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Introduction

Lung cancer continues to lead the list of cancers in 
terms of incidence and mortality, posing a serious burden 
on global public health and continues to increase year by 
year with increased industrialization and increased use of 
medicinal herbs worldwide (1,2). As a major cause of can-
cer death, imaging technologies such as computed tomo-
graphy have effectively reduced the mortality rate of lung 
cancer patients but also forced patients to face various side 
effects such as long-term radiotherapy and false-positive 
diagnosis, and overdiagnosis is a potential risk factor in 
lung cancer diagnosis and treatment (3), in order to avoid 
unnecessary losses in patients' lives and finances, we need 
to explore more In order to avoid unnecessary losses in pa-
tients' lives and finances, we need to explore more reliable 
treatment mechanisms to protect the prognosis of patients.

The most important hallmark of modern medicine in 
the century is the rewriting of the biological map of cancer. 
The arrival of biological markers of cancer has provided a 
more personalized approach to patient treatment, making 
the malignant transformation of cancer more traceable and 
enabling new strategies of human defense against cancer, 

such as immune blockade and radiobiology (4). Lung ade-
nocarcinoma (LUAD), the most common and most dia-
gnosed type of lung cancer, is mainly caused by aberrant 
alterations in a single oncogenic factor and is frequently 
reported regarding the activation and overexpression of 
certain specific oncogenes in its tumor cells, which seem 
to constitute the main oncogenic mechanism of lung can-
cer (5). The improvement of technologies such as high-
throughput sequencing provides powerful technical sup-
port for the screening of key candidate genes in LUAD, 
providing new access to information for the exploration 
of "addictive" oncogenes in LUAD and a broader prospect 
for the development of new biological markers and their 
corresponding new drugs (6).

In this study, we collected expression data from The 
Cancer Genome Atlas (TCGA) of 513 tumor samples of 
LUAD and 59 corresponding normal samples, screened the 
differentially expressed genes (DEGs), and constructed a 
weighted gene co-expression network analysis (WGCNA) 
to find the most relevant gene modules of LUAD and pivo-
tal genes among them, to provide new biological markers 
for predicting prognosis of LUAD patients.
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Materials and Methods

Data download and analysis of variance
The expression profiles and clinical information of 

LUAD patients were collected from the TCGA (https://
portal.gdc.cancer.gov/) database. A total of 513 tumor 
samples and 59 normal samples were included. DEGs 
were screened according to gene counts using the R pac-
kage edgeR. The screening criteria were |log2(FC)| > 1 
and PValue < 0.05. The visualization was performed using 
the R package ggplot2.

Functional enrichment analysis
Gene ontology (Go) enrichment analysis of DEGs was 

performed using the R package cluster profile to illustrate 
the biological functions of DEGs in terms of biological 
processes (BP), cellular components (CC), and molecu-
lar functions (MF). In addition, the gene data set h.all.
v7.1.symbols.GMT was downloaded from the Gene Set 
Enrichment Analysis (GSEA) database (https://www.
gsea-msigdb.org/gsea/index.jsp), and GSEA was perfor-
med between tumor tissues and normal samples by using 
the tool GSEA, based on FDR< 25%, p<0.05 screened for 
significantly enriched encyclopedia (KEGG) gene sets.

Weighted gene co-expression network analysis (WGC-
NA)

Co-expression networks were constructed and modules 
were identified using the R package WGCNA, normalized 
against sample depth based on log (cpm+1), and log-trans-
formed. A soft threshold power β=6 is set according to 
the scale-free topology criterion, the adjacency matrix is 
converted into a topological overlap matrix (TOM), and 
the average link hierarchical clustering is performed based 
on the TOM dissimilarity (1-TOM) metric. The modules 
were cut and identified according to the dynamic tree, and 
the genes with similar expression profiles were clustered, 
where the minimum number of genes in the modules was 
30, and the cut height was set to 0.3, and the modules with 
the height of the module feature gene (ME) lower than 
0.25 were merged.

Screening of pivotal genes
Scatter plots of correlations between module gene 

membership (MM) and gene salience (GS) were plotted 
to assess gene connectivity within modules. Genes in key 
modules were imported into the STRING database to iden-
tify protein-protein interaction networks (PPIs), visualize 
PPIs using Cytosacpe software (version 3.8.2) (https://cy-
toscape.org/download.html), and use the Maximal Clique 
Centrality (MCC) algorithm to screen pivotal genes.

