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ABSTRACT 
 

 

About 80% higher risk of amputation resulting from microbial infection was indicated for patients with 

diabetic foot ulcers (DFUs). Micro and nano-scaffolds made of natural polymers specifically cellulose, 

chitosan, and collagen can donate the biocompatibility, biodegradability, and bioavailability properties 

appropriate to accelerate wound closure before microbial biofilm formation. The antimicrobial activity of 

these wound dressings can be improved by the incorporation of bioactive compounds extracted from 

medicinal plant species such as curcumin. Low water solubility and poor bioavailability are recognized 

as two main disadvantages of curcumin, lipophilic phytopolyphenol, which could be controlled by 

targeted polymeric micro and nano-scaffolds. Consequently, this review has discussed the capacity and 

challenges of these types of formulations according to recent investigations.  
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Introduction 

Various infectious diseases have been complicated by 

the increasing of multidrug-resistant microorganisms 

particularly pathogenic bacteria (1-4). For example, an 

infected wound such as DFU is a serious health disease 

resulting from multidrug-resistant microorganisms 

including bacteria and fungi that may lead to death in 

patients (5-8). As a medical aspect, biocompatibility, 

bioavailability, and biodegradability properties of new 

micro and nano-formulations to heal infected wounds 

should be considered as critical factors. In this regard, 

using of biomaterials is increasing due to these 

properties and also the reduction of hazardous 

compounds in the ecosystem (9, 10). Biomaterials 

specifically primary and secondary metabolites of 

medicinal plants can also increase the therapeutic effect 

of other drugs (11, 12). For instance, the curcumin 

compound is extracted naturally from the Curcuma 

longa plant species, a member of Zingiberaceae family 

(13-15). Different isomers of this natural phenol are 

related to its keto-enol tautomerism property with keto 

and enol isomers in water and organic solvent, 

respectively. electron density of curcumin indicates the 

active sites of these metabolites with the ability to 

participate in redox reaction by the molecular 

electrostatic potential (Figure 1) (16).  In addition to 

usage in cosmetic and food industries, various 

therapeutic applications were indicated for this material 

including antitumor, antimicrobial, and wound healing 

activities by anti-inflammatory, antiseptic, and 

antioxidant functions (17,18). However, 

hydrophobicity, low stability properties in 

physiological fluids as well as side effects including 

diarrhea, nausea, and reduction in cell proliferation, 

increased apoptosis, focal necrosis in the liver, as well 

as decreased body weight in a high dose of curcumin, 

can be major complications to achieve an efficient drug 

formulation (19, 20). In addition to secondary 
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metabolites of medicinal plants (21-23), natural 

polymers such as chitosan, cellulose, and collagen can 

increase the bioavailability and biodegradability of 

curcumin in micro and nanoformulations (24-26). 

Additionally, these polymers or their derivatives can 

contribute positively to the wound healing phase 

involving hemostasis, inflammation (inflammatory 

response, immune recruitment, and pathogen removal), 

proliferation, and maturation (Figure 2) (27, 28). 

Synergistic activity has resulted from antimicrobial 

activity, anti-inflammatory, and cell growth promotion 

of formulated curcumin by these polymers (15, 29, 30). 

Challenges for these formulations are related to 

curcumin release and inhibition of multi-drug-resistant 

bacteria specifically in chronically infected wounds 

such as DFUs (31). It is worth noting that 150-fold 

augmented risk of amputation and an enhanced risk of 

mortality within 18 months were indicated for patients 

with DFUs caused by biofilm formation in wound 

tissues (32). Delayed wound healing commonly results 

from symbiotic colonization of bacteria and fungi in 

biofilm due to hindering antibiotic penetration (33). In 

recent years, a plethora of studies illustrated the 

significant progress in micro and nanoformulations, 

and the present review has endeavored to assess these 

advancements and related challenges in detail.    

