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Introduction

The novel coronavirus infection was announced in 
late December 2019 (1-3). It is a big pandemic caused 
by SARS-CoV-2 in the world (4). Due to the high rate of 
spreading across the globe, it has been placed in class B 
infectious disease. It has been seen that, during the CO-
VID-19 outbreak, lung cancer (LC) patients are noted as a 
high-risk population which makes it more challenging to 
the treatment of LC patients. It is also a great challenge to 
differentiate the LC patients with COVID-19 in terms of 
clinical symptoms (5). Due to the spread of COVID-19, 
the monotonous medical diagnosis and treatment for LC 
patients have been disturbed. LC patients should be the 
main concern group for COVID-19 hindrance (6). It is 
vital to select accessible medications that can suppress 
or prevent the sickness due to the emergency and uncon-
trollable scenario produced by the COVID-19 pandemic 
that has spread over the whole planet. Despite the quicker 
development of vaccinations, there is still a need for medi-
cations to combat the  SARS CoV-2(7-9).

Mouse hepatitis virus (MHV) is a prototype of murine 
coronavirus. Casp8 activation was observed in MHV-in-
fected 17Cl-1 cells (2). The use of a pan-caspase inhibitor 
resulted in the inhibition of SADS-CoV-induced apoptosis 
and decline in Swine acute diarrhea syndrome coronavirus 
(SADS-CoV) replication, indicative of the relationship of 
a caspase-dependent pathway. Furthermore, SADS-CoV 
infection activated the initiators Casp8 and 9 and upregu-
lated FasL and Bid cleavage, indicating crosstalk between 
the extrinsic and intrinsic pathways (10).

LC is the most crucial reason for death globally. LC 
is mainly linked with cigarette smoking (11, 12). It is the 
most common of all cancer forms worldwide, with 1.8 
million people diagnosed per year, resulting in 1.6 mil-
lion deaths annually as per the American cancer society 
(13). LC has been converted from a rare disease to a major 
public health issue. LC's etiology becomes more challen-
ging with industrialization, urbanization and environmen-
tal degradation all over the world. LC treatment/control 
has currently attracted worldwide attention (14). Different 
caspases are involved in apoptosis-mediated cell death. 
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It has been seen that, during COVID-19 outbreak lung cancer (LC) patients are noted as a high-risk popu-
lation which make a more challenging to treatment of the LC patients. The active form of caspase-8 is 
involved in lung carcinogenesis in both humans and mice. In this study, the virtual screening was performed 
among 200 compounds retrieved from several resources for the searching of potent lead against Caspase 8 
(Casp8). Cryptophycin 52 was found to have a strong inhibiting efficacy based on the free energy of binding 
with the active site of Casp8. The lowest binding energy was found to be -8.05 kcal/mole and was further 
analyzed for molecular dynamic simulation. Casp8 enzyme was determined to interact with cryptophycin 52 
through twelve amino acid residues, specifically ARG260, SER316, GLY318, ASP319, THR337, VAL354, 
PHE355, PHE356, ILE357, GLN358, ALA359 and CYS360 along with six hydrogen bond particular, 
ILE357:N-UNK1: O7, UNK1: O14-PHE355:O, UNK1: C25-PHE355:O, UNK1: C35-THR337:O, UNK1: 
H65-HE355:O and UNK1: C25-PHE356. In addition, MD simulations for 50ns were performed for optimi-
zation, flexibility estimation and assessment of Casp8-cryptophycin 52 complex stability. This complex was 
seen as reasonably stable according to the RMSD, RMSF, and radius of gyration graph. Results obtained 
indicate cryptophycin 52 may be a lead compound with significant anti-cancer ability against Casp8. Further 
experimental work, however, is expected to support the compound's anti-cancer viewpoint.
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Apoptosis-mediated cell death involves various caspases. 
Indeed, Casp8 is one of the upstream cell death media-
tors and its activation is related to an increase of TNF-like 
cytokines, such as TNF-α and Fas ligand (15). The appea-
rance of Casp8 in the LC tissues was noticed by immu-
nohistochemistry. The expression of Casp8 was found in 
38/52 cancer tissues, 22/30 neighboring tissues, and 34/52 
normal tissues. The tissue number of Casp8 positive ex-
pression in different groups was similar, but the intensity 
of Casp8 expression in different groups was statistically 
dissimilar (16). Automated cell death, which is based on 
caspases, is commonly called apoptosis, while caspase-1 
is involved in the activation of an inflammation allied with 
programmed cell death, defined as pyroptosis (17). Two 
major pathways to apoptosis have been identified, 'intrin-
sic' and 'extrinsic.' Caspase-9 initiates intrinsic apoptosis 
(18). Extrinsic apoptosis occurs after death signaling and 
is triggered by Casp8 and 10 (19). Terlizzi et al. (2015) 
Demonstrate that active Casp8 is concerned in LC in hu-
mans and mice (20). The numerous compounds have been 
reported to have many biological activities as anti-cancer 
(21). The compounds and their derivatives mimic over 
50% of all drugs that are being used clinically (22). The 
present work aimed in silico investigation of inhibitors 
against Casp8 from different sources. The hit compounds 
obtained from this study could play an important role in 
designing personalized therapy against LC patients and in-
novative drug discoveries against Casp8. In this study, the 
virtual screening process was performed in the search for 
the best lead against Casp8. Cryptophycin-52 was found 
to be a good inhibiting efficiency based on the free energy 
of binding against Casp8. Cryptophycin 52 is a member 
of the antitumor agent family of cryptophycins currently 
undergoing clinical trials for cancer chemotherapy assess-
ment (23). A wide variety of antitumor activity has been 
demonstrated against xenografts of human tumors and 
murine tumors. Its mechanism of action includes the arrest 
and suppression of cells during the G2-M phase of the cell 
cycle by binding to microtubules and their dynamics (24). 
Cryptophycin 52 is a promising anti-tubulin drug with 
efficacy in non-small cell lung cancer recognized in vitro 
and in vivo (25). The study focuses on virtual screening of 
compounds that bears anticancer potential and thus, inhi-
biting Casp8 using a computational approach. This study 
was successfully conducted to anticipate the function of 
screened compound Cryptophycin 52, that is known to 
bear anticancer property.

