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ABSTRACT 
 

 

In the recent century, Kidney cancer has emerged as one of the critical renal diseases. Therefore, we 

analyzed gene expression profiles of non-metastatic kidney cancer to find mechanisms associated with 

the early-stage pathogenesis of the disease. We concentrated on the most dysregulated genes in 

expression to discover possible unknown proliferative molecular mechanisms and oncogenic pathways 

promoting kidney renal cancer growth. Survival analysis, expression profiling, and gene set over-

representation analysis were conducted on the most upregulated and most down-regulated genes 

alongside the hub genes. Our results demonstrated that pathways engaged in the metabolism of amino 

acids and carbohydrates and those involved in peroxisome organization were shown to be important in 

developing benign tumors. Furthermore, upregulation of genes such as CXCL9 and 10 genes and 

CXCR4 in chemokine response pathways would bolster differentiation and engagement of immune cells 

in the tumor microenvironment. C3, one of the essential members of the complement system, with a 

high degree and betweenness centrality in the PPI network, upregulated significantly not only in our 

analysis but also in the validation expression profiling results and survival analysis. We also identified 

genes such as TYROBP, ITGB2, and EGFR to be engaged in both immunological pathways and 

superoxide pathways. Furthermore, we found that downregulation of Aldolase B engaged in Glycolysis 

and Gluconeogenesis pathways would help develop benign tumors. Finally, many top hub genes, 

including TYMS, PTPRC, AURKA, FN1, UBE2C, and CD53 were proposed to be engaged in the 

progression of non-metastatic renal tumors. This holistic interrogation calls attention to investigate 

further and experimentally validate the proposed molecular mechanisms.  
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Introduction 

 

     Renal cell carcinoma is the most common type 

of kidney cancer in adults, and its incidence seems to 

be increasing in the current decades (1). This cancer 

usually does not reveal any symptoms in the early 

stages (2). It is not clear what leads to most renal 

cancers. Driver genetic mutations in the cells lead to 

an uncontrolled proliferative capacity of cells which 

in many cases converges into malignancy (3). 

Moreover, factors that can increase the risk of renal 

cancer include older age, obesity, hypertension, 

smoking, treatment for kidney failure, and family 

history of kidney cancer (4). 

    There are different therapeutic methods to cure 

localized renal cell carcinoma, such as surgery. This 

disease is typically resistant to some therapeutic ways 

like radiotherapy and chemotherapy. Thus, it is 

required to evaluate more effective biomarkers. 

Previous studies have indicated that anti-VEGF and 

anti-mTOR antibodies have practical therapeutic 

effects (5). Immunological treatment includes high-

dose interleukin-2, which stimulates T-cell 

proliferation and survival (6). Furthermore, blockage 

of programmed death-ligand 1 (PD-L1) has 

significantly mitigated RCC patients (7). However, it 

is still necessary to identify effective therapeutic 

methods and valuable biomarkers for diagnosis, 

prognostic, predictive, and curative usage. Systematic 

investigation of gene expression profiles is a practical 

approach to detect genes that participated in the 

development of kidney cancer. 

    In the current study, we intended to perform a 

systematic analysis of bulk gene expression data in 

order to find genes engaged in the early progression of 

the RCC. We investigated the known and unknown 
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factors that control different steps of tumor 

progression. We aimed to find the pathogenic 

mechanisms controlling these steps before 

malignancy. This would aim us to introduce 

biomarkers and therapeutic genetic factors that can be 

targeted to prevent cancer progression. To this end, 

normal and benign samples from two microarray 

studies were downloaded from gene expression 

omnibus (GEO). Two datasets were constructed in R 

programming language and merged to recreate a 

larger dataset. This dataset was analyzed to exploit 

DE genes (differentially expressed genes) between 

human benign kidney renal cancer tissues versus non-

cancerous ones. Afterward, protein-protein interaction 

(PPI) network analysis was assembled from these 

DEGs to identify hub genes. To identify the biological 

processes and pathways involved in the pathogenesis 

of kidney cancer, gene ontology (GO), and KEGG 

enrichment analysis were applied on the hub genes 

and most dysregulated DEGs. Expression profiling 

was recruited to validate recognized hub genes and 

DEGs. Only genes with absolute log fold change 

(LogFC) larger than one were considered as DEGs 

and utilized in the PPI network construction. The most 

upregulated and downregulated genes were recruited 

for expression profiling, survival analysis, and 

enrichment analysis. Consequently, a number of genes 

were identified, which would be candidate biomarkers 

for treatment, prognosis, and diagnosis of kidney renal 

cancer. 

