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Introduction

Clinically, coronary heart disease can manifest in va-
rious ways, including rhythm irregularities, sudden death, 
pump failure, complete lack of symptoms (silent ische-
mia), and classic angina (1). Heart attacks can happen fol-
lowing physical or emotional stress and may last for 3 to 
5 minutes (2, 3). Additionally, it can lead to uncommon 
kinds of angina, mostly caused by coronary spasms, such 
as angina when resting. Angina might gradually get less 
severe and last for months or even years, but it can some-
times abruptly get worse. This type of angina is known 
as unstable angina, and since acute myocardial infarctions 
progress frequently, it is important to identify it as soon 
as possible (4-6). Asymptomatic coronary heart disease 
affects 2.5% of males between the ages of 40 and 60. A 
common finding in individuals with unstable coronary 
syndromes is silent myocardial ischemia. According to the 
Framingham Study, patients and doctors failed to recognize 
25% of all myocardial infarctions (7, 8). Pharmacological 
interventions for angina have mostly focused on reducing 
increases in myocardial oxygen demand by lowering heart 
rate and systolic blood pressure and/or improving coro-
nary blood flow by relaxing vascular smooth muscle (9, 
10). In addition to easing angina symptoms, lowering res-
ting heart rate is a key indicator of a patient's higher risk 
of adverse outcomes if they have CAD. Beta-adrenergic 

blockers (BBs), calcium antagonists (CAs, including dihy-
dropyridines and non-dihydropyridines), and nitrates are 
the most often utilized anti-angina agents (11, 12).

The drug discovery process has been significantly 
impacted by recent developments in molecular biology, 
high-throughput crystallization techniques, high-energy 
synchrotron sources, combinatorial and fragment-based 
chemistries, and bioinformatics. These developments have 
given rise to a renewed interest in structure-based drug 
discovery (13, 14). Although extremely effective, the crea-
tion of current-generation ACE inhibitors was the result 
of serendipity and great discoveries; it was accomplished 
without the knowledge of the sequence or three-dimensio-
nal structure of the enzyme. Somatic ACE is a complica-
ted two-domain enzyme with an N- and a C-domain, each 
possessing an active site with comparable but different 
substrate specificities and chloride-activation needs. This 
fact was only discovered after the development of ACE 
inhibitors. Therefore, developing domain-selective inhibi-
tors may result in next-generation medications with modi-
fied safety and effectiveness profiles (15).

The zinc metallopeptidase ACE, also known as pep-
tidyl-dipeptidase A (EC 3.4.15.1), is a member of the M2 
family of the MA clan, which includes all contemporary 
polypeptides descended from a single ancestral parent. It 
is a dipeptidyl carboxypeptidase that, in vitro, catalyzes 
the hydrolytic cleavage of dipeptides from a wide range 
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of oligopeptides (16, 17). The in vivo conversion of plas-
ma-circulating Ang I (DRVYIHPFHL) into the powerful 
vasopressor Ang II by removal of the C-terminal His-Leu 
is its best-known use. Angiotensinogen, a 55-kDa plasma 
protein produced from the liver, has a Leu10-Val11 pep-
tide link hydrolyzed largely by renin. ACE also influences 
blood pressure by cleaving bradykinin (BK, RPPGFSPFR), 
eliminating its vasodilating function. For this reason, ACE 
is also called kininase II (kininase I being carboxypepti-
dase N). Plasma kallikrein, a serine proteinase, produces 
BK from a kininogen precursor in a manner similar to how 
Ang I is created (18, 19).

