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ABSTRACT 
 

 

An antagonistic yeast strain was isolated from the strawberry fruit cv. Paros and its antifungal properties 

against Botrytis cinerea causal agent of strawberry grey mold disease were evaluated under in vitro and 

in vivo experiments. The isolate was tentatively identified as Tetrapisispora sp. strain 111A-NL1 based 

on phenotypic characteristics and sequence analysis of D1/D2 domains of the 26S rRNA gene. Volatile 

organic compounds (VOCs) produced by the 111A-NL1 strain inhibited the mycelial growth of fungal 

pathogen (75.19%) and conidial germination (63.34%); however, inhibition percentage of mycelial 

growth of pathogen by dual culture test was less (19.49%). Also, the strain produced pectinase, 

siderophore, chitinase, IAA, as well as gibberellin, and could solubilize phosphate. Additionally, the 

disease severity of strawberry grey mold was decreased by employing living cells and volatile 

metabolites methods by 47.61% and 74.05%, respectively, in comparison with untreated control seven 

days after inoculation. Therefore, its mode of action might consist of antibiosis and VOCs production by 

yeast strain 111A-NL1 against B. cinerea. The VOCs released by strain 111A-NL1 were analyzed, and 

thirty-three chemical compounds were determined by gas chromatography-mass spectroscopy (GC-

MS). Out of them, Decane (12.79%), Squalene (9.60%), Undecane (7.98%), Benzene, 1,2,3-trimethyl- 

(7.67%), Nonane, 2,6-dimethyl- (5.69%), Benzene, 1-ethyl-3-methyl- (5.55%), Mesitylene (4.17%), and 

Phenylethyl Alcohol (3.33%) were the major components. In addition, the selected strain reduced 

natural decay incidence and weight loss of fruit, and preserved quality parameters of strawberry fruit 

including firmness, soluble solids content, and titratable acidity. This research averred, for the first time, 

that the creation of VOCs by Tetrapisispora sp. strain 111A-NL1 could play an essential role as a 

biofumigant in the antifungal activity against strawberry grey mold. 
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Introduction 

Pre-and post-harvest decay caused by pathogenic 

infections leads typically to heavy losses in fruit and 

vegetable production chains throughout the globe and 

might reach up to 30% of total production (1). The 

widely known fungal pathogens influencing 

strawberry fruits are Botrytis cinerea, Colletotrichum 

spp., Mucor spp., Rhizopus stolonifer, and Penicillium 

spp. (2). Among them, the most critical pre-and post-

harvest disease of strawberries worldwide is grey 

mold disease,  which is caused by B. cinerea. It is a 

major necrotrophic and economically important 

phytopathogen (3). Grey mold disease leads to 

remarkable yield and quality losses in strawberries in 

field production and postharvest storage worldwide 

(4). It induces leaf blight, blossom blight, and fruit 

decay in strawberry. Out of all of these, fruits rot is 

the most significant and is usually responsible for 

severe pre- and postharvest losses in the strawberry 

production industry (5,6). Employing chemical 

fungicides against fungal pathogens is the 

fundamental management approach, but challenges of 

enhancing fungicide resistance, human health issues, 

and recent legal constraints have created reservations 

about their application (7). As a result, antagonistic 

microorganisms as an alternative to chemical 

fungicides have gained importance in recent years.  

Biological control and using antagonistic 

microorganisms have been widely researched recently 

and considered as favorable alternatives for chemical 

fungicides to manage fruit pathogens (8). Among 

biocontrol agents, yeasts have numerous 

characteristics that make them entirely appropriate as 

antagonistic agents, because they are tolerant to most 

https://creativecommons.org/licenses/by/4.0/
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agrochemicals, have simple nutritional requirements, 

survive in a wide range of environmental conditions, 

proliferate as well as colonize fruit surfaces, and also 

they do not produce anthropogenic compounds (9). 

Antagonistic yeasts are competing for space and 

nutrients with other microorganisms on fruit surfaces 

as biocontrol agents (10). Using yeast species for 

biological control of the post-harvest disease has been 

reported for a wide range of vegetables and fruits (11). 

Several yeasts have been evaluated and reported as 

effective management of postharvest disease on citrus 

(12), papaya (13), strawberry (14,15), grape (16), 

tomato (17), mango (1), and apples (18).  Moreover, 

the application of yeast as biocontrol agents on fruit 

postharvest disease did not impair the postharvest 

qualities of fruits and enhanced gene expression and 

enzyme activity (19,20). Different mechanisms, 

including competition for nutrients and space, the 

production of soluble or volatile inhibitory 

metabolites, parasitism, and the induction of host 

resistance, have been demonstrated in the biocontrol 

of postharvest pathogens using microbial antagonists 

(21). The production of antifungal volatile organic 

compounds (VOCs) by postharvest biocontrol agents 

as modes of action has received increased attention 

(22,23). The use of VOCs produced by biological 

control agents is an essential strategy acting as an 

alternative approach for the management of 

postharvest disease (18). VOCs released by yeasts 

identified as Candida sake strain 41E against 

Penicillium expansum in red Delicious apples (18), 

Candida intermedia against strawberry fruit rot (14), 

and Saccharomyces cerevisiae against citrus black 

spot (24) have been reported.  