 

Cellulose  

Controlled and sustained release of curcumin is 

critical to achieving wound healing and antimicrobial 

effects at an appropriate time, wherein NMs of 

cellulose present an efficient option (34). Cellulose 

nanocrystals (CNCs) and cellulose nanofibrils (CNFs) 

may be prepared via treatments of ball milling, acidic 

hydrolysis, chemical, and ultrasound from bacterial 

herbal, marine animals, and algal cellulose fibers (35). 

Modification of these NM is carried out by two main 

strategies including hydroxyl substitution (acetylation 

and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) 

oxidation) and polymer grafting through coupling 

agents and ring-opening (36).  Prepared CNCs with a 

mean length of 159 nm and thickness of 0.4 mm from 

cotton fiber demonstrated the sustained release of 

curcumin as a value of 98.9% after 36 h of treatment as 

well as 99% of growth reduction in Gram-negative and 

Gram-positive bacteria. Consequently, the closure of 

the wound was significant and complete after 7 and 12 

days, respectively relative to placebo control.  

Interestingly, 99% growth inhibition against 

methicillin-resistant Staphylococcus aureus (MRSA), 

E. coli, Proteus mirabilis, Bacillus coagulans, 

Streptococcus sp. bacteria and Candida albicans 

fungus was observed after 15 washing wound dressing 

(32).   

 
Figure 1. Active sites of curcumin according to map of 

electron density (under the terms of the Creative Commons 

Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/)) (16).   

 

Chitosan 

Encapsulation of AgNPs via polymeric micro and 

nanoformulations can be performed as a smart strategy 

to decrease the cytotoxicity of AgNPs in physiological 

conditions. For this purpose, chitosan-g-

polyacrylamide was exploited to load AgNPs through 

a grafting copolymerization reaction (grafting one or 

more homopolymers as branches onto a main polymer 

chain) using potassium N,N′-methylenebisacrylamide 

and persulfate as crosslinker and initiator agents, 

respectively. In this formulation, chitosan by 20 and 40 

weight % resulted in a spherical shape with particle 

sizes of 18.48 and 23.67 nm, respectively (37). In a 

comparative investigation, three types of sponge 

composites encompassing chitosan-alginate-curcumin, 

chitosan-gelatin-curcumin, and chitosan-collagen-

curcumin were prepared by a simple safe a freeze-

drying technique. 

Chitosan-gelatin-curcumin displayed more 

antibacterial activity compared to other composites 

against E. coli and S. aureus by inhibition zone 

diameter of 24 and 18 mm, sequentially with good cell 

reproduction after 10 days of scar treatment rat sample 

(38). Mechanical properties, wettability, swelling, and 

metabolic stability of polymeric micro and 

nanoformulations can be improved by using pluronic 
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block copolymers (39). In this way, membranes based 

on chitosan-curcumin incorporated in pluronic 

copolymers exhibited curcumin release (in a medium 

containing Tween 80 after the period of ~300 h) and 

high swelling degree with values of ~60% and >800%, 

respectively (40). Combination of curcumin with metal 

or metal oxide NPs can cause synergistic antibacterial 

activity; as an example, curcumin can form a complex 

with TiO2 and then loaded on chitosan to increase 

bacterial inactivation of antibiotic-resistant Gram-

positive and Gram-negative bacteria by synergistic 

effect, water absorption capacity, wound healing after 

14 days as well as improve drug release (41).  

 

 
Figure 2. Wound healing phases with three sub-phases related to an inflammatory response (created with BioRender.com) (42).  

 

Collagen  

The wound healing property of collagen is based on 

cell attachment via abundant arginine–glycine–aspartic 

acid (RGD) integrin-binding motifs, which play critical 

roles in cellular migration, growth and differentiation 

resulting in increased angiogenesis and granulation 

tissues in wound site (43, 44). Collagen in combination 

with other antimicrobial materials such as 

MNPs/MONPs, antibiotics and biopolymers can 

accelerate the healing of infected chronic wounds (45). 