Due to their lack of negative side effects, natural pro-
ducts are rapidly gaining favor in treating renal illnesses 
around the world. These substances are involved in va-
rious biological processes (20). For instance, flavonoids, 
a class of low molecular weight phenolic compounds, are 
becoming increasingly popular due to the many positive 
health effects they have and their ability to exert multiple 
biological properties, including protection from kidney 
diseases and use in nutraceutical, pharmaceutical, medi-
cinal, and cosmetic applications (21). The most important 
components of the human diet are flavonoids, which are 
anti-inflammatory secondary metabolites with a 15-car-
bon (C6-C3-C6) backbone structure. Various higher plants 
with red, blue, or purple hues contain flavonoids, which 
are secondary metabolites with varying phenolic struc-
tures (22). Natural products play a crucial role in mana-
ging and preventing cardiovascular diseases like angina 
pectoris because of their effect on immune cell activation, 
maturation, and signaling transduction, which can inhibit 
regulatory enzymes or transcription factors that are impor-
tant for controlling ischemia (23). Therefore, The Natural 
Product Atlas database has been investigated for its poten-
tial anti-inflammatory, antioxidant, anti-cardiovascular, 
neuroprotective, and strong anticancer effects in a wide 
range of acute and chronic human disorders (24, 25). We 
need various methods to assess compounds' biological ac-
tivity to draw meaningful conclusions. In this study, we'll 
use a few bioinformatics tools for our investigations (14).

Materials and Methods

Target retrieval from RCSB PDB 
The 3D structure of targeted protein angiotensin-

converting enzymes (ACE) was downloaded from RCSB 
PDB by using its specific PDB ID 1O86 (19). PDB, the 
online internet information portal provides access to 3D 
structural data of macromolecules (proteins, DNA, and 
RNA) (26). 

Target protein optimization and minimization
MODELLER was used for loop refinement of the tar-

get protein (27). Swiss PDB Viewer (28) and RAMPAGE 
were used to optimize and minimize the protein crystal 
structure. RAMPAGE created a Ramachandran Plot that 
revealed no protein conflicts. The plot also shows which 
residues are in the favored, allowed, and outlier zones(29).

Database preparation
The Natural Products Atlas, a comprehensive database 

that contains natural compounds, was downloaded from 
PubChem, and drug-like behavior molecules were chosen 
using the Lipinski criterion. There were 32552 compounds 

in all (30).

Pharmacophore modeling and virtual screening
The pharmacophore model was created using the Mo-

lecular Operating Environment software. The pharma-
cophore model was created based on the co-crystallized 
structure and already reported inhibitors of our target pro-
teins. Virtual screening is a drug discovery technique that 
searches through libraries of molecules for structures that 
have the highest probability of binding to a therapeutic tar-
get based on distinct descriptors. This was done with MOE 
software’s help against the Natural Product Atlas database 
(31).

Molecular docking and docking validation
The top 20 compounds from pharmacophore-based 

virtual screening were chosen after sorting hits by their 
pharmacophore-fit RMSD score for 1O86. Using Auto-
Dock Vina (32), these top 20 compounds were docked 
with receptors, and their binding affinities and protein-li-
gand interactions were analyzed. PyMOL (33) was used to 
create complex receptor and ligand files, whereas BIOVIA 
Discovery Studio (34) was applied to find interactions in 
two dimensions.

The optimal scoring algorithm was employed for high 
throughput virtual screening to scrutinize the appropriate 
candidates. The highest-scoring functions were created 
using a decoy dataset of inactive and active ligands to 
filter the unidentified compounds. The decoy dataset was 
created using a Database of Useful Decoys Enhanced (35). 
The decoys' SMILES were used to create 2D structures 
of the chosen compounds using Data Warrior (36). The 
target protein of choice was docked against active and de-
coy chemicals. The receiver operating characteristic curve 
(ROC curve) was used to evaluate the dependability of the 
chosen scoring functions and assign higher points to active 
ligands over inactive ligands. The ROC curve is calculated 
using a script written in R (37, 38).

Toxicity analysis
To determine the drug-likeness and toxicity features of 

compounds, the pkCSM (39) and QikProp developed by 
Professor William L. Jorgensen (40) were utilized. They 
are reported as essential and valuable tools for evalua-
ting important druglike descriptors like adsorption, dis-
tribution, metabolism, excretion, and toxicity (ADMET). 
These tools are also employed for predicting lead likeness 
concerning mutagenicity and carcinogenicity.

Lead identification
Docking score, RMSD values, protein-ligand interac-

tions, lead likeness and drug-likeness analysis, as well as 
toxicity analysis studies such as Molecular Weight (MW), 
Hydrogen Bond Donner (HBD), Hydrogen Bond Acceptor 
(HBA), partial coefficient logP, rings, Polar Surface Area 
(PSA), rotatable bonds, Blood-Brain Barrier, and Ames 
Toxicity were used to identify the most active inhibitors. 
Compounds with the lowest binding affinity, lower RMSD 
values, the highest lead likeness, and the best interactions 
were chosen as possible anti-aggregation inhibitors. 