 

Materials and methods 

Database Searching and Dataset Construction 

    Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/) database was 

searched to detect the experiments containing high-

quality transcriptomic samples appropriate to the 

study design. Searches were filtered for Homo 

sapiens, while kidney, renal, benign, neoplasm, and 

cancer were the keywords utilized in the search. Two 

microarray studies were selected. Fourteen Benign 

and fourteen matched normal samples were 

downloaded from the GSE66270 study. Afterward, 

twenty-four normal samples along with twenty-four 

matched renal cancer samples, at stage one of the 

disease, were downloaded from the GSE53757 study 

(8, 9). All ".CEL" raw data files were imported into R 

programming language version 4.0.0. A dataset was 

constructed from each study sample, but after data 

preprocessing, the two datasets were merged to 

recreate a larger dataset.  

 

Differentially Expressed Genes Identification 

    "affy" R package was used to perform absent 

probesets removal, background correction, and probe 

summarization (10). Outlier samples were identified 

using PCA and hierarchical clustering methods. Next, 

quantile normalization was implemented on datasets 

(11). Low variant probesets with standard deviation 

(SD) less than the median of all SDs were recognized 

and removed. In addition, the "Many to Many" 

problem, mapping multiple probesets to the same gene 

symbol, was settled down employing "nsFilter" 

function in "genefilter" R package (12) (13). 

"annotate" R package was used to map probsets to the 

gene symbols. Finally, using "limma" R package, 

linear regression was applied on variables to identify 

differentially expressed genes (14). Genes with 

absolute log fold change larger than one and 

Benjamini Hochberg adjusted p-value (15) less than 

0.05 were selected as the DEGs. Then, the most 

upregulated and downregulated DEGs with absolute 

LogFC larger than 2 were selected for the over-

representation pathway analysis. 

 

Network Construction   

    STRING database was used to generate the 

Interactions from all DEGs. Interactions were 

emerged based on five sources of evidence namely 

Experiments, Databases, Co-expression, Gene fusion 

and Co-occurrence. Using "igraph" package in R 

software (16), the giant component of the network 

was extracted from the whole network. Next, different 

network descriptive and centralities were computed 

using the same package to first determine that it is a 

scale-free biological network, secondly find essential 

hub genes.  

 

Enrichment Analysis 

    Enrichment analysis was performed using the 

ClueGO Cytoscape plugin (17). Over-representation 

analysis was performed using Fisher's exact test. 

Enriched terms for biological processes were obtained 

from the GO repository. For pathway enrichment 

analysis, information in KEGG (18) databases were 
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used. P-values were adjusted using the Benjamini-

Hochberg method, and the cutoff was set at 0.05. 

 

Expression Profiling and Survival Analysis 

    Genes were given to the GEPIA2 web-server to 

validate identified DEGs based on Datasets in TCGA 

and GTEx genomic databases (19-21). Expression 

profiles were compared between tumor and normal 

samples in Kidney Renal Clear Cell Carcinoma 

(KIRC) datasets. To create boxplots, LogFC and p-

value cutoff were set at 0.5 and 0.05 respectively. 

TPM normalized data were log2 transformed. For 

survival plots, Overall Survival was selected, and the 

median was chosen for group cutoff with a 95% 

confidence interval. All KIRC datasets with monthly 

time-scale were selected to obtain the survival results.   

 

Results and discussion 

Data Integration and Preprocessing 

     A large expression matrix encompassing 38 

samples in the case group, 38 samples in the control 

group, and 54675 probe sets at the row was assembled 

for downstream analysis. Figure 1 presents the PCA 

plot employing "prcomp" function in R to recognize 

the outlier samples. GSM1300068, GSM1300066 

samples in the cancer group and GSM1300067 and 

GSM1300097 samples in the normal group lied at a 

distance from other group members; therefore, they 

were considered as the outliers.  

