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ABSTRACT 
 

 

Recent phenomenal advancements in genomic and proteomic technologies and rapid 

breakthroughs in the interpretation of large gene expression datasets have enabled 

scientists to comprehensively characterize the gene signatures involved in ferroptosis. 

Ferroptosis is an iron-dependent form of non-apoptotic cell death that has gained the 

worthwhile attention of both basic and clinical researchers. Ferroptosis has dichotomous, 

context-dependent functions both as a tumor suppressor and promoter of carcinogenesis. 

Essentially, pharmacological modulation of ferroptosis by its induction as well as its 

inhibition holds enormous potential to overcome drug resistance and to improve the 

therapeutic potential of chemotherapeutic drugs in a wide variety of cancers.  
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Introduction  

Rapidly evolving resistance against malignant 

cancer is a major concern in molecular oncology. 

Studies have shown that intra and inter-tumor 

heterogeneity, loss of apoptosis and deregulation of 

signaling cascades play a central role in different steps 

of carcinogenesis (1-4). The ability of signaling 

cascades to regulate different steps of cancer 

development and progression also presents an 

Achilles heel, as their misexpression has major 

pathological consequences in carcinogenesis and 

metastasis (5-17). The translation of laboratory-

directed therapies into clinical benefits is very 

challenging. Additionally, the pivotal role of 

epigenetics, epithelial to mesenchymal transition and 

non-coding RNAs is also very exciting and has been 

extensively explored (18-20). Seemingly, cancer is a 

multifaceted disease with surprisingly multifactorial 

effects.  

Programmed cell death is an inevitable 

physiological event in the cell cycle that determines 

the fate of the cell. Conventionally, the cell death 

mechanism involves apoptosis, autophagy, and 

necroptosis. Ferroptosis is a newer non-apoptotic, 

iron-dependent form of cell death that is characterized 

by the accumulation of lipid reactive oxygen species 

(21-23). Ferroptosis can be induced in cancer cells via 

natural or artificial stimuli to induce cell death. Since 

ferroptosis may lead to the elimination of malignant 

cells, it has gained attraction as a tumor-suppressive 

mechanism. The role of ferroptosis in the 

pathogenesis of cancer is poorly understood and 

understudied (24). As an alternative cell death 

pathway, triggering ferroptosis is also a promising 

approach to overcoming the resistance of cancer cells 

to apoptosis. Morphological characteristics of the 

conventional cell death mechanisms involve loss of 

the permeability of cell wall, shrinkage of cell, 

distortion of cell organelles and formation of 

autophagic vacuoles. In contrast, ferroptosis induce 

cell death by the condensation of mitochondria, the 

disintegration of mitochondrial cristae and rupture of 

https://creativecommons.org/licenses/by/4.0/
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mitochondrial membrane (25).  

In 2003, Dolma and colleagues discovered that 

erastin is a new compound capable of inducing cell 

death in RAS-expressing cells but the mechanism was 

morphologically different and was irresponsive to 

caspase inhibitors (26). Later it was found that this 

form of cell death can be reversed by iron-chelating 

agents and interestingly found out another compound 

RSL3 that was capable of inducing a similar kind of 

cell death (26)(27). In 2008, Yang (27) validated that 

iron-chelating agents can inhibit this form of cell 

death while in 2012 the terminology of ferroptosis 

was coined by Dixon for erastin-induced cell death in 

RAS mutated cells (28). To our interest, mammalian 

cancer cells have exhibited this form of cell death in 

response to various small molecules such as erastin, 

RSL-3, ML162, FIN56. Ferroptosis embarks the 

presence of iron and the accumulation of ROS. 

Relevantly, the induction of ferroptosis by these small 

molecules was reversed by iron-chelating agents or 

lipophilic antioxidants.    

A strong relationship between ROS generation and 

cancer progression has made it an important 

therapeutic target. ROS generation can not only lead 

to the resistance of chemotherapies but can promote 

the aggressiveness of cancer by various pathways. 

Elevated levels of ROS can modify DNA, and 

proteins leading to the activation of various oncogenic 

pathways that can promote tumorigenesis (29). 

Moreover, ROS-mediated angiogenesis can occur by 

modulating various endothelial growth factors. It can 

further increase the migration and invasion of cells by 

regulating various enzymes and cytoskeleton (30).  

 

Basic mechanisms involved in ferroptosis 

The membranes of mammalian cells are rich in 

phospholipids with one or more polyunsaturated fatty 

acid (PUFA) chains (31). Ferroptosis is driven by the 

peroxidation of the PUFA chain. Ferroptosis inducing 

small molecules inhibits a phospholipid peroxidase i.e 

glutathione peroxidase 4 (GPX4) resulting in the toxic 

accumulation of lipid peroxides that induce 

ferroptosis. The role of PUFAs was confirmed by 

various studies when ferroptosis was prevented by 

knocking out genes (e.g., ACSL4, LPCAT3) essential 

for the integration of activated PUFAs in membrane 

phospholipids (PL) (32). However, the molecular 

mechanisms behind the oxidation of PUFAs are still 

unknown. 