MD simulation, PCA and DCCM
Desmond, a software from Schrödinger LLC, was uti-

lized to study 200 ns MD simulations (41). In molecular 
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stands for an aromatic functional group. For virtual scree-
ning, The Natural Product Atlas database was utilized after 
pharmacophore modeling to identify compounds with si-
milar attributes to the pharmacophore model. The Natural 
Products Atlas was built using FAIR principles (Findable, 
Accessible, Interoperable, and Reusable) which interlin-
ked with other databases of natural products. A library of 
32552 compounds was created using the PubChem data 
source. The top 20 compounds from pharmacophore-
based virtual screening were chosen after sorting 50 hits 
by their pharmacophore-fit RMSD score for 1O86.

AutoDock Vina performed the docking of the top hits. 
The study of ADMET (absorption, distribution, metabo-
lism, excretion, and toxicity) was accomplished via Qik-
Prop and pkCSM. The top 10 compounds are included in 
Table 1 based on ADMET and docking findings.

ROC curves were used to construct visual representa-
tions of the connection between test specificity and sensiti-
vity candidates. The ROC curves were created by charting 
the proportion of true positives vs. the percentage of false 
positives versus the percentage of true negatives (Figure 
3).

Following lead identification, one compound (ID: 
NPA016099) was discovered as the most active of all 
compounds. Figure 4 depicts the best one's 2D and 3D in-
teractions. The properties of the best one is shown in Table 
1. The optimal chemical complex with the protein target 
was simulated using molecular dynamics for 200 ns. Des-
mond's simulated trajectories were analyzed. Root-mean-
square-deviation (RMSD) and root-mean-square-fluctua-
tion (RMSF) values, as well as protein-ligand interactions, 
were determined by means of MD trajectory analysis.

dynamics simulation, receptor-ligand docking was the first 
valuable step because it provides a static view of the mole-
cule's binding position at the protein's active site (42). MD 
simulations generally predict ligand binding status in the 
physiological milieu by incorporating Newton's classical 
equation of motion (43, 44). 

Receptor-ligand complex was preprocessed (optimi-
zation and minimization) by utilizing Maestro's Protein 
Preparation Wizard. This step removed steric clashes, bad 
contacts, and distorted geometries. System Builder tool 
was employed to build all systems while TIP3P (Inter-
molecular Interaction Potential 3 Points Transferable), 
an orthorhombic box, was used as a solvent model with 
OPLS_2005 force field (45). Counter ions neutralized 
the models and added 0.15M sodium chloride to simu-
late physiological conditions with 300K temperature and 
1atm pressure throughout the simulation period. Before 
the simulation, models were loosened. For inspection, tra-
jectories were stored after RMSD confirmed every 100ps, 
and protein-ligand stability over time. Principal compo-
nent analysis (PCA) and dynamic cross-correlation matrix 
(DCCM) were analyzed by using the ‘Bio3D’ package of 
R (46).

Molecular mechanics and generalized born surface 
area (MM-GBSA) calculations

Generalized molecular mechanics During MD simu-
lations of ACE complexed with NPA016099, the Born 
surface area (MM-GBSA) module of prime was utilized 
to quantify the binding free energy (Gbind) of the docked 
complex. The binding free energy was calculated using 
the OPLS 2005 force field, the VSGB solvent model, and 
rotamer search methods. The MD trajectory frames were 
picked at 10 ns intervals following the MD run. Equation 1 
was used to compute the total free energy binding. 

dGbind=Gcomplex-(Gprotein+Gligand) (1)
Where dGbind = binding free energy, Gcomplex = free 

energy of the complex, Gprotein = free energy of the target 
protein, and Gligand = free energy of the ligand.

Results

The 3D structure of the target protein (1O86) was ob-
tained from Protein Data Bank. The total weight of the 
structure is 68.69 kDa. Its overall symmetry is Asymme-
tric-C1, and Monomer-A1 is stoichiometry. Figure 1 de-
picts the protein structure after filling in missing residues, 
optimization, and minimization, along with the associated 
Ramachandran plot. The structure's overall quality was 99 
percent, with highly preferred observations. In the plot, 
all other residues are displayed as circles, while glycine 
is plotted as triangles and proline as squares. The orange 
areas are the "favored" areas, the yellow areas are the 
"allowed" areas, and the white areas are the "disallowed" 
areas.