 

 
Figure 1. The PCA plot. It illustrates the first eigenvector 

(PC1) and second eigenvector (PC2) for cancer and normal 

samples. Data were scaled before plotting 

 

     To ensure the outlier samples, boxplots were 

created before data normalization in Figure 2. Normal 

boxplots in 2A were not able to depict the batch 

differences. However, the RLE plot in 2B was more 

influential in describing the batch effects. Thus, 

samples whose median was either less than the 

negative one or larger than the positive one were 

considered as the outliers. GSM1300069 sample in the 

normal group was added to the biased samples. Other 

trespassing samples were already recognized nicely by 

the PCA plane.  

 

 
 

Figure 2. Boxplots. A presents the non-normalized log2 

expression value of genes in all samples, while B exhibits 

the IQR for relative log expression value of genes (RLE) 

before normalization in all samples. Samples with RLE less 

than either o.1 or -0.1 were considered as the outliers.    

 

     In the next step, data were normalized using the 

quantile method. Standard deviation (SD) for all 

probesets was computed. The median of all SDs, 0.38, 

was used as the cutoff to remove low-variant genes. 

From multiple probesets mapping to the same gene 

symbol, one of them was selected based on a larger 

IQR. Therefore, the final number of probesets was 

7378, each representing a gene. Using the limma R 

package, differentially expressed genes were 

recognized. 693 Genes with absolute log fold change 

larger than one and adjusted p-value less than 0.05 

were selected as the final DEGs including 331 

downregulated and 362 upregulated genes. 
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Protein-Protein Interaction Network 

     Final DEGs were imported into the STRING 

database, and interactions were built based on the five 

sources of evidence mentioned in the methods. A 

network with 401 nodes and 1762 interactions 

emerged. Then the giant component of this network 

with 351 nodes and 1720 edges was extracted for 

further analysis, illustrated in Figure 3.  

 

 
 

Figure 3. The giant component PPI Network. Interactions 

were attained from STRING interactome database. 

Interaction information from five sources of evidence was 

recruited to insert an edge between two nodes (see 

Methods).  

 

     The transitivity of this network was 43%, its 

diameter was nine, including TST, CTH, AGXT2, 

HADH, PSMB8, GBP2, HLA-DRA, AP1M2, 

SCNN1A, and SGK2, but the edge density was 3%. 

The degree distribution of the network presented in 

Figure 4 depicts the scale-free properties of the 

biological network (22). 

     The ninth decile of all betweenness and degree 

centralities was used as the cutoff to select the hub 

genes. Eighteen hub genes were recognized presented 

in Table 1. ITGB2 gene had both the maximum 

betweenness and degree centralities, 4471 and 60 

respectively. C3AR1 and CTSS genes had high values 

for the two centralities as well.  

 

 
Figure 4. Degree distribution of the network. The network 

was assembled from a small number of nodes with high 

degrees and a large number of nodes with small degrees. 

 

Table 1. Degree and Betweenness centralities for hub 

genes. DEGs are sorted based on the highest degree. The 

status column depicts the expression status of the genes. Up 

means, genes were upregulated in the cancer group 

compared to the normal group but down means gene was 

downregulated in the cancer group compared to the normal 

group. 

DE Genes Degree Betweenness Status 

ITGB2 60 4471 Up 

TYROBP 58 2496 Up 

C3AR1 51 4089 Up 

LCP2 49 1357 Up 

PTPRC 46 1700 Up 

CD53 46 1636 Up 

CTSS 42 4412 Up 

HCK 40 1706 Up 

MNDA 39 1793 Up 

KNG1 35 2201 Down 

C3 34 3072 Up 

EGFR 29 4457 Up 

SRGN 27 2140 Up 

EGF 27 2462 Down 

FN1 26 2013 Up 

IRF8 26 2390 Up 

GNG2 24 2049 Up 

CD44 24 3856 Up 

 

Gene Expression Profiles and Survival Analysis 

     Figure 5 illustrates the expression profiling and 

survival analysis results for the most dysregulated 

DEGs in TCGA and GTEx databases. Besides, 

Betweenness centrality was evaluated for feature 

selection because these genes would be involved in 

the master routes of the PPI network. They would be 
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part of signaling pathways that significantly impact 

the pathogenesis of the disease. Downregulated and 

upregulated hub genes having betweenness centrality 

larger than 3000 were selected from Table1 (Panel C). 