 Phosphorylase kinase G2 (PHKG2) regulates the 

iron availability to lipoxygenase enzymes that further 

initiate peroxidation of PUFA at the bis-allylic 

position leading to ferroptosis. Moreover, PUFA 

oxidation and ferroptosis can be blocked by pre-

treating cells with PUFAs containing heavy hydrogen 

isotope deuterium at the site of peroxidation, 

suggesting PUFA peroxidation by PHKG2 is critical 

for the induction of ferroptosis (33). Further in the 

endoplasmic reticulum, oxidation of phospholipids is 

specifically at arachidonoyl (C20:4) or adrenoyl 

(C22:4) fatty acyl chains and can be inhibited by acyl-

CoA synthase 4 (ACSL4) to reverse ferroptosis (34).  

One of the vital mechanisms of ferroptosis 

induction is the inhibition of the cystine-glutamate 

antiporter system (xc
−) that regulates the exchange of 

cysteine and glutathione (GSH) across the membrane. 

System xc
− is composed of two subunits i.e light chain 

subunit SLC7A11 (xCT) and heavy chain subunit 

SLC3A2. While SLC7A11 is specific to system xc
− 

(35). Importantly, SLC7A11 is overexpressed in a 

wide range of tumors and has been shown to induce 

oncogenic Ras transformation (36) making it an 

attractive target in cancer therapeutics (37). 

Ferroptosis can be initialized by inactivation of the 

system xc
-, which leads to a reduction in the synthesis 

of glutathione GSH, the cofactor of an antioxidant 

enzyme GPX4 (glutathione peroxidase-4) or by direct 

inactivation of GPX4 (38,39). The GPX4 defense 

system is an antioxidant that detoxifies various lipid 

peroxides and studies have shown that it is the key 

driver of ferroptosis. Its inhibition finally leads to an 

increase in iron-dependent lipid peroxidation. A 

number of ferroptosis-inducing small molecules as 

erastin, sulfasalazine, and sorafenib utilize this 

mechanism. Notably, cancer cells that overexpress 

GSH and system Xc- expression are highly resistant to 

chemotherapies (40).  

As ferroptosis is iron-dependent cell death and the 

presence of free iron along with PUFAs is critical. 

The iron-dependent lipoxygenase enzymes oxidize 

membrane PUFAs for the production of oxidized lipid 

species that further induces cell death. The fact was 

validated when iron chelators such as ciclopirox and 

deferoxamine suppressed ferroptosis by modulating 

the generation of lipid ROS. Interestingly, the 
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transport of iron into the cell is the form of iron-

transferrin complexes and this process is specifically 

up-regulated in various cancers and the 

downregulation of transferrin receptors inhibited 

ferroptosis.  

As already discussed, GPX4 is the main negative 

regulator of ferroptosis and its inhibition alone is 

sufficient for inducing this form of necrotic cell death 

(shown in Figure 1). But the innate repair mechanisms 

to neutralize lipid hydroperoxides in PUFAs protects 

against ferroptosis. Stoppage of ferrostatin-1 

(ferroptosis inhibitor) dosage caused significant tumor 

regression selectively in the GPX4-knockout 

xenografts, but GPX4-wild-type xenografts continued 

to undergo rapid growth (41). This was attributed to a 

number of endogenous repair mechanisms that 

protects the cell from iron-dependent cell death. 

Recent studies have shown that various endogenous 

inhibitors as Liproxstatin-1 or ferrostatin-1 were able 

to inhibit ferroptosis-induced cell death, suggesting 

the possible role of various antioxidant pathways in 

the defense against iron-dependent cell death and loss 

of repair of hydroperoxides is critical for ferroptosis 

induction.  

 

 

Figure 1. shows the underlying mechanisms of ferroptosis.  