The potential of Tetrapisispora sp. 111A-NL1 to 

control strawberry grey mold disease has not been 

found as biological control agent yet. We isolated the 

antagonistic yeast Tetrapisispora sp. 111A-NL1 

(GenBank accession no. OL675854) from healthy 

strawberry fruit, and its antagonistic activity against 

B. cinerea was studied in vitro and in vivo. Also, the 

effects of this yeast on the postharvest quality of 

strawberry fruit were investigated.  

 

Materials and methods 

Pathogen 

A virulent isolate of B. cinerea isolated from 

decayed strawberry fruits showing typical gray mold 

infection was obtained from the collection of 

biological control Laboratory at the University of 

Kurdistan. The isolate was cultured on potato dextrose 

agar (PDA) medium for seven days at 25 ± 2 oC. 

Spores were harvested by flooding the surface of the 

culture with sterile distilled water, and the 

concentration of spores was adjusted to 1 × 106 

CFU/mL using a hemocytometer.  

 

Fruits 

Healthy strawberry fruit (Fragaria × ananassa 

Duch. cv. Paros) was chosen for the experiments 

based on uniform size, shape, maturity, and no 

physical damage and infection. The selected 

strawberry fruits were surface disinfected in 70% 

ethanol (v/v) for 30 s, rinsed with distilled water, and 

then air-dried under a laminar hood for further study. 

 

Antagonist isolation and culture media 

The Tetrapisispora sp. strain 111A-NL1 was 

isolated from the strawberry healthy fruit c.v Paros in 

Sanandaj, Iran. Briefly, 100 g of strawberry fruit was 

sliced into small pieces and added to a 250 mL 

Erlenmeyer flask containing 100 mL sterile distilled 

water and incubated with shaking (200 rpm) for 60 

min at 25 ± 2 oC. Then, 100 µL of the sample was 

cultured in nutrient yeast dextrose agar (NYDA) 

medium (nutrient broth 8 g/L, Yeast extract 5 g/L, 

dextrose 10 g/L, agar 20 g/L, and distilled water 1000 

mL) supplemented with rose-bengal (0.025 g/L) and 

chloramphenicol (0.2 g/L) in plates (9 cm in diameter) 

for 72 h at 25 ± 2 oC. Then, the selected strain was 

sub-cultured on the NYDA medium and was 

incubated at 25 ± 2 oC for 72 h. Single-cell colonies of 

selected yeast were obtained by streak plate method 

on NYDA medium. After that, the cells pellets were 

re-suspended in sterilized distilled water and the yeast 

cells concentration was adjusted to 1 × 108 cells/ mL.  

 

Characterization and identification of antagonistic 

yeast 

Morphological, biochemical, and physiological 

characteristics of the strain 111A-NL1 were studied 

using the procedures described previously (25). The 

morphology of cells was examined on Yeast Malt 

Agar (YM Agar) medium at 25 ± 2 ºC for 1-4 days. 

The isolate was tested for the fermentation of glucose, 
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galactose, sucrose, maltose, lactose, raffinose, and 

trehalose.  The ability of the yeast isolate to assimilate 

carbon and nitrogen sources was also carried out using 

yeast nitrogen base (YNB) and yeast carbon base 

(YCB) as the basal medium, respectively. To further 

identify this isolate, additional assimilation tests and 

other growth characteristics such as starch formation, 

gelatin liquefaction, urease activity, and the range of 

temperature for growth were performed. The glass 

bead disruption-based method used to extract DNA 

has been described previously (26). Polymerase chain 

reaction (PCR) amplification of the D1/D2 domain of 

the 26S rDNA fragments was amplified using NL1 

(5′-GGATATCAATAAGGGGAGGAAAAG-3′) and 

NL4 (5′-GGTGGGTGTTTCAAGAGGG-3′) primers 

(27,28). The purified PCR product was sequenced in 

both directions with the AB13730xl DNA sequencer 

by Macrogen Company (Seoul, Korea). Then obtained 

sequences were compared with those of the most 

closely-related fungal species in the NCBI database 

employing the Blast program. The phylogenetic tree 

was created utilizing identical sequences adapted from 

NCBI with MEGA7 following the Neighbor-Joining 

method (29). The bootstrap test was conducted 1000 

times to verify the reliability of the phylogenetic tree 

(30). The sequences of the D1/D2 domains of the 26S 

rRNA gene of strain 111A-NL1 reported in this 

research were deposited in GenBank 

(https://www.ncbi.nlm.nih.gov/genbank/).  

