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Introduction

There is a plethora of bacterial, fungal, and viral in-
fections affecting various functions of the human body, 
specifically the phagocytosis process (1-4). Generally, 
phagocytosis begins with the recognition and ingestion 
of microbial pathogens larger than 0.5 pm into a vesicle 
generated from the plasma membrane called a phagosome 
(5, 6). This recognition is accomplished by using various 
receptors that recognize specific molecular patterns found 
in pathogenic microorganisms (7). Following that, these 
receptors initiate signaling cascades that result in phago-
cytosis and after the receptor contact, the plasma mem-
brane surrounds the microorganism to be ingested and 
then shuts at the distal end, forming a vacuole into which 
the microorganism is internalized (Figure l) (8). This va-
cuole, the early phagosome, then merges with endocytic 
vesicles and simultaneously separates from secretory ve-
sicles, changing it into a late phagosome (9). This dynamic 
mechanism, called "the kiss-and-run" paradigm, involves 
sequential fusion and fission events between the nascent 
phagosome and endosomes (10). Later on, the interme-
diary phagosome matures into a microbicidal vacuole cal-
led the phagolysosome by merging with lysosomes and 
altering its membrane and internal properties via a pro-
cess called phagolysosome maturation (11). This process 
culminates in membrane modification, progressive acidity 
of the phagosome, and the establishment of an oxidative 
and degradative environment (12).

Phagocytosis is now known to have various functions 
in several cell types. Professional phagocytes help with 
innate immunity by removing harmful bacteria, fungi, and 

cancerous cells, and they also help with adaptive immu-
nity by presenting antigens to lymphocytes (13). Phagocy-
tosis functions as a link between innate and adaptive im-
munity. Therefore, many pathogens choose to manipulate 
phagocytosis to avoid detection and killing by the immune 
system, and they have successfully evolved numerous tac-
tics to block and inhibit phagocytosis (14). Some previous 
reviews have already presented a comprehensive unders-
tanding of phagocytosis and immune evasion (15, 16). 
However, most of them start with a single pathogen rather 
than the immune system and the speed of research has not 
kept pace with microbial evolution (16). Moreover, there 
has been a lack of learning novel strategies in recent years. 
It is the purpose of this review to describe and update how 
various microbial pathogens obstruct phagocytosis in or-
der to maintain their infection. This is a new perspective to 
help people better understand phagocytosis, which could 
help develop drugs and vaccines that target phagocytosis 
in the future. Some strategies include avoidance of pha-
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Figure 1. Initiation of phagocytosis. Following receptor engagement 
[1], the plasma membrane covers the ingested microorganism [2] and 
closes at the distal end [3], forming a vacuole into which the microor-
ganism is internalized [4].
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gocytosis, preventing the formation of the phagosome, re-
sistance to phagolysosome contents, and escape from the 
phagosome physically will be discussed.

Avoidance of phagocytosis
Pathogenic microorganisms, for the avoidance of pha-

gocytosis, use the most effective method of escaping their 
destructive force to simply prevent ingestion (17). Kleb-
siella pneumoniae is an opportunistic pathogen that prima-
rily affects immunocompromised patients (18), but a few 
serotypes (particularly K1 and K2) are highly invasive and 
can cause systemic infection in otherwise healthy indivi-
duals (19). Some K. pneumoniae have transcriptional re-
gulators KP1_RS12260 (KbvR), which is a critical regula-
tor involved in virulence and defense against macrophage 
phagocytosis. The transcriptome analysis and phenotype 
experiments revealed that deletion of kbvR reduced cap-
sular polysaccharide (CPS) production and partially outer 
membrane protein biosynthesis (OMPs) (20). Thus, KbvR 
contributes to the bacterial defense against macrophage 
phagocytosis in K. pneumoniae. Additionally, the outer 
membrane (OM) that acts as a barrier in some gram-nega-
tive bacteria, preventing toxic compounds such as antibio-
tics and detergents from entering the cell (21). The folding 
and insertion of -barrel proteins into the OM are media-
ted by the -barrel assembly machinery (BAM) complex, 
which is composed of the integral membrane protein Ba 
mA (YaeT) and four accessory lipoproteins BamB (YfgL), 
BamC (NIpB), BamD (YfiO), and BamE (YfiE) (SmpA)? 
YfgL (BamB) is anchored to the periplasmic face of 
the OM (22, 23) and plays a role in E. coli and Salmo-
nella enterica serovar Enteritidis membrane permeability 
and antibiotic resistance (24, 25). The yfgL mutation in 
K.pneumoniae increased susceptibility to vancomycin and 
erythromycin and is required for anti-phagocytosis and 
survival of bacteria in vivo (26).

Moreover, some bacteria can intoxicate phagocytes by 
producing special substances (27-29). Staphylococcus au-
reus can produce a variety of pore-forming protein toxins, 
all of which play a significant role in cell death and lysis 
(30, 31). These toxins mainly include leukocidin (32) and 
a-hemolysin (Figure2) (33). Leukocidins are dimer pro-
teins, including LukAB, LukED HlgAb, and so on, which 
do not attack any membrane indiscriminately because they 
must first attach to certain membrane receptors; only cells 
that have these receptors get intoxicated (34). For ins-
tance, LukE interacts with the chemokine receptor CCR5 
on macrophages, signalling the active leukocidin LukED 
to lyse these cells, which helps cell lysis. Another toxin 
from S. aureus, p-hemolysin, creates holes in macrophage 
membranes as well. It assembles into a -barrel pore of se-
ven identical monomers across the cell membrane using 
the phagocyte protein ADAM 10 (a disintegrin and metal-
loproteinase domain-containing protein 10) as a receptor. 
Consequently, P-hemolysin helps the pathogen enter the 
host cells (35, 36). 