Materials and Methods

Preparation of target structure
RCSB Protein Data Bank was used to acquire the 3D 

structure of the enzyme (PDB ID-1QTN) for docking ana-
lysis. The PDB structure has been cleaned and heteroa-
toms of the protein have been eliminated as these are non-
standard deposits of the target molecules.  

Preparation of ligand structures
The SMILES representation of the cryptophycin 52 was 

obtained from the PubChem database of NCBI (https://
pubchem.ncbi.nlm.nih.gov/). The 3D structure was built 
by utilizing the online web tools CORINA (http://www.
molecular-networks.com/products/Corina).   

 

Molecular docking simulations
Autodock 4.2 was used for docking analysis (26) in 

this study. A virtual docking study was conducted to de-
termine how the structures of compound cryptophycin 52 
contribute to their inhibitory activity against Casp8. The 
Docking system included the preparation of receptor and 
ligand molecules. All docking parameters have been kept 
as standard. 

Grid parameters file
The grids were sketched as such that the ligand was 

permitted to rotate uninhibitedly inside the grid point. A 
lattice of 60 Å × 60 Å × 60 Å with 0.375 Å dispersing was 
outlined through “Auto grid” aimed to target the binding 
pocket of the receptors.  

Docking parameter file
For the preparation of dpf file, the genetic algorithm 

“Number of genetic algorithm runs”, “Crossover frequen-
cy” and “Mutation rates” were set to default standards. 
Lamarckian Genetic Algorithm (LGA) was adopted in 
receptor and ligand for flexible docking computation. The 
conformer with the lowest free energy of binding was 
considered for further analysis (27, 28).

Visualization of complex structure
Eventually, the interactions were analyzed in terms 

of binding energy and inhibition constant in consort with 
the number of H-bonds with the amino acid residues. The 
figures of the best-docked arrangements of the ligand and 
receptor complex were produced utilizing the Discovery 
Studio Visualizer.

MD Simulation study 
For the analysis of stability and flexibility of the ‘Casp8 - 

cryptophycin 52’ complex, MD simulation was done using 
GROMACS 5.1.4 suite (29). ProDRG server was applied 
for the preparation of cryptophycin 52 topology files (30). 
The complex (Casp8- cryptophycin 52)was solvated in 
377.187 nm3 cubic box. The steepest descent algorithm for 
50,000 steps with a cut-off value up to 1000 kJmol-1 was 
applied for energy minimization. Further, the LINCS algo-
rithm  (31) was used for covalent bond constraints. NVT 
(constant number of particles, Volume, Temperature) and 
NPT (constant number of particles, pressure, and tempera-
ture) phase of equilibration was executed at 300 K with the 
Berendsen pressure coupling process (32). MD simulation 
was carried out for 50 ns. MD simulation outcomes like 
RMSD, RMSF, and radius of gyration of ‘Casp8- crypto-
phycin 52’ complex was analyzed.

Results and discussion

Apoptosis is a genetically regulated mechanism for 
cell death that plays a crucial role in several physiologi-
cal processes and in maintaining tissue homeostasis (33-
35). Casp8 plays a crucial function in the central apoptotic 
pathway involving ligands and their receptors that cause 
death (36, 37). Chief initiator caspase activation (Casp8) 
turns on the downstream executioner (effector) caspases, 
the key being Casp3, which coordinates the apoptosis exe-
cution phase by cleaving multiple structural and repair 
proteins (38). Furthermore, the pharmacological inhibi-
tion of Casp8 has been demonstrated to have an anti-tumor 
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be -0.01 kcal/mol. The total interacting surface area for 
the interacting complex was found to be 658.558Å2. The 
thermodynamic data (44) was also attained through mole-
cular docking interactions analysis, including free energy, 
internal energy and entropy at a constant temperature, 
298.15K. Free energy and internal energy values were 
found to be -1368.17 and -3.94 kcal/mol, respectively, 
while entropy was estimated as 4.58 kcal/mol/K for this 
complex interaction.