 

In vitro inhibitory effects assay 

Dual culture assay 

Inhibition of B. cinerea by the strain 111A-NL1 

was conducted by investigating growth rate inhibition 

by employing a dual culture technique on an NYDA 

medium. For this purpose, the mycelial disc plug (5 

mm in diameter) from a 5-day-old culture of B. 

cinerea was placed at one centimeter from the edge of 

plates (9 cm diameter) and then selected antagonistic 

yeast strain was on the opposite side of the plate. 

Also, the plates inoculated with the B. cinerea alone 

were utilized as a control. All plates were incubated at 

25 ± 2 oC in 12 h light/12 h dark for 5 days. The 

diameter of the B. cinerea colony was assessed, and 

inhibition percentage (I) was measured employing the 

following formula: I (%) = [(dc – dt)/dc] × 100, in 

which dc is the radial growth of the pathogen in 

control, dt is radial growth of the pathogen in 

treatment. 

 

Volatile compounds antifungal test on mycelial 

growth 

The two-sealed-base plate’s method was applied, 

and the selected yeast strain was cultured onto the 

NYDA medium, and a mycelial disc (5 mm in 

diameter) from a 5-day-old culture of B. cinerea was 

inoculated on the PDA medium plate. Following that, 

the plate of the B. cinerea was placed on top of a yeast 

strain plate and then sealed tightly with parafilm (17). 

The inhibition percentage of the mycelial growth of 

pathogen for the selected yeast strain was calculated 

based on the formula as mentioned earlier (Section 

2.5.1). 

 

Volatile compounds antifungal test on conidial 

germination 

For this experiment, 10 µL of spore suspension (1 × 

106 spores/mL) of B. cinerea were pipetted and 

cultured on water agar medium in plates (90 mm 

diameter). Then 100 µL of yeast cells (1 × 108 cells/ 

mL) of selected yeast strain were cultured on NYDA 

medium in separate plates. Then, the plate, including 

conidial suspension of B. cinerea, was placed upside 

the selected yeast culture plates, and two dishes were 

sealed tightly with parafilm. Three replications were 

utilized for each treatment. Plates containing sterile 

water (without yeast strain) were used as a control. All 

plates were incubated at 25 ± 2 oC. The conidial 

germination was calculated after 18 h with an optical 

microscope (Olympus BX51, japans; 60 × 

magnification using micrometer), and 100 conidia 

were considered for each replication (14,31). The 

inhibition percentage of conidial germination of B. 

cinerea (I) was calculated based on the following 

formula: I (%) = [(Nc – Nt)/Nc] × 100, in which Nc is 

the number of germinated conidia in control and, Nt is 

the number of germinated conidia in treatment.  

 

Secondary metabolites and enzymes 

Production of secondary metabolites and enzymes 

by selected yeast strain were also evaluated. Briefly, 

production of hydrogen cyanide (32), proteases 

enzymes secretion (33), pectin (34), chitinase (35), 

siderophore (36), indole-3-acetic acid (37), gibberellin 

(38) and phosphate solubilization (39) were estimated.  
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In vivo antifungal activity assay 

The in vivo assay was conducted based on the 

method explained previously with minor modification 

(14). For this work, the impacts of selected yeast were 

examined on strawberry fruit decay development by 

two methods employing living cells and volatile 

metabolites of the 111A-NL1 strain.  

In both methods, seven days after inoculation, 

strawberry fruits showing symptoms of soft rot and 

gray mold were recorded. For this work, each 

strawberry fruit was considered to have a conical 

shape. Then, the total surface area was recorded by 

measuring the lateral and base area. After that, the 

disease severity (DS) was measured by AutoCAD 

software based on the method of Alijani et al. (2019) 

using the following formula (31):  

𝐷𝑆 = 𝐴 /𝐻 × 2𝜋𝑟 

Where, (A) is the infected area, (H) and (r) are the 

height and the base radius of the fruit, respectively.  

 
Volatile compounds extraction and GC-MS 

analysis 

Fifty microliters of 48-h-old liquid culture of 

selected yeast strain (1 × 108 cells/ mL) were 

inoculated in vials containing 5 mL of NYDB medium 

and used for volatile compounds extraction. The vials 

were sealed with parafilm and placed on a rotary 

shaker (120 rpm) at 25 ± 2 oC for 48 h. Vials without 

yeast inoculation were used as a control. Then 5 mL 

ethyl acetate was added to each vial (v/v) and then 

placed on a magnet for 60 min. Finally, samples were 

centrifuged at 6000 rpm for 15 min to extract all 

trapped volatile compounds in treatment and control 

(40). Three replications were used for each treatment. 