 

Tumor suppression and ferroptosis 

The link between ferroptosis and cancer was first 

identified when the tumor-suppressive activity of p53 

mutant mice was observed. p53 is an important tumor 

suppressor gene. p53 induces the DNA-damage-

response pathway including DNA  repair, apoptosis, 

cell-cycle arrest, and/ or senescence (42). In non-

transformed, un-stressed cells, the amount of p53 

protein is generally kept low. p53 is an important 

tumor suppressor gene. p53 induces the DNA-

damage-response pathway including DNA  repair, 

apoptosis, cell-cycle arrest, and/ or senescence (42). In 

non-transformed, un-stressed cells, the amount of p53 

protein is generally kept low. It has long been 

considered that p53 mainly exerts its tumor-

suppressive function via the above-mentioned 

mechanisms. Interestingly, the acetylation-defective 

mutant p533KR is unable to induce these classical p53 

functions, but still maintains its anti-tumor activity 

(43, 44). Inhibition of the GSH/GPX4 defense system 

finally leads to an increase in iron-dependent lipid 

peroxidation. It has been shown that p53 inhibits the 

expression of SLC7A11, a component of the Xc− 

system, thereby accelerating ferroptosis. p53 caused 

transcriptional downregulation of SLC7A11. 

Furthermore, overexpression of SLC7A11 rescued 

these cells from p533KR-mediated ferroptotic death. 

Upon p533KR expression induced by tetracycline, 

growth of H1299 p53-null cells was drastically reduced 

in xenografted mice. However, tumor-suppressive 

effects of p533KR were abolished to a greater extent 

upon SLC7A11 overexpression (43, 44). In addition, 

p53 can also enhance ferroptosis by regulating SAT1 

(spermidine/spermine N1-acetyltransferase) in 

multiple cancer cells including breast cancer (45) or 

by regulating GLS2 (glutaminase 2) (46,47). 

Conversely, p53 can also negatively regulate 

ferroptosis, e.g. by p53-p21-dependent upregulation of 

intracellular GSH (48). p53 function in ferroptosis 

seems to be regulated by posttranslational 

modification(s). p53 Ser46 phosphorylation has been 

recently reported to trigger ferroptosis following 

cisplatin treatment (49-50), but the underlying 

mechanism is unclear. 

 

Role of ferroptosis in various types of Cancers 

Pancreatic cancer 

Pathologically, the most common type of pancreatic 

cancer is pancreatic ductal adenocarcinoma (PDAC) 

with a high prevalence of kRas mutations (51). Since 

ferroptosis was originally investigated to be a 
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dependent phenomenon, therefore, its role in PDAC is 

critical. The role of ferroptosis in PDAC is tricky with 

dual effects on the growth of cancer. The induction of 

ferroptosis in pancreatic cancer cells has been shown 

through various complex mechanisms. The role of the 

antioxidant enzyme GPX4 in ferroptosis has already 

been discussed and it has been established prognostic 

factor in pancreatic cancer patients. In a recent study, 

the impact of GPX4 depletion upregulated 8-OHG 

release leading to the activation of the DNA sensor 

pathway (TMEM173/STING-dependent), resulting in 

the infiltration of macrophages and the activation of 

kRas-driven PDAC in mice. Infiltration of tumor-

associated macrophages was increased in Kras-driven 

and GPX4 depleted mice. TMEM173 depletion 

protected against GPX4 depletion-induced cancer 

progression and decreased infiltration of TAMs in 

Kras-driven mice. Overall, ferroptosis inhibitors 

suppressed kRas-mediated oncogenesis, revealing the 

possible role of targeting ferroptosis to regulate tumor 

progression in the pancreas (52). In another study, 

zalcitabine-an anti-HIV drug-induced mitochondrial 

damage and ferroptosis by activating the ALOX5 

pathway in pancreatic cancer. Zalcitabine failed to 

reduce the size of tumors in mice subcutaneously 

implanted with ALOX5-knockdown, STING1-

knockdown or ATG5-knockdown-PANC1 cancer 

cells (53). Further, high dose rapamycin-induced 

degradation of GPX4. GPX4-knockdown MIAPaCa2 

or PANC1 cells were found to be more sensitive to 

rapamycin-mediated tumor-suppressive effects (54).  

Traditionally, artesunate is an anti-malarial drug but 

later has shown antitumor potential. Artesunate-

induced ferroptosis in pancreatic ductal 

adenocarcinoma (PDAC) cells that are resistant to 

apoptosis, indicating a possible pathway for the 

treatment of tumors resistant to apoptosis (55). 

Promisingly, potent antitumor effects were seen with 

the co-treatment of cotylenin A and phenylethyl 

isothiocyanate (PEITC) mainly by inducing ROS in 

pancreatic cancer cells. Cotylenin A and 

Piperlongumine synergistically induced the death of 

pancreatic PANC‑1 and MIAPaCa‑2 cancer cells. 

Further studies have shown a more potent 

combination of Piperlongumine, CN-A and 

sulfasalazine that has better ferroptosis-inducing 

effects (56). 

 

Breast cancer 

As discussed previously GPX4 inhibition is the 

primary mechanism for the induction of ferroptosis. 