Five genes with the largest LogFCs (Panel A) and 

seven genes with the smallest LogFCs (Panel B) were 

taken as well. Downregulation of the two central 

genes, KNG1 and EGF, was unquestionable in the 

boxplots. KNG1 was among the most downregulated 

genes having high betweenness centrality. Among the 

significant genes in panel C, EGF witnessed a 

perceptible downregulation. Other central genes were 

upregulated in renal cancer. All the boxplot results 

conferred to the expression of DEGs, validating their 

expression in kidney renal benign tumors. Kappa 

Miller algorithm was used for survival analysis. 

Significant results (Log-rank < 0.05) for survival 

analysis did not confer to our analysis and expression 

profiling boxplots except for ALDOB and C3 genes.  

 

Gene Set Enrichment Analysis 

     Most upregulated genes with LogFC larger than 

two, most downregulated genes with LogFC less than 

negative two, and hub genes in Table 1 were 

employed to perform the over-representation analysis. 

Hub genes with absolute LogFC larger than two that 

are present in Figure 6 were TYROBP, LCP2, 

PTPRC, CTSS, MNDA, KNG1, C3 and EGF. Most 

upregulated genes, most downregulated genes and hub 

genes were visualized in three separate clusters with 

different colors. Notably, common DEGs between the 

clusters were kept only in one of the clusters. 

Biological Process terms in GO repository and 

signaling pathway terms in KEGG database with 

Benjamini-Hochberg adjusted p-value less than 0.5 

went under enrichment analysis. Nodes' size exhibits 

the significance of the terms. The same terms were 

also illustrated in Figure 7 in the form of bar plots. 

"Response to chemokine" group contained the most 

number of terms for most upregulated genes (7A). 

"Protein targeting to peroxisome" group encompassed 

the most number of terms for most downregulated 

genes (7B) and the "positive regulation of superoxide 

anion generation" group contained the most number of 

terms for hub genes (7C). Furthermore, a great 

number of downregulated genes were among the 

enriched sets involved in catabolic and metabolic 

processes, which highlights the importance of 

metabolic processes in the emergence of progressive 

kidney tumors.   

 
 

Figure 5. Gene expression profile boxplots for kidney renal 

carcinoma in TCGA and GTEx repositories. Red boxes are 

tumor gene expression values and gray boxes are normal 

gene expression values. Data were log2 transformed and 

normalized using the TPM method. Panel A exhibits the 

expression values for the most upregulated genes with 

LogFC larger than four. Panel B depicts the most down-

regulated genes with LogFC less than negative four, and 

panel C displays the same plots for the highly central genes.  

 

     Kidney cancer is one of the most common cancers. 

Therefore, we analyzed gene expression profiles of 

Benign kidney cancer to find mechanisms associated 

with the pathogenesis of the disease. We concentrated 

on the most dysregulated genes and the hub genes in 

the analyses in order to recognize key important 

affected pathways and biological processes triggering 

the progression of cancer before malignancy.  

     Renal carcinoma is a complex disease and it 

appears with different histopathological symptoms, 

genetic changes, and resistant responses to the types 

of therapies. Therefore, reprogramming of cancer 

metabolism is a crucial way to identify therapeutic 

and diagnostic approaches in renal carcinoma. In 

addition, based on recent studies, cancer cells use 
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amino acids as the common energy source and their 

metabolism is increased in many tumors (23). 

 
Figure 6. Survival analysis plots. patients having a low 

expression of genes are in blue while those having high 

expression of the genes are in Red. The time scale of the 

survival rate is based on months. Panel A exhibits the 

survival plots for the most upregulated genes with LogFC 

larger than four. Panel B depicts survival analysis results 

for the most down-regulated genes with LogFC less than 

negative four. Panel C shows the same plots for highly 

central genes. 

 

     As a result, the metabolism of amino acids is 

increased in different cancers (24). In our study, the 

enrichment of the "Glycine, serine and threonine 

metabolism" pathway was occurred together with 

"Peroxisome organization" pathways (Figure 8B) 

which highlights the role of amino acids metabolism 

in peroxisomes to promote tumor growth (25, 26). 