The chemical analysis of VOCs produced by yeast 

strain 111A-NL1 was carried out by Agilent 7890A 

gas chromatography (GC) coupled with Agilent 

5977B mass spectrometry (MS) (Agilent 

Technologies, USA), using an HP-5 MS capillary 

column (30 m × 0.25 mm, film thickness 0.25 μm). 

The analytical conditions were described according to 

Amini et al. (2016) (41).  

 

Effect of yeast strain on quality parameters of 

strawberry fruits 

Similar healthy fruits (without disinfection) were 

dipped in a yeast cell suspension of 111A-NL1 strain 

(1 × 108 yeast cells/ mL) for five min and air-dried 

under a laminar flow hood for 30 min. The treated 

fruits in sterile distilled water were used as the 

control. All fruits were then placed into sterile poly-

ethylene boxes and maintained at 25 ± 2 oC, humidity 

(75%) under 12 h of light and 12 h of darkness for 

four days. Three replicates (boxes) per treatment 

containing 10 fruits were examined. The quality 

parameters of strawberry fruit, including weight loss 

(WL), firmness, solid soluble content (SSC), titratable 

acidity (TA), pH, and decay incidence was measured 

at t = 0 (1 h after treatment), 2, and 4 days according 

to the previous methods (42,43).  

 

Statistical analysis 

All experiments were designed in a completely 

randomized design (CDR) and repeated twice. The 

data analysis was carried out using the analysis of 

variance (ANOVA) via SAS software (version 8.2; 

SAS Institute, Cary, NC, USA, 2013). The data were 

illustrated as mean values ± standard deviation (SD). 

LSD test (P ≤ 0.05) was employed to calculate the 

statistical significance of various treatments.  

 

Results and discussion 

Identification of yeast isolate 111A-NL1  

Initial characterization and identification of the 

selected isolate 111A-NL1 were carried out based on 

morphological and biochemical characteristics. The 

cells are ovoid to the ellipsoid (2–4 × 3.5–7 µm) and 

exist singly or in pairs after being placed in a YM 

medium for 1-2 days at 25 °C. Budding is multilateral. 

Ascospore and pseudohyphae formation occurred on 

YM agar media after 4-9 days of incubation at 25 ºC 

(Fig. 1). Glucose and galactose are fermented, but not 

sucrose, maltose, lactose, raffinose, and trehalose. In 

carbon assimilation tests, growth is present on glucose 

and galactose while growth is absent on arabinose, 

inulin, sucrose, raffinose, trehalose, maltose, 

cellobiose, glycerol, ribose, mannitol, ribitol, 

succinate, citrate, ethanol, and methanol. In nitrogen-

assimilation tests, no growth is observed in nitrate, 

nitrite, ethylamine, glucosamine, and vitamin-free 

medium. Other Biochemical traits suggested that the 

isolate was negative for starch formation, urease 

activity, and gelatin liquefaction. The yeast isolate 

could grow at temperatures 19 °C, 25 °C, 30 °C, 37 

°C, and not at 40 °C. Based on morphological and 

biochemical characteristics, the isolate was tentatively 



 Bagheri et al./ Biocontrol of strawberry grey mold using Tetrapisispora sp., 2022, 68(4): 12-23  

 

Cell Mol Biol  16 

 

identified as Tetrapisispora sp. strain 111A-NL1. For 

further confirmation, PCR amplification using the 

universal primers NL1 and NL4 and sequencing of the 

D1/D2 domain of the 26S rRNA gene were completed. 

Based on the BLASTn results, the most identical 

sequences were reported to be sequences of strains of 

the genus Tetrapisispora. Furthermore, strain 111A-

NL1 demonstrated a 98% identity with Tetrapisispora 

fleetii (GenBank accession no. AY645662). The 

phylogenetic tree revealed strain 111A-NL1 among 

the type strains of its closest related species in the 

genus Tetrapisispora (Fig. 2). In addition, the strain 

111A-NL1 was able to solubilize phosphate and 

produced pectinase, siderophore, chitinases, and IAA 

(1352.50 µg/L), gibberellin (274.39 µg/L), and 

negative for HCN, protease and cellulase production. 

 

 

Figure 1. Tetrapisispora sp. 111A-NL1. (A, B) Budding 

cells on YM agar medium after 2 days. (C, D) Ascospore 

and pseudohyphae after 4-9 days on YM agar medium. 

Incubation was at 25 ºC for all cultures. Scale bar = 10 µm. 