Importantly, a number of studies have shown that 

inhibition of GPX4 can induce ferroptosis in resistant 

breast tumors as they rely on GPX4 for survival. A 

group of resistant cells in high-mesenchymal state 

cells were found following lapatinib treatment in 

HER2-amplified breast cancer cell lines. Importantly, 

the author named this highly resistant population as 

persister cells and importantly they were highly 

dependent on GPX4 for survival and further, GPX4 

inhibitors eliminated these persister cells by inducing 

ferroptosis (57). This implicates the significance of 

ferroptosis in overcoming resistance to breast cancer 

therapies.  

In a range of breast carcinoma cell lines (MCF-7, 

MDA-MB-231, ZR-75 and SKBr3), co-treatments of 

siramesine and lapatinib triggered ferroptosis by up 

surging intracellular iron levels and ROS (58). The 

co-administration of siramesine and lapatinib can up-

regulate intracellular iron levels by targeting 

transferrin and ferroportin leading to ROS-mediated 

ferroptosis in breast cancer cells. This induction was 

reversed by iron chelators (59). Yet, in another study, 

ferroptosis in TNBCs was induced by the depletion of 

cysteine which plays a critical role in GPX4 synthesis. 

Ferroptosis was induced via the GCN2-eIF2α-ATF4-

CHAC1 pathway. The restoration of this pathway was 

shown with ferrostatin-1, necrostatin-1, RIP1 

knockdown and deferoxamine (an iron chelator) to 

emphasize that stress response pathways were 

specifically involved (60).  

Accumulating evidence provided evidence about 

gefitinib resistance in triple-negative breast cancer 

(TNBC) and a recent study has shown that induction 

by ferroptosis by inhibiting GPX4 sensitized TNBC to 

gefitinib (61).  

Sulfasalazine SAS preferentially triggered 

ferroptosis in breast cancer cells with lower estrogen 

receptor expression by inhibiting GPX4 and xCT 

while inducing transferrin receptor and divalent metal 

transporter 1 (62). Another study revealed that 

metformin could trigger ferroptosis by decreasing the 

protein stability of SLC7A11 by blocking the 

UFMylation process. The author further emphasized 

that SAS and metformin can have a synergetic effect 

on inducing ferroptosis and inhibiting the invasiveness 
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of breast cancer. SLC7A11 knockdown caused a 

significant increase in the sensitivity of cancer cells to 

metformin and enhanced the production of lipid ROS. 

Metformin and sulfasalazine combinatorially inhibited 

the growth of tumors in mice subcutaneously 

implanted with T47D cells (63). More recently, 

curcumin has been shown to exhibit its anti-tumor 

effects by inducing ferroptosis in breast cancer cells 

(64). Promisingly, the anaesthetic agent ketamine 

showed anti-proliferative effects by inhibiting 

KAT5/GPX4 axis that further triggering ferroptosis. 

Ketamine exerted inhibitory effects on GPX4 

expression by attenuating KAT5 on the promoter 

regions of GPX4 by reducing the levels of H3K27ac 

(65).  

 

Ovarian Cancer 

Ovarian cancer is a lethal and therapeutically 

challenging disease (66-69). 

As explained in previous paragraphs about the 

potent role of p53 in regulating ferroptosis. Here in a 

recent study, Human Serum Incubated-

Superparamagnetic Iron Oxides induced ferroptosis in 

ovarian cancer cells by the transfer of free iron to 

mitochondria and intracellular accumulation while the 

p53 gene augmented this effect by the down-

regulation of SLC7A11 and GPX4 in ovarian cancer 

cells (70). The role of p53 in relation to ferroptosis in 

ovarian cancer is still under-studied and warrants the 

need for further investigations.  

Accumulating evidence suggests that 

transcriptional co-activator with PDZ binding motif 

(TAZ) can regulate the invasiveness of ovarian cancer 

and is an important target to combat chemotherapeutic 

resistance (71). In a recent study, Yang and colleagues 

have shown that the activation of TAZ can induce 

ferroptosis in ovarian cancer cells by regulating the 

ANGPTL4-NOX gene pathway (72). Platinum-

tolerant cancer cells poses challenges to 

chemotherapies in ovarian cancers and interestingly 

these cells were more responsive to GPX4 inhibitors 

leading to ferroptosis induction. FZD7 overexpression 

not only promoted proliferation rates of OVCAR5 and 

SKOV3 cancer cells but also enhanced platinum 

resistance. There was an evident reduction in the 

levels of GPX4 in FZD7 knockdown cells. 

Importantly, a notable reduction in growth rates of 

tumors was reported in mice inoculated with FZD7 

knockdown OVCAR5 cancer cells (73). 

 

Lung Cancer 

Largely, lung cancer is classified into two groups; 

small-cell lung cancer (SCLC) and non-small-cell 

lung cancer (NSCLC). Importantly, 88% of the 

NSCLC overexpresses and they are more dependent 

on iron as transferrin protein is overactive (74). 