PIPOX, DAO are the two genes connecting the two 

pathways together (Figure 7). PIPOX is a peroxisomal 

enzyme catalyzing oxidative demethylation of 

sarcosine to yield glycine in mammals (27). DAO is a 

D-amino acid oxidase that brings about the oxidation 

of d-amino acids to hydrogen peroxide (28). The 

downregulation of these two genes has to be further 

investigated in renal cancer since the DAO system has 

previously been reported as an efficient anti-cancer 

therapy (29, 30). 

     "Response to chemokine" were other important 

pathways enriched by the most upregulated genes 

(Figure 8A). CXCL9 and 10 genes and CXCR4 are 

engaged in the most number of chemokine pathways.      

The two chemokine ligands are expressed in the 

majority of cancers. Chemokines are proteins that 

induce chemotaxis, promote differentiation of immune 

cells, and cause tissue extravasation. Some reports are 

claiming the paradox roles for chemokine-receptor 

axis where it suppresses tumor growth by 

differentiation and activation of immune cells while 

there is some evidence showing their anti-tumor 

activity by activation of tumor proteases such as 

Cathepsin B (CTSB) (31-33). Its upregulation in 

benign renal tumors should be further investigated. C3 

gene is an important member of the complement 

system against pathogens by enhancing immune 

responses (34). In the Classical pathway, this protein 

is cleaved to form C3a and C3b. C3b binds to the 

surface of cells is now protected from factor H-

mediated inactivation. In the alternative pathway, the 

surface-bound C3b then binds protein factor B to form 

C3bB. it is cleaved again to form C3bBb. The C3bBb 

complex is stabilized by binding oligomers of factor P 

(properdin). It acts enzymatically to cleave much 

more C3, and more C3b proteins are attached to the 

same surface as C3bBbP. many abnormal cells such 

as cancer cells are accumulated on the surface by C3b 

proteins. Consequently, the C3bBbP complex enzyme 

bind again to another C3b to form C3bBbC3bP. This 

enzyme acts on C5 protein (C5 convertase). It cleaves 

C5 to C5a and C5b. The C5b then recruits and 

assembles C6, C7, C8 and multiple C9 molecules to 

assemble the Membrane Attack Complex (MAC). 

This creates a hole or pore in the membrane that can 

kill the tumor cells (34, 35). However, it is worth 

investigating why renal benign tumors increase 

expression of the C3 gene which might increment the 

rate of MAC formation on the surface of tumor cells.  
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Figure 7. The enrichment graph. The size of the nodes 

depicts the significance of terms. Biological Process terms 

are in the shape of a diamond and KEGG pathways are 

rectangular. Green terms were obtained from hub genes, 

Blue terms were obtained from most downregulated genes 

and red terms were attained from most upregulated genes. 

Gray terms are non-specific terms (terms achieved by 

enrichment of genes in more than one set). 

 

     Functional Analysis of hub genes gave rise to the 

enrichment of superoxide generation pathways 

(Figure 8C). TYROBP, ITGB2, and EGFR are the 

genes engaged in these pathways. Superoxide or O2
-
 is 

a member of ROS small molecules whose moderate 

rise in cancer cells accelerates cellular proliferation 

and tumor growth (36). Therefore, renal benign 

tumors might bolster these pathways to increment the 

rate of superoxide thereby enhancing cell 

proliferation. 

    TYROBP encodes transmembrane signaling 

polypeptide which caused activate motif in the 

cytoplasmic domain and it is considered as an immune 

receptor. TYROBP acts a crucial role in inflammatory 

responses, for example, it is related to the killer cell 

immunoglobin-like receptor family or it activates 

signaling pathways like Jun NH2-terminal kinase in 

microglia and causes activate inflammatory responses 

(37, 38). Findings in the present study showed that 

TYROBP as a top hub gene (degree 41) was 

correlated with renal cancer and there are several 

possible explanations for this result. For example, it 

was reported that upregulated TYROBP is related to 

developing this cancer in these patients and plays 

crucial functions in the pathogenic inflammatory 

process in kidney cancer (37, 39, 40). 