 

 

Figure 2. Phylogenetic tree for strain 111A-NL1 and 

related species constructed by the neighbor-joining method 

based on the D1/D2 domain of the 26S rRNA gene. The 

numbers shown at the branch points indicate percentage 

bootstrap values from 1000 datasets. GeneBank accession 

numbers are indicated in parentheses. Kluyveromyces 

marxianus was used as an outgroup. 

 

In vitro antagonistic activity assays 

The outcomes of antagonistic tests of selected yeast 

strain demonstrated that Tetrapisispora sp. 111A-NL1 

had an appropriate antagonistic activity against B. 

cinerea. The strain 111A-NL1decreased mycelia 

growth of B. cinerea under in vitro experiment by 

dual culture with 19.49% inhibition (Table 1). 

Volatile metabolites of strain 111A-NL1 significantly 

reduced mycelial growth and conidial germination of 

B. cinerea by 75.19% and 63.34% compared to 

control, respectively (Table 2).  

 

Table 1. Inhibitory effect of Tetrapisispora sp. 111A-NL1 

on mycelial growth of Botrytis cinerea under in vitro tests 

by dual culture test after 5 days 

Treatments Colony diameter (mm) Inhibition % 

strain 111A-NL1 4.26 ± 0.15 b 19.49 
Control 5.3 ± 0.26 a - 

LSD (5%) 0.49 - 

Mean followed by different letters within the column represents 
significant differences according to the LSD test (p ≤ 0.05). Data are the 

mean of three replicates with ± standard deviation (SD).  

 

Table 2. Inhibitory effect of volatile organic compounds of 

Tetrapisispora sp. 111A-NL1 on mycelial growth and 

conidial germination of Botrytis cinerea under in vitro tests 

after 5 days 

Treatments Mycelial growth Conidial germination 

 
Colony 

diameter (mm) 
Inhibition % 

Germinated 

conidia 
Inhibition % 

strain 111A-NL1 2.16 ± 0.12 b 75.19 34.33 ± 1.45 b 63.34 
Control 8.73 ± 0.14 a - 93.00 ± 1.76 a - 

LSD (5%) 0.52 - 6.42 - 

Mean followed by different letters within the column represents significant 
differences according to the LSD test (p ≤ 0.05). Data are the mean of three 

replicates with ± standard deviation (SD).    

 

In vivo antagonistic activity assays  

The effect of Tetrapisispora sp. 111A-NL1 on 

disease severity of strawberry grey mold disease in 

vivo was investigated employing living cells and 

volatile metabolites methods seven days after 

inoculation. Under in vivo experiments revealed that 

strain 111A-NL1 substantially reduced the strawberry 

fruit decay development and suppressed strawberry 

grey mold disease more than control. The biocontrol 

efficacy of strain 111A-NL1 was 47.61% and 74.05% 

using living cells and volatile compounds, 

respectively (Table 3 and Fig. 3). 

 

Volatile compounds detection using GC-MS 

As for determining VOCs created by 

Tetrapisispora sp strain 111A-NL1, extracted 

compounds were analyzed with GC-MS. Results of 
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GC-MS analysis are shown in Table 4. Thirty-three 

various compounds were identified by GC-MS 

analysis. Eight compounds with highest area percent 

were Decane (12.79%), Squalene (9.60%), Undecane 

(7.98%), Benzene, 1,2,3-trimethyl- (7.67%), Nonane, 

2,6-dimethyl- (5.69%), Benzene, 1-ethyl-3-methyl- 

(5.55%), Mesitylene (4.17%), and Phenylethyl 

Alcohol (3.33%). 

 

Table 3. Inhibitory effect of Tetrapisispora sp. 111A-NL1 

on strawberry fruit decay development in vivo after 7 days 

using two methods treated fruit with living cells and 

volatile organic compounds. 

Treatments Living cells Volatile compounds 

 
Disease 
severity 

Efficacy % 
Disease 
severity 

Efficacy % 

strain 111A-NL1 2.86 ± 0.68 b 47.61 1.28 ± 0.18 b 74.05 

Control 5.46 ± 0.51 a - 4.94 ± 0.37 a - 

LSD (5%) 2.09 - 0.84 - 

Mean followed by different letters within the column represents 

significant differences according to the LSD test (p ≤ 0.05). Data are the 

mean of four replicates with ± standard deviation (SD).    

 

 

Figure 3. Effect volatile organic compounds of 

Tetrapisispora sp. 111A-NL1 (A, B and C) on disease 

severity of strawberry grey mold disease under in vivo in 

comparison with control (D, E and F). 

 

Effects of Tetrapisispora sp. 111A-NL1 on storage 

quality of strawberry fruits 

Tetrapisispora sp. 111A-NL1 decreased the WL 

more than the control significantly (p ≤ 0.05) after 2 

and 4 days of storage (Fig. 4). The WL rate for 

treatment after 2 and 4 days of storage was 0.26% and 

1.35%, respectively, while the WL rate for untreated 

control after 2 days was 0.75% (Fig. 4). The fruit 

treated with the Tetrapisispora sp. 111A-NL1 was 

significantly firmer than untreated fruit after storage. 