Cisplatin is the primary adjuvant chemotherapy in 

NSCLC but it has shown frequent resistance. 

Induction of ferroptosis by GPX4 inhibition improved 

the response of cisplatin in a number of lung cancer 

cell lines and in xenograft mice models (75). In 

another study, combining cisplatin with ferroptosis 

activator RSL3 induces ferroptosis through 

ferritinophagy. 

However, the resistance is a complex phenomenon 

but following cisplatin treatment leads to the over-

activation of NRF2/xCT pathway that has been 

frequently associated with the resistance. Notably, a 

low dose of cisplatin in combination with ferroptosis 

activators i.e erastin/sorafenib notably improved the 

prognosis of failed cisplatin therapy (76). Moreover, 

combining erastin with radiotherapy helps the combat 

radio-resistance in NSCLC cells (77).  

 

Urologic Cancers 

Ferroptosis can implicate the treatment of various 

urologic cancers as prostate cancer, kidney cancer, 

and bladder cancer. Prostate cancer (PC) is not only a 

malignancy but a lipid metabolic disorder. Ferroptosis 

has been identified to play a critical role in the 

pathophysiology of prostate cancer. Importantly, PC 

cells were found to be more sensitive to ferroptosis 

inducers compared to non-cancer prostate cells. 

Resistant PCs exhibited higher sensitivity to erastin 

and RSL3. The author suggested the therapeutic 

potential role of erastin and RSL3 as adjuvant therapy 

with anti-androgen therapy. Combinatorial treatment 

with erastin/RSL3 and enzalutamide synergistically 

inhibited the growth of tumors in xenografted animal 

models (78). Iron-dependent death can improve the 

prognosis of anti-androgen therapy in prostate cancer 

by its antiproliferative effects. Bicalutamide-iron 

combinations efficaciously impaired tumor expansion 

while single agents did not inhibit tumor growths  
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(79). In a comprehensive statistical study utilizing 

genomic and clinical cohorts on various ferroptosis-

related genes, AIFM2 and NFS1 were found to be 

highly correlated with ferroptosis in prostate cancer. 

NFS1 and AIFM2 knockdowns remarkably hampered 

the expansion of tumor mass in experimental mice 

(80).  

Foods high in dietary polyunsaturated fatty acid 

(PUFA) are linked with a reduced risk of PC and an 

enzyme 2,4-Dienoyl-CoA reductase 1 (DECR1) that 

is involved in PUFA oxidation is frequently up-

regulated in PCs. Interestingly, deletion of DECR1 

leads to the accumulation of PUFAs that induces lipid 

peroxidation and ferroptosis (81). Knockdown of 

DECR1 increases the susceptibility of castration-

resistant PCs to ferroptosis by up-regulating lipids 

detoxifying enzymes (82). PANX2-a protein coding 

gene was found to be significantly up-regulated in 

PCs and has been identified as a potent marker 

correlated with ferroptosis (83). PANX2 was shown to 

regulate the nuclear factor erythroid 2-related factor 2 

(NRF2) and antioxidant response of NRF2 protects 

cancer cells against ferroptosis by regulating 

SLC7A11. In PCs, silencing of PANX2 inhibited 

NRF2 leading to ferroptosis (83). 

Hippo-YAP/TAZ is composed of kinase cascade 

that triggers cell growth. Hippo pathway and 

ferroptosis are highly sensitive to cell density and an 

up-regulated TAZ expression is linked with increased 

sensitivity to ferroptosis (84). In Renal carcinoma 

cells (RCCs), cell density-mediated ferroptosis was 

mediated by a TAZ-EMP1-NOX4 pathway, implying 

the role of iron-dependent death in the treatment of 

resistant renal carcinoma (85). In renal carcinoma 

cells, lycorine treatment regulated the key markers of 

ferroptosis by decreasing the expression of   GPX4 

and increasing the expression of acyl-CoA synthetase 

long-chain family member 4 (ACSL4) in RCCs (86). 

Bioinformatically, the relationship between 

ferroptosis and bladder cancer has been established by 

a number of studies (87-89). A natural product 

baicalin was found to induce ferroptosis in bladder 

cancer cells 5637 and KU-19-19 by regulating ferritin 

heavy chain 1 (FTH1). Intraperitoneally injected 

Baicalin induced regression of the tumor mass in mice 

inoculated with KU-19-19 cells (90). Fin56 which is a 

type 3 ferroptosis inducer promotes GPX4 

degradation and triggers ferroptosis in bladder cancer 

cells. Also, Torin 2 which is a potential mTOR 

inhibitor promotes autophagy and when combined 

with Fin56 had a synergistic cytotoxic effect on the 

bladder cancer cells. This suggests the combined 

therapy of ferroptosis inducers and mTOR inhibitor 

has therapeutic potential for the treatment of bladder 

cancer (91). 