 
 

Figure 8. Enrichment bar plots. A shows the results for 

most upregulated genes, B exhibits the results of most 

downregulated genes and C illustrates the results for hub 

genes. Numbers next to each bar present the number of 

engaged genes in that term and the length of bar plots 

depicts the percentage of a total number of genes in that 

term. 

 

     Furthermore, it was proposed that the evaluation of 

the gene expression might be used as an indicator to 

screen prognosis in this tumorigenic disease.  

     ITGB2 encodes integrin β2 and this is a usual 

subunit for many receptors. It plays a role as the cell's 

mechanical anchor to the ECM (41, 42). The 

expression of the gene is associated with deficiency of 

leukocyte adhesion and it is involved in the expression 

of components of receptors at the surface of 

leukocytes (42). Previous studies indicated that 

ITGB2 was overexpressed in several cancers, such as 

colorectal cancer, liver metastasis, glioblastoma, and 

kidney cancer (42-45). Moreover, ITGB2 correlated 

negatively with the estimated glomerular filtration rate 
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in patients with chronic kidney disease and nephrotic 

syndrome (45, 46). It was observed that this gene was 

related to survival in cases after surgery and it resulted 

that low expression of this gene caused increased 

survival in patients with colorectal cancer (43). These 

results are consistent in good agreement with other 

DEG analysis which has shown that ITGB2 is 

upregulated; however, its obtained degree is varied 

compared with other data analysis, also current 

research was proved ITGB2 was associated with this 

cancer.  

     EGFR is one of the known genes engaged in many 

oncogenic pathways including Ras/MAPK, 

PI3K/AKT, and phospholipase C (PLC)/protein 

kinase C (PKC) signaling cascade. Our Analysis 

depicted its up-regulation which was further supported 

by expression profiling in Figure 5C. However, its 

ligand called EGF exhibited an expression reduction 

in both our Analysis and the expression profiling. 

Therefore, EGF downregulation in kidney renal 

cancer should be more integrated. KNG1 is the most 

downregulated and central gene in our Analysis which 

presented a highly significant downregulation in 

Figure 5B as well. This gene is worth more 

investigation. However, the survival results for EGF 

and KNG1 didn't show significant (Log-rank > 0.05). 

     Isoforms of aldolases (ALDOB, ALDOB and 

ALDOC) are abundant in the human body and play 

roles in glycolysis, fructolysis, and the synthesis of 

glyceraldehyde and ATP (47). ALDOB catalyzes the 

conversion of fructose-1,6-bisphosphate into 

dihydroxyacetone phosphate and glyceraldehyde-3-

phosphate (48). It is overexpressed in colorectal 

adenocarcinoma promoting epithelial to mesenchymal 

transition (EMT) while under-expressed in gastric 

cancer. This gene not only was suppressed in our 

Analysis but also its suppression was supported by 

expression profiling and survival analysis (47). Its 

expression should also be checked in metastatic renal 

cancer.   

     Lysozyme (LYZ) is a naturally occurring enzyme 

found in bodily secretions such as tears, saliva, and 

milk. It functions as an antimicrobial agent by 

cleaving the peptidoglycan component of bacterial 

cell walls, which leads to cell death (49). Lysozyme 

(LYZ) gene has been previously reported in human 

breast cancer (50). An old study introduced it as an 

anti-cancer agent (51). A more recent study has 

reported its anti-tumor impacts from hen egg white 

(52). Nonetheless, there is not enough evidence 

connecting this enzyme to different cancers. 

Therefore, its upregulation in kidney renal cancer 

should be further investigated. Contrary, survival 

analysis showed that patients expressing a higher 

amount of this gene are more likely to survive which 

calls for further investigation.  

     NETO2 is a recent hotspot in cancer pathogenesis 

highlighted mostly in multiple recent studies (53, 54).  

This transmembrane protein activates PI3K/AKT and 

NF-κB and Snail by their phosphorylation resulting in 

the invasion of gastric cancer cells (55). In Colorectal 

cancer it enhances activation of EMT-related kinases 

and transcription factors (56). Its role in RCC and 

tumor growth (non-metastatic role) must be 

investigated. Furthermore, the survival results in 

Figure 6A are contrary to our analysis and expression 

profiling. TNFAIP6 is another novel gene that has 

been investigated recently in gastric cancer. (57). 