Also, the firmness of the fruit treated with selected 

yeast strain slightly increased after 2 days and 

decreased at 4 days. Fruit firmness of yeast treatment 

was 6 N and 4.81 N after 2 and 4 days, respectively 

(Fig. 4). The SSC content in treated fruit with the 

Tetrapisispora sp. 111A-NL1 was 4.83% at harvest 

time and decreased to 4.30% at the end of storage. 

The treatment significantly (p ≤ 0.05) preserved the 

SSC content during storage compared with the 

untreated control (Fig. 4). During storage, the pH and 

TA of strawberry fruits decreased in both treated and 

untreated fruits, but this reduced rate of TA in 

untreated control was more than that of treated fruits. 

The losses of TA content in strawberry fruit were 

delayed obviously by selected yeast strain during 

storage. The pH and TA of the treated fruit were 3.20 

and 0.52% after 4 days, respectively (Fig. 4). 

Tetrapisispora sp. 111A-NL1 significantly (p ≤ 0.05) 

decreased decay incidence in artificially inoculated 

fruits up to 55.55% after storage at 25 oC for 4 days 

(Fig. 4). The decay incidence was 90% and 40% for 

the untreated and treated fruits, respectively (Fig. 4). 

 

 

Figure 4. Effect of Tetrapisispora sp. 111A-NL1 on 

strawberry fruit quality after four days storage. A) Weight 

loss, B) Fruit firmness, C) Soluble solids content, D) pH, E) 

Titratable acidity, F) Decay incidence.   Fruits were 

incubated at 25 ± 2 oC, humidity (75%) under a regime of 

12 h of light and 12 h of darkness for 4 d. Values are the 

mean ± standard deviation of three replicates with 10 fruits 

in each replicate. Within the same figure, different letters 

represent a significant difference test (p ≤ 0.05) among the 

control and the selected strain according to the LSD test. 
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Table 4. Volatile organic compounds (VOC) released from 

Tetrapisispora sp. 111A-NL1, identified by GC-MS 

analysis  

Number Compounds 
Chemical 

formula 

Retention 

time (min) 

Area 

(%) 
CAS # 

1 
1,3-Benzenediol, 4-
ethyl- 

C8H10O2 3.130 0.88 2896-60-8 

2 
Benzene, (1-

methylethyl)- 
C9H12 3.201 1.11 98-82-8 

3 Cyclohexane, propyl- C9H18 3.260 1.40 1678-92-8 

4 Nonane, 3-methyl- C10H22 3.314 2.99 5911-04-6 

5 Octane, 2,3-dimethyl- C10H22 3.412 2.33  7146-60-3 

6 
Cyclohexane, 1,1,2,3-

tetramethyl- 
C10H20 3.599 2.71 6783-92-2 

7 
Benzene, 1-ethyl-3-

methyl- 
C9H12 3.700 5.55 620-14-4 

8 Nonane, 2-methyl- C10H22 3.726 3.67 871-83-0 

9 
Benzene, 1,2,3-

trimethyl- 
C9H12 3.799 7.67 526-73-8 

10 
Benzene, 1-ethyl-2-
methyl- 

C9H12 3.955 1.91 611-14-3 

11 Cycloheptane, methyl- C8H16 4.016 2.06 4126-78-7 

12 Mesitylene C9H12 4.146 4.17 108-67-8 

13 Decane C10H22 4.234 12.79 124-18-5 

14 Nonane, 2,6-dimethyl- C11H24 4.559 5.69 17302-28-2 

15 
Cyclohexane, (1-

methylpropyl)- 
C10H20 4.683 1.28 7058-01-7 

16 Decane, 3-methyl- C11H24 4.791 1.37 13151-34-3 

17 
Benzene, (1-

methylpropyl)- 
C10H14 4.982 1.84 135-98-8 

18 Heptane, 4-ethyl- C9H20 5.067 1.94 2216-32-2 

19 Decane, 4-methyl- C11H24 5.111 1.25 2847-72-5 

20 Decane, 2-methyl- C11H24 5.163 1.93 6975-98-0 

21 

3a,4,5,6,7,7a-

Hexahydro-4,7-

methanoindene 

C10H14 5.203 1.28 4488-57-7 

22 Decane, 3-methyl- C11H24 5.257 1.34 13151-34-3 

23 Undecane C11H24 5.689 7.98 1120-21-4 

24 Phenylethyl Alcohol C8H10O 5.915 3.33 60-12-8 

25 Dodecane C12H26 7.134 2.75 112-40-3 

26 Tetradecane C14H30 9.842 2.13 629-59-4 

27 Heneicosane C21H44 11.046 0.62 629-94-7 

28 Hexadecane C16H34 12.278 2.05 544-76-3 

29 Octacosane C28H58 13.522 1.17 630-02-4 

30 Octadecane C18H38 14.479 1.31 593-45-3 

31 Hexadecane, 2-methyl- C17H36 15.741 0.93 1560-92-5 

32 Eicosane C20H42 16.477 1.00 112-95-8 

33 Squalene (C5H8)6 23.469 9.60 111-02-4 

 

