105-384). In exposure system, provi-
ding triplicates per each concentration (fish per tank; 
preliminary, main and control: 4 / sub-lethal and cont-
rol: 10), dosing solutions of amitraz were prepared from 
Trasil (200g amitraz/L) and the calculation of dosing 
solutions was done according to the active ingredient of 
pesticide. The dosing volumes never exceeded 0.2 ml.

Water quality parameters
The water quality was evaluated (26) and the me-

asurements of physico-chemical parameters of water 
during the preliminary (range finding), main (LC50) and 
sub-lethal toxicity tests were presented in Table 1. The 
values were the means of 3 measurements which were 
performed at the beginning, through and end of the tri-
als.

LC50-Median lethal concentration
LC50 tests were carried out in compliance with the 

standardized methods (27) at two stages in unrenewable 
static experimental conditions for 96 h with a total num-
ber of 192 fish. In stage I, a range finding (preliminary) 
test was performed to determine the concentrations of 
the main acute test by using wide ranges (28) as follows, 
1, 2, 4, 5, 6, 8, 10 mg/L of dosing concentrations. In 
stage II, with regard to the preliminary test results, six 
concentrations (1, 2, 3, 4, 6 and 8 mg/L) that comprised 
0% and 100% death were chosen as the main acute to-
xicity concentrations. Meanwhile, control groups (non-
exposure) were maintained for both preliminary and 
main exposure tests in triplicates. In the course of expo-
sure tests, dead individuals were removed immediately 
from the tanks and behavioral changes and mortalities 
were monitored closely and noted down every 24 h. The 
Probit regression, a dose-response, analysis was used to 
compute the median lethal concentration (LC50) of Tra-
sil (200 g amitraz/L), with confidence limit of 95%, for 
96 h exposure (29).

Sub-lethal concentration
For the assesment of sub-lethal effects of Trasil, ¼ of 

96 h LC50 value as computed in acute toxicity test, was 
considered and exposed as a sub-lethal concentration 
(the concentration which has no death to the experimen-
tal fish, however effects on its biochemical and physi-
ological processes). The sub-lethal exposure tests were 
conducted in triplicates for both treatment and control 
groups with total number of 60 fish in static system li-
kewise in LC50 tests.

Tissue dissection and RNA extraction
At the end of the sub-lethal exposure of amitraz, the 

tissue samples (liver and white muscle) of rainbow trout 
were collected from all individiuals of both exposure 
and control groups. The dissection of liver and muscle 

Parameters P1 M2 S3

Dissolved oxygen (mg/L) 6.47±0.02 6.36±0.00 7.15±0.20
pH 7.24±0.04 7.00±0.11 7.01±0.01

Temperature (°C) 20.06±0.06 19,95±0.49 20.23±0.15
Electrical conductivity 

(µS/cm) 416.00±0.42 362.20±7.40 311.35±29.50

NH3-N (mg/L) 1.00±0.14 0.76±0.29 0.38±0.08
NO2-N (mg/L) 0.01±0.00 0.01±0.00 0.01±0.00
NO3-N (mg/L) 1.39±0.08 1.68±0.44 1.38±0.13

Alkalinity (mg/L CaCO3) 40.00±0.00 40.00±0.00 40.00±0.00
Hardness (mg/L CaCO3) 39.50±1.70 46.50±3.30 51.90±6.80

Table 1. Somewater quality parameters throughout the toxicity tests (Mean 
values±S.D.) (n=3).

1(P) Preliminary; 2(M) Main-LC50; 3(S) Sub-lethal.
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les (nuclease-free water instead of cDNA) were used in 
each run to test the target specifity of the cDNA ampli-
fication.

Data normalization and statistics
The housekeeping gene 18S was used as an endo-

genous standart and expressions of target genes of TRα 
and TRβ were normalized to the corresponding level of 
18S mRNA relatively to the untreated control by using 
comparative Ct (2-ΔΔCT) method (30).

The all data were expressed here as means±standart 
error of the mean (SEM) unless indicated otherwise. A 
total of ten fish were used from exposure and control 
groups and two technical replicates per fish and treat-
ment were made. Paired Samples T-test, a confidence 
level of 95%, was applied using statistical software 
IBM SPSS Statistics 23.0 to determine the presence of 
significant differences among the groups.