 

Role of ferroptosis in various cancer therapies 

The role of ferroptosis in radiotherapy gained 

attention when exposed to ionizing radiation (IR) was 

shown to induce ferroptosis and was frequently linked 

with better survival following radiotherapies (92, 93). 

Substantial evidence exists between ferroptosis and 

the prognosis of IR in diverse cancer models.  In cell 

culture and xenograft models of breast cancer, lung 

cancer, oesophageal cancer, ovarian cancer, sarcoma, 

and glioblastoma, ferroptosis inducers improved the 

radiosensitivity of IR by the inactivation of SLC7A11 

or GPX4  (94,95). In both in-vitro and in-vivo models 

of lung adenocarcinoma, treatment with erastin 

improved the sensitivity of X-ray irradiation by the 

depletion of glutathione (96). Following radiation 

therapy, the use of polyphenol gallic acid decreased 

the survival of breast cancer and melanoma cells 

mainly by inhibiting GPX4 activity (97). 

Only a few studies hint at a possible role of 

ferroptosis in immunotherapies and yet more intensive 

research is required to establish this relationship. In a 

notable work by Wang et al published in Nature has 

shown that immunotherapy can activate CD8+ T cells 

leading to secretion of IFNγ that further suppresses 

the expression of SLC7A11 and SLC3A2 that 

regulates the system Xc that further resulting in JAK 

(Janus kinase) -STAT1 (signal transducer of the 

transcription 1) mediated ferroptosis in cancer cells. 

Further, it was shown that the expression of the anti-

ferroptosis gene SLC7A11 is negatively correlated 

with IFNγ expression in cancer cells, CD8+ T cell 

counts, and prognosis of cancer patients (98). These 

findings have been repeatedly mentioned as a 

breakthrough in the field of immunotherapy that needs 

further investigations.  

One of the major challenges of anti-tumor therapies 

is resistance. Ferroptosis has gained attention for 

enhancing the sensitivity of resistant cancer therapies 

and a number of anticancer drugs as iron activators, 

GSH inhibitors and NRF2 inhibitors have been 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/ferritin
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developed that suppress oncogenesis by activating 

iron-dependent cell death or ferroptosis (99).  

Recent data has shown that ferroptosis inducers can 

up-regulate the cytotoxicity of cisplatin that otherwise 

exhibits frequent resistance (76). Ferroptosis agonist 

i.e erastin, sorafenib triggered ferroptosis through 

NRF2/SLC7A11 pathway in cisplatin-resistant non-

small cell lung cancer cells (76). Further, STAT3 

inhibitor BP-1-102 induced ferroptosis by interrupting 

STAT3/NRF2/GPX4 signals in osteosarcoma cells. 

Collectively, the findings indicated that ferroptosis 

agonists and STAT3 inhibitors caused re-activation of 

ferroptosis in cisplatin-resistant cells and 

consequently increased sensitivity to cisplatin (100).   

Mechanistically, artesunate has been shown to 

induce ferroptosis by upregulating NCOA4-mediated 

ferritinophagy, promoting lysosomal activity leading 

to increased intracellular iron levels and regulating 

iron-related genes.  Further artesunate has been 

repeatedly shown to potentiate the anticancer potential 

of other chemotherapeutic agents. For instance, 

artesunate-mediated ferroptosis induction increased 

the sensitivity of cisplatin in resistant head and neck 

cancer cells by inhibiting NRF2 pathway (101). 

Sorafenib is the first-line chemotherapeutic drug used 

against advanced hepatocellular carcinoma. 

Artesunate potentiates the effects of sorafenib by 

inducing ferroptosis by the activation of lysosomal 

cathepsin B/L, ferritin degradation and peroxidation 

of lipid (102). Previously, clinical trials on artesunate 

showed that it improved the survival of cancer 

patients and recent data has shown its potential role in 

facilitating ferroptosis, therefore, further studies are 

required to harness its true potential. Further, 

Siramesine an antidepressant drug and lapatinib which 

is a tyrosine kinase inhibitor have been shown to 

possess iron activating potential. As indicated above 

in the breast cancer section, both drugs potentially 

improve the efficacy of chemotherapies by reducing 

resistance and relapse of tumors. 

As cancer cells are sporadically proliferating, they 

are highly dependent on iron for their growth and 

survival. A number of cancer cell lines have reported 

up-regulation of TFR and down-regulation of FPN. 

Balance in the metabolism of iron plays integral role 

in improving the resistance of chemotherapies (103).  