This docked complex was directed to MD simulation 
to validate the stability of the interaction between cryp-
tophycin 52 and Casp8. The time-dependent performance 
of MD trajectories was examined in terms of root mean 
square deviation (RMSD), root mean square fluctuation 
(RMSF), and radius of gyration (Rg) for all backbone 
atoms. The RMSD is an important constraint in evaluating 
the equilibration of MD trajectories (45). The RMSD of 
the Casp8 backbone atoms was developed as a function 
of time to monitor the complex's stability in MD. RMSD 
graph shows that the complex of Casp8 and cryptophycin 
52 is stable and less flexible. The complex achieved equi-
librium in the initial simulation process and then remained 
stable throughout the 50 ns period as seen in Figure 2.

RMSF is a significant parameter that yields data about 
the structural adaptability of Cα atoms of every residue in 
the corresponding framework (46). RMSF for every resi-
due of Casp8 complexes with cryptophycin 52 was exami-
ned, as appears in Figure 3. The active residues of Casp8 
associated with cryptophycin 52 have not indicated funda-
mentally fluctuation.

The radius of gyration (Rg) is utilized to clarify the sta-
bility of enzyme -ligand complex. It is characterized as the 
mass-weighted root mean square distance of an assortment 
of atoms from their regular center of mass. Analysis of 
Rg gives us knowledge of the overall dimensions of the 
protein (47).

effect and is novel evidence not only of the involvement 
of Casp8 in LC but also of the involvement of the inflam-
masome in this context (20).

Here in this study, a library of 200 compounds from 
several resources was prepared and subjected to virtual 
screening through molecular docking against the Casp8 
utilizing the AutoDock tool. Finally, based on the free 
energy of binding, Cryptophycin 52 was found the best, 
which was further proceeded for MD simulation analysis. 
It is worth observing that both the 'ligand' and the 'pro-
tein side chains' were held flexible throughout the study 
by the docking software (39). Protein-ligand interaction 
is an indispensable focus in the receptor-based drug de-
sign and prediction of protein function. Molecular doc-
king, as well as molecular dynamic (MD) simulations, are 
broadly accepted methods to predict the binding modes 
and affinities and steadiness of the diverse protein-ligand 
interactions (40). In-depth docking study was conducted 
on Cryptophycin 52 with Casp8. The Casp8 enzyme was 
identified as interacting with cryptophycin 52 through 12 
amino acid residues, namely ARG260, SER316, GLY318, 
ASP319, THR337, VAL354, PHE355, PHE356, ILE357, 
GLN358, ALA359 and CYS360. The binding energy and 
inhibition constant for this complex were found to be -8.05 
kcal/mole and 287.51μmol, respectively. It is stated that a 
higher (negative) free energy of binding values obtained 
using computational studies can recommend only the bin-
ding efficiency for an enzyme and ligand interaction (41). 
Four amino acid residues like THR337, PHE355, PHE356 
and ILE357 were involved in six H-bond formations in 
the correct positioning of Cryptophycin 52 interaction 
with Casp8, namely ILE357:N-UNK1:O7, UNK1:O14-
PHE355:O, UNK1:C25-PHE355:O, UNK1:C35-
THR337:O, UNK1:H65-HE355:O and UNK1:C25-
PHE356 along with H-bond distances 2.731155, 2.653552, 
2.809291, 2.848232, 2.907828,  and 3.484625 Å respecti-
vely shown in Figure 1.

It has been recognized that the H-bonds formed between 
the compound and the protein most frequently contribute 
to the stabilization of the protein-ligand complex, with 
various hydrogen bonds responsible for the stability of 
the complex (42, 43). Three hydrophobic interaction was 
found to be involved in this complex formation. C23, C24 
and C26 of ligand molecule were found to interact with 
VAL35 of the receptor. ‘Van der Waals’, ‘H-bond’ and 
‘Desolvation’ energy components together contributed 
-7.01 kcal/mol for ‘Cryptophycin 52- Casp8 complex’. 
For this complex, the 'Electrostatic' energy was found to 

Figure 3. The root mean square fluctuation of the Casp8/ Cryptophy-
cin 52  complex .

Figure 1. Docked structure of lowest-energy for the Casp8/ Crypto-
phycin 52  complex.

Figure 2. The root means square deviation of Casp8/ Cryptophycin 
52  complex obtained by  MD  simulation.
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The value of Rg for the protein backbone was determi-
ned for 50 ns trajectory and shown in Figure 4. Rg results 
recommend that the complex was stable and the secondary 
structures of the protein are compactly packed in the simu-
lation. 

The study focuses on virtual screening of compounds 
that bears anticancer potential and thus, inhibiting casp-
8 using a computational approach. The virtual screened 
compound displays a better inhibition efficiency against 
Casp8. The presence of numerous H-bond and hydropho-
bic interactions were observed in the binding affinity of 
the compound to the receptor structure and helped into the 
correct positioning compound to the active site of Casp8. 
The complex achieved equilibrium in the initial simula-
tion process and then remained stable throughout the 50 
ns period. This data confirms that the ligand was effective 
inhibitor of Casp8 based on their binding energy and dyna-
mics simulation study.
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