Results and discussion

Endocrine disrupting chemicals (EDCs) are endoc-
rine active compounds causing specific effects on en-
docrine systems at several levels without relevant toxic 
actions (25). The mode of actions (MOAs) of EDCs 
comprise mimicking and antagonizing the effects of 
endogenous hormones, altering the pattern of synthesis 
and metabolism of normal hormones but also modifying 
hormone receptor levels (31,32).Since, it has been dec-
lared as an endocrine disrupter and due to the wide com-
mercialization, amitraz and its metabolites take great 
attention and the specification of risk assessment, parti-
culary endpoints and molecular mechanisms regarding 
to toxicity is a dictate of environmental sustainability.

Here, in the present study, the 96-h acute LC50 va-
lue of commercial formulation of amitraz, Trasil (200 
g amitraz/L), in a static bio-assay system for rainbow 
trout was found 3.361 mg/L (χ2=0.796) with 95% con-
fidence limits of 2.952-3.850 using Probit regression 
analysis (Table 3). The sub-lethal concentration was 
0.84 mg/L and determined as ¼ of 96-h LC50 value. 
With corroborating our data, the previous LC50 studies 
in rainbow trout, bluegill sunfish and harlequin fish as 
reported by EXTOXNET(33) for 48 and 96-h exposu-
re resulted with the values of ranging between 2.7-4.0 
mg/L, 1.3 mg/L and 3.2-4.2 mg/L, respectively and the 
report also characterised the toxicity as moderate for 
fish species. Moreover, Quantitative Structure Activity 

tissues was performed on crushed ice and the samples 
were flash-frozen in liquid nitrogen and preserved at 
-80°C for further procedures. Total RNA was isolated 
from the frozen tissues using High Pure RNA Tissue Kit 
(Roche Diagnostics) according to the manufacturer’s 
instructions. The purity of isolated RNA was quantifi-
ed by spectrophotometric absorbance (A260/A280 ratio) 
using a Nanodrop ND-1000 spectrophotometer (Ther-
mo Fisher Scientific, Schwerte, Germany) and the in-
tegrity of RNA samples was verified by agarose gel 
electrophoresis on agarose gel that comprised ethidium 
bromide (EB).

Real time PCR(RT-PCR) procedure
Real time PCR analyses were performedto examine 

the tissue-specific and gene-specific expression of TRs 
in rainbow trout associated with the sub-lethal exposure 
of amitraz based pesticide.

The complementary DNAs (cDNA) used for expres-
sion analyses were synthesized by reverse transcribing 
from total RNA using the transcriptor first strand cDNA 
Synthesis Kit (Roche Diagnostics) following the proto-
col of the manufacturer. Random hexamer primer was 
chosen in reverse transcribing of cDNAs due to the use 
of 18S rRNA as a housekeeping gene. The cDNAs were 
stored at -20°C until used for real-time PCR (RT-PCR). 
Gene-specific primer pairs and probes were provided 
from Universal ProbeLibrary (UPL) system (Roche 
Diagnostics) which constituted a web-based software 
(ProbeFinder software). UPL probes are hydrolysis pro-
bes substituted with Locked Nucleic Acids (LNA) and 
they are labeled at the 5ʹ end with FAM (Fluorescein 
amidite) and at the 3ʹ end with a dark quencher dye. The 
sequences of primer pairs and probes were presented in 
Table 2.

The amplification was performed with a LightC-
ycler 480 RT-PCR system (Roche, Switzerland) using 
LightCycler 480 Probes Master Kit (Roche Diagnos-
tics). The thermal cycling conditions consisted of an 
initial pre-incubation for 10 min at 95°C, followed by 
45 cycles of denaturation of the target DNA at 95°C for 
amplification of the target DNA with for 10 s, primer 
annealing at 60°C for 30 s, extension at 72°C for 1 s and 
1 cycle of cooling for 30 s at 40°C. A standart curve was 
constituted for target and housekeeping gene seperately 
and efficiency of each reaction (1.8-2.0) was determi-
ned. PCR samples were run in duplicates for standarts, 
samples and negative controls. Negative control samp-