For the construction of the pharmacophore model via 
Molecular Operating Environment (MOE), the complex 
compounds were selected. Figure 2 shows combined 
pharmacophoric features on the bases of matching proper-
ties. Hydrophobic centroids, hydrogen bond acceptors or 
donors, aromatic rings, cations, and anions are common 
pharmacophoric characteristics. These pharmacophoric 
locations can be found either on the ligand itself or they 
can be projected points in the receptor. For ACE, F1, F3, 
F4, and F5 stand for a hydrogen bond acceptor, and F2 

Figure 1. 3D structure of protein retrieved from PDB along with its 
Ramachandran plot displaying different sections of target protein 
structure.

Figure 2. Ligand Based pharmacophore and selected ligand fit on 
pharmacophore hypothesis.
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Figure 5 shows the time-dependent increase in RMSD 
values for C-alpha atoms in ligand-bound proteins. The 
RMSD plot shows that the complexed NPA016099-ACE 
protein stabilized at 20 ns. Once the equilibrium is achie-
ved, the RMSD stays in the range of 1.5 Angstrom for the 
rest of the run, which is fine.

Protein dynamics are characterized by Principal Com-
ponent Analysis (PCA) (47). Observing collective trajec-
tory motions during MD simulations is a valuable tool. 
Graph of eigenvalues (protein) vs. eigenvector index 
(eigenmode) for the first 20 modes of motion (NPA016099-
ACE) (Figure 6:A). NPA016099 and the ACE protein were 
shown to be significantly correlated with one another, as 
seen by their high pairwise cross-correlation coefficient 
value on the cross-correlation map (Figure 6B).

Figure 7 depicts the RMSF value of the ligand-coupled 
protein. Based on MD trajectories, we know that residues 
with higher peaks are located in loop regions or N- and C-

PubChem 
ID

mol_MW donorHB accptHB QPlogPo/w QPlogHERG QPPCaco QPlogBB QPlogKhsa
B i n d i n g 
A f f i n i t y 
(Kcal/mol)

NPA010323 956.525 0 27.25 -0.616 -7.855 0.928 -5.541 -1.887 -8.8
NPA010323 956.525 0 27.25 -0.616 -7.854 0.928 -5.541 -1.887 -8.8
NPA014791 996.547 0 27 0.383 -8.634 2.153 -5.001 -1.438 -7.3
NPA016099 440.284 0 11.5 1.086 -6.208 69.872 -2.132 -0.891 -9.3
NPA020704 1020.569 0 24.25 2.471 -8.613 2.829 -5.123 -0.52 -7.8

Table 1. Table showing ADMET properties, binding affinity, and pharmacophore score of top compounds.

Figure 3. ROC curves of docking validation score.

Figure 4. Interactions of the lead compound with protein target 
showing interacting residues and length of the bond.

Figure 6.(A) Principal Component Analysis eigenvalue plotted ver-
sus the percentage of variance (NPA016099-ACE). The varying areas 
are displayed in three separate sections. Variations in PC1, PC2, and 
PC3 add up to 23.94 percent, 16.96 percent, and 8.44 percent, res-
pectively. (B) Complex NPA016099-ACE dynamic cross-correlation 
map. The residues' positive and negative correlations are depicted by 
cyan and purple, respectively.

Figure 7. Residue-wise Root Mean Square Fluctuation (RMSF) of 
protein complexed with ligand.

Figure 5. Variation in the root mean square distance (RMSD) between 
the C-alpha atoms of proteins and ligand (NPA016099-ACE) over 
time. Protein RMSD shifts over time are plotted on the left Y axis. 
Differences in ligand root-mean-square distance (RMSD) over time 
are plotted along the right Y-axis.
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terminal zones (Figure 8).
In Figure 9, it is clear that hydrogen bonds constitute the 

vast majority of the important ligand-protein interactions 
established by MD. Hydrogen bonding is especially cru-
cial for the amino acids GLU_162, ASN_277, THR_282, 
GLU_376, GLU_384, and GLU_441.