CTSS had a high value for betweenness and degree 

centralities. It is a hub gene with LogFC larger than 

three verified in Figure 5. However, the survival rate 

for patients expressing the three mentioned genes is 

higher in Figure 6C.  

     Previous papers confirmed that overexpression of 

the TYMS gene could increase the risk of tumor 

development in some cancers like breast cancer, 

colorectal cancer, lung cancer, pancreatic carcinoma, 

gastric carcinoma, thyroid carcinoma, and lymphoma 

cancer (58, 59). Our data analysis also proposed that 

TYMS was upregulated in the cases with renal 

tumors. PTPRC is another gene, which encodes one 

member of the PTP family. These molecules organize 

different cellular processes associated with 

tumorigenesis, cell differentiation, and processes of 

proliferation and oncogenesis (5). The gene regulates 

antigen receptor signaling in immune cells including 

T cells and B cells (44, 58). The results concur with 

other researches which has shown that the PTPRC 

gene was expressed highly in kidney tumors (46, 60). 

Interestingly, several studies reported that PTPRC was 

identified as a hub gene with a high degree being used 

as a biomarker to screen renal cancer status (44, 61). 

Another hub gene, AURKA, can increase the 

expression of anti-apoptotic molecules in tumorigenic 

tissues. This gene encodes auroa kinase A, which 

affects the spindle, centrosome, and chromosome 
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segregation therefore it controls G2 and mitosis 

phases in the cell cycle (62). In addition, it was 

indicated that overexpression of AURKA can cause 

genomic instability and produce cells with 

multinuclear, overexpressed in neuroblastoma, liver 

cancer, and kidney carcinoma (63). FN1 (fibronectine 

1) is a famous gene belongs to ligand glycoprotein 

family, expressed in different types of cells. FN1 

plays a role in a various cellular mechanisms such as 

differentiation, migration, adhesion of cells, and 

carcinogenesis (64). Several studies showed that the 

expression of this gene is correlated positively with 

gastrointestinal cancers including gastric cancer and 

colorectal carcinoma (65, 66). FN1 was upregulated in 

tumor samples compared with normal samples in our 

analysis. Moreover, FN1 was overexpressed in breast 

tissues and led to metastasis and it was known as a 

hub gene. It was reported that FN1 was related to drug 

resistance in tumorigenic cells (64). SRGN is a 

member of the intracellular proteoglycan family and a 

large number of cells can produce it. It is apparent that 

stimulation of IL-β leads to increase SRGN 

expression in chondrocytes and endothelial cells (67). 

Also, SRGN is involved in inflammatory processes. It 

was found the expression of this gene increased in 

cancers and affected cell responses to some cytokines 

including IL-1β and TNFα (67, 68). The CD53 gene 

encodes a number of proteins in the surface of 

immune cells like NK cell, monocyte, B cell, etc. and 

can organize immune responses (69). In addition, this 

gene control production of TNFα. CD53 plays a 

potential role in the migration of leukocytes to 

lymphoid organs (70). Deficiency of this gene is 

related to some infections in different organs, for 

example, intestinal and pulmonary infections. Also, it 

was observed that immune cells, which belong to 

hematopoietic stem cells, and hematological tumors 

expressed the tetraspanin CD53 (70, 71). Based on the 

immune role of CD53, the expression of CD53 was 

expressed highly in cases with renal cancer.  

     In summary, we applied accurate methods 

including network analysis, survival analysis, 

expression profiling and gene set enrichment analysis 

to analyze the expression of candidate biomarker 

genes between metastatic samples compared to 

normal samples. However, the main limitations need 

to be addressed that is designing in vitro and in vivo 

experiments to confirm these findings. Expression of 

these genes particularly C3 which conferred to both 

expression profiling and survival results, as well as 

the hub genes with high degrees, can be monitored 

during the progression of cancer from early stages of 

the disease to high-grade stages of the disease. This 

aims to understand better the pathogenesis mechanism 

of these genes and develop a more accurate 

combinatory therapeutic target. Moreover, our 

findings showed that the major metabolic pathways 

and the enzymes of peroxisomes are related to the 

development of this disease, which required to be 

further investigated. 
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