Gene Primer/Probe Sequence Gene Bank Accession No.
18S Forward primer ATGGTCTAACATCTTATAAGCGGCTT AF308735.1

Reverse primer GCGCAGAGAAGTTGACTGG
UPL*(#118, cat.no. 04693523001) CACTGGGA

TRα Forward primer GAGAAGAGGAAGAAGGAGGAGAT AF302245.1
Reverse primer GAACTTGCGTTTCTGTTTCCA

UPL (#24, cat.no. 04686985001) CAGCTCCC
TRβ Forward primer GAGGCCCACATGTCAACTAAC AF302246.1

Reverse primer TGGTTTCCTTCACCCCCACT
UPL (#37, cat.no. 04687957001) TGCCCTGG

Table 2. Primer and probe sequences of reference (housekeeping) and target genes of 18S, TRα, TRβ respectively, in rainbow trout, Oncorhynchus 
mykiss.

*UPL; Universal ProbeLibrary Probe.
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Relationships-QSAR modelling, an alternative method 
for the prediction of LC50 values, have been premedia-
ted this characterization too (34).

The mechanism of amitraz toxicity have been studied 
for mammals in detail comparison to other vertebrates 
and the existing results were compiled by Pino et al. (3) 
comprehensively, nevertheless, the researchs concer-
ning fish is scarcely any. The endocrine disrupting po-
tency of amitraz and its metabolites have been evaluated 
for rats and they were concluded that the detrimental 
effects on hormones mainly depends on the activation 
of α2-adrenergic receptor (35). It was stated that amitraz 
(1.85 mg/kg) escalated plasma glucose and concussed 
the insulin release in dogs (36), as in rats that exposu-
red to its metabolite, 2,4-dimethyphenylformamide (37) 
through the activation of α2 receptors.Chou et al. (17) 
reported that amitraz induces hepatic estradiol (E2) and 
testosterone metabolism in rats for both gender, contro-
versially Ueng et al. (18) who notified that amitraz is a 
week antiestrogen. As mentioned above, depending on 
the lack of researches, further studies are needed to un-
derstand the dose-response relationship between amit-
raz treatment and endocrine disruption centering upon 
non-target organisms as fish.

THs presented their biological activity by binding to 
TRs (genomic pathway) or through a rapid non-genomic 
signaling pathway (39). TRs have a core role in the ge-
nomic regulation of THs (40), particularly they appe-
ar in the early development and metamorphosis in fish 
(20,39) and serve different functions and demonstrate 
tissue-specific and developmental state-specific expres-
sion (41,42), nonetheless the action mechanism for fish 
is not fully understood. In the present study, TRα was 
upregulated in white muscle tissue in comparison to li-
ver with respect to toxic treatment (Table 4).

Unlikely from TRα expression pattern, the relative 

expression levels of liver for TRβ gene slightly upre-
gulated, despite the differences were found nominal ac-
cording to Paired Samples T-test (P>0.05).Similar ob-
servations of upregulated TR subtypes, mainlyTRα soon 
after administration of two synthetic pyrethroidswere 
reported for zebrafish (42). In the case of exposure with 
pyrethroids, the disruption of motor activity associated 
with the alterations of TH levels can be responsible for 
upregulated expression levels (1). Considering the re-
sults for this study, it can be interpreted that, TRs elici-
ted their activity both tissue- and gene-specific manner.
Though the mechanism is not explicit, such expression 
levels may be related with TRs subtypes (TRα and TRβ) 
as mentioned by Filby et al. (20) and can be also eluci-
dated by distinct tissue specifity of α and β subtypes in 
fish body (43). Moreover, it has been represented that 
triiodothyronine (T3) can elevate TR expression levels 
and exposure to chemicals induced TR transcription re-
lated with increased levels of T3as a feedback mecha-
nism (42, 44) to respond regarding to the disturbance 
of hypothalamus-pituarity-thyroid (HPT) axis homeos-
tasis(45).

In conclusion, the results of this study suggest that 
sub-lethal exposure of a commercial product of ami-
traz, entailed alterations in expression of TRs subtypes 
subjecting to tissue- and gene-manner, emanating wider 
potential impacts on the physiological function of fish.
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