The utilization of biocontrol agents for the control 

of fruit postharvest disease is determined to be a safe 

strategy (8), and biocontrol agents including yeasts  

have demonstrated apparent usefulness against main 

postharvest decays of fruit including postharvest grey 

mold (44). Yeasts possess numerous features that 

make them alternative BCAs of post-harvest decay 

(45) and have low technological constraints for 

industrial-scale production (1). The current research 

aimed to isolate and to determine antagonistic yeast 

from strawberry fruit and to assess its potential ability 

for biological control of B. cinerea causal agent of 

strawberry grey mold disease. Based on sequencing of 

the D1/D2 region of the 26 rDNA, this strain was 

identified as Ttetraposispora sp. 111A-NL1. To our 

best knowledge, this is the first time that 

Ttetraposispora sp. 111A-NL1 has been used as a 

biocontrol agent against B. cinerea causal agent of 

strawberry grey mold disease. This strain was shown 

to control B. cinerea in vitro and in vivo. The extant 

research has also shown that yeasts as biocontrol 

agents play an important role in controlling some fruit 

postharvest pathogens and in improving the healthy 

development of fruit (14,18,19,23). Also, other studies 

showed that selected fungal species such as Candida 

intermedia (14), Candida oleophila (46), 

Aureobasidium pullulans (46), Metschnikowia 

fructicola (47), Pichia guillieemondii (48), and 

Rhodotorula glutinis (49) are useful agents for 

suppression of Botrytis fruit rot of strawberry under 

preharvest or postharvest conditions. We calculated 

VOCs produced by Tetrapisispora sp. 111A-NL1 and 

tested their antifungal activity against Botrytis cinerea 

in vitro and in vivo. The volatile organic compounds 

(VOCs) produced by yeast strain 111A-NL1 exhibited 

antifungal activity against B. cinerea and prevented 

mycelial growth and conidial germination of B. 

cinerea. Previous research has revealed that VOCs 

produced by Bacillus pumilus (50), Bacillus subtilis 

CF-3 (51), and Aureobasidium pullalans (23) 

inhibited the mycelial growth of Colletotrichum 

gloeosporioides. In addition, volatile compounds 

produced by Staphylococcus sciuri (31) and 

Stenotrophomonas maltophilia (52) inhibited the 

mycelial growth and conidial germination of 

Colletotrichum nymphaeae. Gao et al. (2018) (51) 

have also reported a positive correlation between 

these VOCs and the inhibition of M. fructicola in 

vitro. In addition, the Ttetraposispora sp. 111A-NL1 

strain produced chitinase, pectinase, and siderophore. 

The mechanisms of action of yeast biocontrol agents 

include the competition for nutrients and physical 

space, parasitism, and eliciting host defense pathways 

(12), and the production of antifungal metabolites 

including volatile organic compounds (24). These 

results indicated that the production of antifungal 

VOCs by yeast strain 111A-NL1 is an essential 

mechanism for the reduction of Botrytis fruit rot in 

strawberries (14,22,23). These results have suggested 

that the mechanism of VOCs on B. cinerea may be via 
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the diffusion of gas in limited space (53). Numerous 