Furthermore, pathogens have devised techniques to 
evade phagocytosis by preventing actin polymerization 
(37). The actin cytoskeleton is required to form a phagocy-
tic cup and subsequent extension of membrane protrusions 
around the target particle (38). Additionally, all forms of 
phagocytosis involve the recruitment of F-actin beneath 
tethered particles and the re-arrangement of F-actin to fa-
cilitate engulfment, both of which are regulated by the Rho 

family GTPases (39). Therefore, some smart bacteria pro-
duce special toxins to control the GTPases, as they play an 
important role in actin energy. For instance, the bacterium 
Clostridium difficile is the causative agent of pseudomem-
branous colitis and is implicated in a significant number 
of cases of nosocomial antibiotic-associated diarrhea (40). 
The bacteria can produce glycosylating exotoxins A and B. 
Both toxins can influence the function of Rho, leading to 
a reduction of phagocyte cell migration and phagocytosis 
(41). Similarly, the bacterium Photorhabdus asymbiotica 
can produce a toxin (PaTox) that causes actin disorganiza-
tion and restraint of phagocytosis (42).

Prevent the Formation of the Phagosome
Many pathogens develop their mechanisms directly 

to interfere with the maturation of phagosomes because 
they will face an unpleasant environment once they are 
ingested. (43-45). Different stages can be blocked in the 
process of phagosome formation by microbes, which in-
clude blocking acidification and inhibiting phagosome to 
lysosome fusion (46, 47).

One of the earliest characteristics of phagosome matu-
ration is the phagosome's rapid and progressive acidifica-
tion (48, 49). The number of V-ATPase molecules on the 
phagosome membrane rises as the phagosome matures. 
Some microorganisms just control the process to inhi-
bit the maturation of the phagosome (50). For example, 
M. tuberculosis can secrete protein tyrosine phosphatase 
(PtpA), which plays a significant role in preventing the 
accumulation of V-ATPase on the phagosome membrane 
(51). Similarly, Gram-positive Streptococcus pyogenes 
inhibit V-ATPase action by expressing surface proteins 
controlled by the virulence factor Mga (47, 52). In addi-
tion, by eliminating the V-ATPase, the bacteria Rhodococ-
cus equi and the dimorphic fungus Histoplasma capsula-
tum can also maintain a non-acidic phagosome (53).

Since the phagolysosome is the most toxic organelle 
for bacteria, many pathogens have developed methods 
to prevent lysosomes from fusing with the phagosome. 
The most well-known example is M. tuberculosis, which 
escapes lysosome fusion by preventing an early phago-
some formation (54). Although the mechanism is com-
plex, some key virulent factors were found to involve the 
process of impairing phagosome-lysosome fusion, such as 
lipoprotein LprG (26) and PtpA (55). Another mechanism 
by which Mycobacterium tuberculosis hinders phago-
some-lysosome fusion is via inhibiting Rab7 recruitment 
and thereby autophagy-mediated destruction (56). Rab7 
recruitment is required to mature mycobacteria-containing 
autophagosomes into autolysosomes, although this is inhi-
bited by the virulence factor early secretory antigenic tar-
get-6 (ESAT-6) (53). How molecular events prevent pha-
gosome-lysosome fusion is only partially known. Howe-
ver, the suppression of autophagosome-lysosome fusion 
(57) is performed via direct binding to Rab7 by another M. 
tuberculosis virulence factor called secretory acid phos-
phatase (SapM). It prevents Rab7 from participating in 
autophagosome-lysosome fusion by blocking Rab7's cyto-
plasmic domain (58).

Similarly, the Gram-negative bacteria Coxiella bur-
netti revise their phagosomes to focus the virulence factor 
Rab5 on the membrane and avoid lysosome fusion (59). 
Additionally, S. pyogenes can inhibit lysosome fusion by 
expressing the virulence component M1, which controls 
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sin is capable of degrading LL-37, a staphylococci-targe-
ting peptide (66).

The oxidative environment created by the phagoly-
sosome is likewise extremely harmful to the majority of 
bacteria. However, certain microorganisms have evolved 
strategies for combating the effects of reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) (67). 
For example, at least two proteins have been identified 
that block the NADPH oxidase in M. tuberculosis, hence 
preventing the generation of ROS (68). The type I NADH 
dehydrogenase (NDH-1) inhibits ROS production and 
thus inhibits tumour necrosis factor-alpha (TNF-a) media-
ted host cell apoptosis, whereas the enhanced intracellular 
survival (eis) gene product (Eis) inhibits both ROS and 
proinflammatory cytokines production, resulting in apop-
tosis arrest. These effects appear to be dependent on the 
Eis protein's N-acetyltransferase domain (69). M. tuber-
culosis can also inhibit RNS by interfering with EBP50, 
a scaffolding protein that regulates iNOS migration to the 
membrane of macrophage phagosomes (70). Interestingly, 
overexpression of EBP50 greatly boosted iNOS expres-
sion and NO production, and EBP50-induced apoptosis 
is NO-dependent and mediated by Bax and caspase-3. 
Mycobacterium tuberculosis lowers and Mycobacterium 
smegmatis enhances EBP50 expression in RAW264.7 
cells, implying that aggressive mycobacteria are capable 
of regulating macrophage antimycobacterial capabilities 
by reducing EBP50 expression and function (71). 
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