It is important to note that drug-resistant tumors 

overexpress transferrin receptor (TFR) and ferritin and 

less ferroportin-1 (FPN, the iron transport protein) 

compared to non-resistant as transport of iron plays a 

critical role is ferroptosis resistance. The decrease in 

intracellular free iron leads to resistance toward iron-

dependent cell death. Conversely, ferroptosis 

sensitivity can be augmented by TFR overexpression 

leading to up-regulation in iron uptake, blocking FPN 

that impairs iron export and inhibiting ferritin that 

reduces iron storage. It has long been established 

through various studies that inhibition of TFR is 

linked with combating resistance to chemotherapies 

(104, 105). For instance, it was shown that liposomes 

co-encapsulating doxorubicin and verapamil that 

targets TFR showed high efficacy to combat 

chemotherapeutic resistance in hematologic 

malignancy cells (105). As already discussed, 

targeting TFR induces ferroptosis, this implicates the 

role of TFR to improve the response of 

chemotherapeutic drugs in breast cancer.  

 

Detailed Mechanistic Insights about Ferroptosis:  

N6-methyladenosine (m6A), an essential RNA 

modification is catalyzed principally by METTL3-

METTL14 methyltransferase complexes. IGF2BPs 

belong to the family of m6A readers and promote the 

storage and stability of their target mRNAs in an 

m6A-dependent manner. METTL3 stabilized 

SLC7A11 by IGF2BP. IGF2BP2 overexpression 

caused significant reversal of the inhibitory effects of 

METTL3 silencing on the mRNA stability of 

SLC7A11 (106). 

AGAP2-AS1, a long non-coding RNA has been 

shown to fuel the proliferation ability of melanoma 

cells. AGAP2-AS1 knockdown markedly enhanced 

erastin-directed ferroptotic death in melanoma cells. 

AGAP2-AS1 increased mRNA stability of SLC7A11 

by IGF2BP2 in melanoma cells (Fig.2) (107). 

PCDHB14 (Protocadherin beta-14) is a tumor 

suppressor and reported to be transcriptionally 

upregulated by p53. As SLC7A11 is a negative 

regulator of ferroptosis and NFҚB (p65) has been 

shown to transcriptionally upregulate SLC7A11. 

PCDHB14 promoted E3 ubiquitin ligase RNF182-

induced ubiquitylation and degradation of p65 (Fig.2) 

(108).  

ALKBH5) is a m6A demethylase and promotes 

destabilization of target mRNAs by demethylation. 

Inhibition of ALKBH5 markedly abrogated the 



 Malik et al./ Frontiers of Ferroptosis in Cancer Treatment, 2022, 68(2): 213-226  

 

Cell Mol Biol  220 

 

sensitivity of HPSCC cells to ferroptosis. However, 

ALKBH5 overexpression sensitized HPSCC cells to 

RSL3. More importantly, RSL3 considerably induced 

regression of tumor mass in mice inoculated with 

ALKBH5 overexpressing- HPSCC cells.  

NFE2L2/NRF2 is degraded by KEAP1 but 

inactivation of KEAP1 relieves KEAP1-mediated 

inhibitory effects on NFE2L2/NRF2. Inactivation of 

NFE2L2/NRF2 signaling has been reported to 

maximize anti-tumor effects of ferroptosis inducers. 

ALKBH5 overexpression considerably abrogated 

binding ability of IGF2BP2 to 3′UTR of NRF2 

mRNA. Intraperitoneal injections of NRF2 inhibitor 

(ML385) proficiently inhibited the weights and 

growth of tumors in mice inoculated with ALKBH5-

silenced cells (109).  

Inhibition/inactivation of FGFR4 significantly 

reduced the recruitment of β-catenin/TCF4 complexes 

to promoter regions of SLC7A11 and Ferroportin-1. 

Selective inhibitor of FGFR4 (Roblitinib) in 

combination with trastuzumab synergistically 

inhibited the growth of palpable tumors in mice 

inoculated with MDA-MB-361 or rSKBR3 cancer 

cells. FGFR4 inhibition caused considerable 

suppression in the levels of p-GSK-3β, β-catenin, 

SLC7A11 and Ferroportin-1 (110).  

CCR4‐NOT complexes are recruited to poly(A) 

tails of mRNAs by PABPC1 (poly(A)‐binding protein 

1) for de-adenylation of mRNAs, or is recruited 

directly by YTHDF2 to trigger the process of 

destabilization of m6A‐modified mRNAs. Shortening 

of the poly(A) tails (de-adenylation) has been 

demonstrated to repress expression by decreasing the 

stability of target mRNAs. Knocking down of 

CNOT1, a large scaffold subunit of the CCR4‐NOT 

complex led to significant increase in the length of 

poly(A) tail of SLC7A11 in HuH6 cells. There was an 

evident increase in the length of SLC7A11 poly(A) 

tails upon the overexpression of IGF2BP1 and 

reduced profoundly upon knockdown of IGF2BP1. 