Discussion

Natural products play a crucial role in managing and 
preventing cardiovascular diseases like angina pectoris 
because of their effect on immune cell activation, matu-
ration, and signaling transduction, which can inhibit regu-
latory enzymes or transcription factors that are important 
for controlling ischemia (23). In this study, we used a few 
bioinformatics tools for our investigations on the Natural 
Product Atlas database to find lead compounds and draw 
meaningful conclusions on their biological activity as a 
potential anti-Angina agent.

The 3D structure of the target protein (1O86) was ob-
tained from Protein Data Bank. The total weight of the 
structure is 68.69 kDa. For the construction of the phar-
macophore model via Molecular Operating Environment 
(MOE), the complex compounds were selected. Combi-
ned pharmacophoric features were determined. Hydropho-
bic centroids, hydrogen bond acceptors or donors, aroma-
tic rings, cations, and anions are common pharmacophoric 
characteristics. These pharmacophoric locations can be 
found either on the ligand itself or they can be projected 
points in the receptor. For ACE, F1, F3, F4, and F5 stand 
for a hydrogen bond acceptor, and F2 stands for an aroma-
tic functional group. 

For virtual screening, The Natural Product Atlas data-
base was utilized after pharmacophore modeling to iden-
tify compounds with similar attributes to the pharmaco-
phore model. The Natural Products Atlas was built using 
FAIR principles which interlinked with other databases 
of natural products. A library of 32552 compounds was 
created using the PubChem data source. The top 20 com-
pounds from pharmacophore-based virtual screening were 
chosen after sorting 50 hits by their pharmacophore-fit 
RMSD score for 1O86.

AutoDock Vina performed the docking of the top hits. 
The study of ADMET (absorption, distribution, metabo-
lism, excretion, and toxicity) was accomplished via Qik-
Prop and pkCSM. The top 10 compounds are included in 
Table 1 based on ADMET and docking findings.

In Table 1, mol_MW represents the molecular weight, 
which should be between 130.0 and 725.0, and donorHB 
is the projected number of hydrogen bonds that the solute 
would give to water molecules. accptHB, the projected 

number of hydrogen bonds the solute would accept from 
water molecules in an aqueous solution, can be a non-in-
teger value with a recommended range of 0.0 - 6.0. This 
is because the value is an average across several different 
configurations. Given that values are calculated as an ave-
rage over multiple states, they may not all be integers. It 
operates between 2.0 and 20.0. The Octanol/water parti-
tion coefficient, estimated to be -2.0 to 6.5, is denoted as 
QPlogPo/w. QPlogHER, Value of the inhibitory concen-
tration (IC50) for the blockade of HERG K+ channels. Ne-
gative values below -5 are the cause for alarm. QPPCaco 
Caco-2 cell permeability prediction, expressed as a num-
ber of nanometers per second. The gut-blood barrier can 
be mimicked using Caco2 cells. The results of QikProp are 
for passive transport only. In the range of 0–25, consider 
it poor, and anything beyond 500 is excellent. QPlogBB 
Expected brain/blood separation ratio. Dopamine and se-
rotonin, for instance, are CNS-negative because they are 
too polar to cross the blood-brain barrier, with predicted 
ranges of - 3.0 to - 1.2 when using QikProp to predict 
orally administered drugs. QPlogKhsa and Human serum 
albumin binding predictions range from -1.5 to 1.5.

The proposed ROC curves pattern was used to vali-
date the compounds chosen for molecular docking inves-
tigations, ensuring that the compounds chosen are active 
ligands rather than inactive ligands (decoys).  It was also 
discovered that the planned pattern examined active li-
gands from the top-rated compounds in the chosen data-
base. The area under the curve was 0.761 (Figure 3).

Following lead identification, one compound (ID: 
NPA016099) was discovered as the most active of all 
compounds. Figure 4 depicts the best one's 2D and 3D 
interactions. The properties of the best one is shown in 
Table 1. The optimal chemical complex with the protein 
target was simulated using molecular dynamics for 200 ns. 
Desmond's simulated trajectories were analyzed.