yeast agents including Wickerhamomyces, 

Metschnikowia, Aureobasidium or Saccharomyces, 

Cryptococcus, Hanseniaspora, Candida, Rhodotorula, 

Debaryyomyces, and Pseudozyma can produce VOCs 

against postharvest pathogens (23,54,55). These 

results agree with the present study since B. cinerea 

showed high susceptibility to the VOCs produced by 

Ttetraposispora sp. 111A-NL1. Microbial VOCs have 

antimicrobial activity (56), inhibit the growth of 

pathogenic fungi (57,58), improve plant growth (52), 

and induce systemic resistance in plants (59). The 

VOCs produced by microorganisms present several 

advantages; for example, they can diffuse through 

space more easily by reducing the distance of the 

infection of the pathogen (60). Furthermore, biogenic 

VOCs can coexist in the environment and decompose 

easily under natural conditions and they are effective 

bio-fumigation for the management of plant pathogens 

(17,52). The microbial VOCs are chemically 

classified into organic acids, phenols, esters, alcohols, 

olefins, ketones, pyrazines, terpenoids, alkanes, 

alkenes, alkynes, disulfides, nitrogen compounds, 

aldehydes, and ethers (31,17). Alcohols, amines, 

aldehydes, ketones, terpenes, and sulfur-based and 

chlorinated hydrocarbons are the main products of the 

primary and secondary microorganism metabolism 

(61). In the present study, the antagonistic VOCs 

produced by strain 111A-NL1 were detected and 

identified. The GC-Mass analysis of VOCs identified 

33 compounds, such as twenty alkanes, seven 

benzenes, four cycloalkanes, one cycloalkene, and one 

phenol. Alkanes (64.84%), benzene (25.58%), and 

cycloalkanes (7.45%) were the main compound types, 

and these three types explained 97.87% of 33 detected 

compounds . Studies have indicated that the 

production of benzene, ketones and alcohol 

compounds by Paenibacillus polymyxa WR-2 in low 

quantity causes antifungal activity against Fusarium 

oxysporum (58). Yuan et al. (2012) have reported that 

various compounds, including nonane, decane, 

toluene, ethylbenzene, and undecane, evinced 

antifungal activity against F. oxysporum (62). 

Benzene compounds such as benzene, 1,3-bis (1,1-

dimethyl ethyl), pentadecane, tetradecane, 1,3-

dimethylbenzene, ethylbenzene had antifungal 

activities which could decrease the growth and 

virulence of plant pathogens (63,64). Also, volatile 

compounds such as decane, undecane and tetradecane 

could induce systemic resistance in plants against 

phytopathogens and improve the growth parameters in 

plants (60). Gao et al. (2017) indicated that Phenol-

2,4-bis (1,1-dimethyl ethyl) showed high antifungal 

activities for controlling tomato fungal diseases such 

as early blight and grey mold (17). As far as 

postharvest conditions are concerned, VOCs can be 

simply employed to manage fruit and vegetable 

diseases infection during storage or long-term 

transport without the constraint of discharging them 

from the store or the container. Also, they can diffuse 

in the atmosphere of the store, ensuring appropriate 

protection of the agriculture products at the surface 

without penetrating inside them, which ensures more 

safety for the consumer (65).  

Treatment of Tetrapisispora sp. 111A-NL1 

maintained SSC and TA more than the untreated 

control during storage and the fruits treated with this 

strain were firmer than the control. Therefore, no 

significant adverse effect was found on storage quality 

parameters such as SSC, TA, and firmness of 

strawberry fruit during storage. The selected yeast 

strain prevents the loss of fruits moisture and 

decreases the natural decay incidence of strawberry 

fruits better than the untreated control. Similar results 

as broad-spectrum antifungal strain Sporidiobolus 

pararoseus Y16 were capable of declining the decay 

rate of table grapes and prolonged postharvest storage 

period (19). Studies have shown that yeasts can inhibit 

the growth of the pathogen and prevent the loss of 

fruit moisture (19). Also, the fruit firmness is 

considered an essential factor affecting the shelf life 

of postharvest fruits (66, 67). It is one of the most 

essential quality deterioration characteristics during 

storage time caused by the degradation of pectin in the 

fruit cell wall and hydrolysis of starch to sugar 

associated with fruit ripening (68). Identical values 

were reported by You et al. (2021), employing the 

impact of Bacillus siamensis on the preservation and 

maintenance of SSC in mango fruit during the late 

storage (69).  

In conclusion, this research indicated that 

Tetrapisispora sp. 111A-NL1 could successfully 

repress postharvest infection of strawberry fruits by B. 

cinerea. The strain 111A-NL1 produced lytic 

enzymes, including chitinase and pectinase, as well as 

a secreted siderophore. VOCs produced by this strain 
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decreased mycelial growth and conidial germination 

of B. cinerea, fruit decay development, and disease 

severity of strawberry grey mold. In addition, strain 

111A-NL1 preserved quality parameters of strawberry 

fruit such as weight loss, firmness, soluble solids 

content, titratable acidity, and decreased significantly 

decay incidence of strawberry fruits. The results of 

this study show that the production of antifungal 

VOCs by strain 111A-NL1 might be an essential 

mechanism for the suppression of infection of 

strawberry fruits by B. cinerea under in vitro and in 

vivo conditions. This study is the first report on the 

efficacy of Tetrapisispora sp. 111A-NL1 against B. 

cinerea which shows that the VOCs produced by this 

strain have excellent potential as biofumigant for the 

management of strawberry grey mold. Thus, further 

research is required to shed more light on the exact 

contribution of volatile compounds in the control of 

this pathogen, and these findings have initiated a new 

line of inquiry about Tetrapisispora sp. strain 111A-

NL1 as a biocontrol agent of strawberry grey mold 

disease.  
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