IGF2BP1 competitively interacted with PABPC1 and 

blocked interaction of the CCR4‐NOT complexes 

with PABPC1 (Fig.2) (111). 

Phosphorylation of DRP1 (Dynamin-related protein 

1) at serine-637 inactivates it. DRP1 inactivation by 

phosphorylation at Serine-637 was repressed in 

erastin-induced ferroptotic death. DRP1 

dephosphorylation at Serine-637 in GBM cells 

potently induced ACSL4-mediated ferroptosis. HSP90 

co-localized with ACSL4 and DRP1 in the outer 

membranes of mitochondria. Calcineurin 

dephosphorylated DRP1 at Serine-637 and HSP90 

interacted with calcineurin and stimulated its 

functions. In PL1 cells, HSP90 knockdown increased 

phosphorylation of DRP1 at serine-637 and reduced 

the levels of calcineurin and ACSL4. However, active 

DRP1 and HSP90 substantially enhanced the thermal 

stability of ACSL4. Overexpression of HSP90 and 

ACSL4 maximized erastin-induced shrinkage of PG7-

derived glioma tumors (112).  

KAT6B (Lysine Acetyltransferase 6B) is a negative 

regulator of ferroptosis. Erastin-mediated ferroptosis 

was blocked in KAT6B-overexpressing-U251 and 

LN229 cells. KAT6B knockdown potently abolished 

the enrichment of histone H3 lysine 23 acetylation and 

RNA polymerase II on promoter region of STAT3 in 

LN229 and U251 cells (113). 

NFκB activating protein (NKAP), an RNA-binding 

protein binds effectively to m6A-containing sites of 

SLC7A11 transcripts and increased protein levels of 

SLC7A11. Sulfasalazine-mediated tumor growth 

inhibition was noted to be more pronounced in 

subcutaneous xenograft models inoculated with 

NKAP-silenced U87MG cells. Sulfasalazine also 

efficiently inhibited tumor growth in an orthotopic 

intracranial animal model inoculated with NKAP-

silenced U87MG cells. NKAP recruited the splicing 

factor SFPQ for the recognition of alternative splice 

sites after binding to m6A sites. SFPQ is a splicing 

factor and participates in the regulation of oncogenic 

transcriptome. NKAP-directed recruitment of SFPQ 

promoted the mechanism of alternative transcription 

termination site (TTS) and promoted maturation of 

mRNA (114).  

There was a significant reduction in the weights 

and volume of tumors in mice orthotopically 

implanted with LINC01564-silenced LN229 cells into 

the brain. SRSF1 overexpression increased the levels 

of NRF2 as well as its target genes. LINC01564 

promoted the stability of MAPK8 mRNA by 

recruitment of SRSF1. LINC01564 promoted 

MAPK8-mediated phosphorylation of NRF2 for the 

activation of the target genes (Fig.2). Likewise, there 

was a significant impairment of tumor growth in mice 

orthotopically implanted with MAPK8-silenced 

LN229 cells (115).  
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Figure 2. Diagrammatic representation of interplay among 

different signaling molecules for the regulation of 

ferroptosis. (A) METTL3 induced m6A modifications of 

SLC7A11. These modifications are read by IGF2BPs. 

IGF2BP2-controlled the stability of SLC7A11 mRNA. 

AGAP2-AS1 increased mRNA stability of SLC7A11 by 

IGF2BP2 (B) PCDHB14 (Protocadherin beta-14) is 

transcriptionally upregulated by p53. NFҚB (p65) 

transcriptionally upregulates SLC7A11. PCDHB14 

promoted RNF182-induced ubiquitylation and degradation 

of p65. (C) IGF2BP1 competitively interacted with 

PABPC1 and blocked interaction of the CCR4‐NOT 

complexes with PABPC1. (D) LINC01564 promoted the 

stability of MAPK8 mRNA by recruitment of SRSF1. 

LINC01564 promoted MAPK8-mediated phosphorylation 

of NRF2 for the activation of the target genes. 

 

Conclusions 

We have witnessed incredible and ever-growing 

interest among clinical and basic researchers in 

characterization of regulators of the ferroptosis in 

cancer and in reaping the full benefits of this wealth of 

information to improve cancer prevention and 

treatment. Ferroptosis has a highly context-dependent 

and complex role in carcinogenesis and metastasis. 

Design and development of translational anticancer 

agents is challenging and relies on continuing research 

for a better understanding of the regulatory 

mechanisms and signaling pathways which 

mechanistically modulate ferroptosis. 
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