The protein structure (PDB ID: 1o86) is shown to have 
an increasing RMSD at the same pace and with very little 
variation. The experiment validated the general belief that 
the building was sturdy. Ligand fit on protein got equili-
brium at 10 ns. After that, throughout the simulation, there 
was no significant change in the Ligand Fit to Protein. 

Figure 8. Elements of Protein Secondary Structure are dispersed 
across protein-ligand complexes with respect to residue index. The 
alpha helices are represented by the red columns, and the beta strands 
by the blue ones.

Figure 9. Protein-ligand contact heatmap throughout the trajectory.
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The RMSD numbers would fluctuate suddenly, sometimes 
going up and sometimes down. After equilibrium was rea-
ched, there was no change in the ligand's RMSD.

Protein dynamics are characterized by PCA (Principal 
Component Analysis) (47). Observing collective trajectory 
motions during MD simulations is a valuable tool. Graph 
of eigenvalues (protein) vs. eigenvector index (eigen-
mode) for the first 20 modes of motion (NPA016099-
ACE) (Figure 6:A). The eigenvalues depict hyperspace 
eigenvector fluctuations. In simulations, eigenvectors with 
higher eigenvalues regulate the proteins' total mobility. 
The top five eigenvectors in our systems showed domi-
nant movements and had larger eigenvalues (23.9-61.8%) 
than the other eigenvectors, which had low eigenvalues. 
More than 50% of all changes were covered by the first 
three PCs (PC1, PC2, and PC3) that were plotted. Accor-
ding to the Figure 6A plots, PC1 clusters had the largest 
variability (23.94 %), PC2 showed variability (16.96 %), 
and PC3 had the lowest variability (8.44 %). As a result of 
its low variability, PC3 has a more compact structure than 
PC1 and PC2 and is thought to have the most stabilized 
protein-ligand binding. Simple clustering in the PC subs-
pace revealed conformational variations across all groups, 
with blue exhibiting the most significant mobility, white 
indicating intermediate movement, and red indicating less 
flexibility.

NPA016099 and the ACE protein were shown to be 
significantly correlated with one another, as seen by their 
high pairwise cross-correlation coefficient value on the 
cross-correlation map (Figure 6B). Magenta represents 
anti-correlated residues (-0.4), whereas cyan represents 
correlated residues (>0.8). It is clear from a large number 
of pairwise correlated residues between the protein and 
ligand that their binding connection is stable.

The stability of ligand binding to the protein is shown 
by low RMSF values of binding site residues. The secon-
dary structure features such as alpha-helices and beta-
strands, are tracked throughout the simulation (SSE). In 
the graph below, SSE is plotted against the residue index 
to display its distribution across the protein structure. To-
taling 47.20 percent, it was found that helix made up 45.78 
percent, and strand made up 1.42 percent.

The ligand-protein interaction can be monitored over 
the course of the simulation, in accordance with the chart 
below. The contacts and interactions (H-bonds, hydropho-
bic, ionic, and water bridges) discussed on the preceding 
page are visualized in a timeline on this page. At the top, 
we may count how many distinct times the protein and 
ligand interact. The panel on the bottom displays, for each 
frame of the trajectory, which residues are interacting with 
the ligand. Some residues, shown in a darker orange, make 
many independent interactions with the ligand, as indica-
ted by the scale on the plot's right.

From Figure 9, it is clear that hydrogen bonds consti-
tute the vast majority of the important ligand-protein inte-
ractions established by MD. Hydrogen bonding is espe-
cially crucial for the amino acids GLU_162, ASN_277, 
THR_282, GLU_376, GLU_384, and GLU_441.

Drug development has been studied extensively be-
cause of the potential for transdisciplinary strategies to 
speed up the process and reduce overall costs. The primary 
objective of this research was to explore target proteins for 
angina pectoris so that a lead drug could be selected for 
them. To counteract the effects of natural products on the 

ACE protein, we chose substances that have this proper-
ty. An artificially synthesized inhibitor, identified by the 
NPA016099, blocks the action of 1O86 at its receptor. We 
reasoned that this material could serve as a starting point 
for the development of a medication that targets angina 
pectoris selectively without affecting other cellular pro-
cesses. These results will be useful to researchers and may 
lead to the development of a new medicine for the treat-
ment of angina pectoris.
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