Lipid nanoparticles (LNP) are suitable carriers for 

encapsulation of therapeutic agents such as curcumin 

owing to the abilities of bioavailability and sustained 

drug release in physiological conditions. However, for 

wound dressing application, collagen can enhance 

formulation stability and promote differentiation, 

migration and cell adhesion. In this regard, collagen 

hydrogels composed of curcumin-loaded LNP showed 

100% release after 25 days in saline buffer without 

cytotoxicity (18). Acting as drug carriers, polymeric 

nanospheres and microspheres composed of natural or 

synthetic polymers can encapsulate antimicrobial 

drugs, to release them in a controlled and sustained way 

(46). Scaffold based on porous collagen-CNCs-

curcumin/gelatin microspheres showed high porosity, 

antibacterial activity, anti-inflammatory and 

accelerated dermis regeneration of infected burn 

wounds in rat models after 21 postoperative days. 

Sustained curcumin release for this scaffold was 

~27.8% within the first 24h and 100% by 240h. 

However, this formulation showed less antibacterial 

activity against Gram-positive and Gram-negative 

bacteria in comparison with curcumin-collagen-CNC. 

It is important to note that gelatin in this scaffold can 

lead to a slower release of curcumin, but reduce 

antibacterial capacity. In addition, the role of collagen-

curcumin combination can be suppression of NF-κB 

followed by reduced expression of pro-inflammatory 

cytokines of  interleukin-1β (IL-1β), interleukin-6 (IL-

6) and tumor necrosis factor-alpha (TNF-α) (47). 

Nanoformulation of synthetic polymers such as 

polyvinyl alcohol (PVA), poly ε-caprolactone (PCL), 

and polyethylene glycol (PEG) with collagen can 

enhance the mechanical properties of wound dressings. 

As shown in Figure 3a, firstly, curcumin was loaded on 

a copolymer of PCL-PEG-PCL (PCEC) to produce 

nanofibers and then incorporated into collagen type I 

and PVA to prepare composite film (CPCF). In 

addition to antibacterial activity against E. coli and S. 
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aureus, this composite film showed regular arranged 

and dense distributed collagen fibers after 15 days of 

treatment of surgical wound site in rat samples (48).  

 

 
Figure 4. a) Synthesis steps of a composite film of CPCF 

based on curcumin, PCEC, PVA, and collagen b) formation 

of collagen fibers in surgical wound site; control is an 

untreated group (open access article distributed under the 

terms of the Creative Commons CC BY license) (48).  

 

Conclusion 

An infected wound such as DFU is a serious health 

problem resulting from multidrug-resistant 

microorganisms that may lead to death in patients. 

Curcumin as a phenolic compound has been illustrated 

as appropriate antimicrobial, anti-inflammatory, 

antioxidant, anticarcinogenic, and wound healing, 

antiseptic, and antioxidant activity. However, its low 

stability, extremely high hydrophobicity and 

bioavailability in physiological conditions can make it 

difficult to formulate in concentrations above the MIC 

for the treatment of infected wounds. To overcome this 

hindrance, the application of natural polymers 

particularly cellulose, chitosan, and collagen may be an 

effective strategy.  Among these polymers, chitosan 

has intrinsic antibacterial activity because of its high 

density of positive charge, which can facilitate the 

interaction of formulation with the negative charge of 

the bacterial envelope as the first step of bacterial 

inactivation. However, the stability of cellulose is more 

than chitosan appropriate for wound dressing 

application. Cellular migration, growth and 

differentiation and granulation tissues in wound sites 

also should be considered to prepare an efficient wound 

dressing scaffold by adding collagen polymer. 

Curcumin in combination with collagen can suppress 

NF-κB followed by reduced expression of pro-

inflammatory cytokines of IL-1β, IL-6 and TNF-α in 

rat models. Therefore, it can be concluded that each of 

these polymers has a unique property, which can be 

formulated with curcumin in a combination way at a 

safe concentration and weight ratio.   
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