Survival analysis
The prognostic characteristics of pivotal genes were 

first elucidated using COX proportional risk regression 
analysis, followed by the least absolute shrinkage and 
selection operator (LASSO) model using the R package 
glmnet and survival, where the risk score was the sum 
of the products of gene expression and Coef coefficients, 
and patients were classified into low and high-risk groups 
based on the median risk score. The risk score prediction 
model for patient prognosis was validated by plotting risk 
factor linkage using the R package ggplot2 and plotting 
subject operating characteristic curves (ROC) and Kaplan-

Meier survival curves. Finally, by using the function surv_
cutpoint in the R package survminer, the best separation 
cut-off was classified according to the FPKM to determine 
the high and low mRNA expression of the target gene and 
survival curves were plotted to classify the high and low 
expression.

Results

Screening and functional enrichment of DEGs
Differential analysis showed that 4107 genes were upre-

gulated and 2022 genes were downregulated in LUAD tu-
mor tissues compared with normal tissues (Figure 1A). GO 
enrichment analysis showed that overlapping DEGs were 
mainly enriched in the extracellular matrix, extracellular 
structures, intercellular adhesion, and cAMP-mediated 
signaling (Figure 1B). GSEA showed that tumor samples 
with DEGs were associated with signaling pathways such 
as Nod-like receptor, and Toll-like receptor (Figure 1C).

Construction of co-expression modules
Genes with similar expression patterns in DEGs were 

clustered and characterized by constructing co-expression 
modules (Figure 2A), and a total of 26 gene modules were 
identified (Figure 2B). As seen in Figure 3C, turquoise 
module members were relatively highly correlated with 
tumors (coefficient = 0.54, P < 0.001), so the turquoise 
module was selected as the key module.

Screening and identification of pivotal genes
The scatter plot of MM and GS correlations in the tur-

quoise module (Figure 3A) revealed that DEG, which was 
significantly associated with Cancer status, was also an im-
portant gene member in the turquoise module (cor=0.45, 
P<0.001). PPI was constructed based on the STRING da-
tabase, and a total of 187 points and 1287 edges were iden-
tified (Figure 3B). The MCC algorithm using CytoHubba 
plug-in in Cytoscape software was used for pivotal gene 
screening, in which the top 10 genes with the highest MCC 
scores were designated as pivotal genes: LDHA, TOP2A, 

Figure 1. RNA-Seq differential expression and functional enrichment 
analysis in LUAD tumor samples and normal samples. (A) volcano 
plot of DEGs, blue is down-regulated, red is up-regulated, LUAD: 
lung adenocarcinoma, DEGs: differentially expressed genes; (B) top 
10 GO terms, GO: gene ontology, BP: biological process, MF: mole-
cular function; (C) enrichment plot of GSEA, KEGG: an encyclope-
dia.



223

Yushan Wang et al. / Prognostic pivotal genes in lung adenocarcinoma, 2023, 69(8): 221-225

the other 9 genes was weak.

Prognostic ability and functional analysis of pivotal 
genes

The best model to predict the prognosis of LUAD 
patients was determined by univariate COX proportional 
risk regression analysis, which revealed an association 
between the expression levels of all 10 pivotal genes and 
the overall survival of patients (Figure 5A), followed by 
the identification of three independent prognostic factors 
(LDHA, TRIP13, TTK) based on multifactorial COX pro-
portional risk regression analysis (Figure 5B).

Meanwhile, we ran cross-validation to construct the 
LASSO model by analyzing the trajectories of each inde-
pendent variable (Figure 6A-B). As shown in Figure 6C, 
patients in the high-risk group had a higher risk of survi-
val, and the ROC confirmed the accuracy of the prognostic 
risk score prediction (Figure 6D), and the results of the 
Kaplan-Meier analysis also indicated that low-risk patients 
had a better prognosis than high-risk patients (Figure 6E).

Finally, we compared the survival of patients with high 
and low expression of LDHA, TRIP13, and TTK by plot-
ting Kaplan-Meier survival curves, and patients with high 
expression of these three key genes had a worse prognosis 
than their respective low expression (Figure 7), indicating 
that the expression levels of these three key genes were 
closely related to the prognosis of LUAD patients. GO 
analysis also showed that these three genes are associated 
with cancer-related processes such as NAD metabolism, 

UBE2C, TYMS, TRIP13, EXO1, TTK, TPX2, ZWINT, 
UHRF1 (Figure 3C). By comparing the gene expression 
of genes between tumor samples and normal samples, we 
found that all of these 10 genes were up-regulated in the 
LUAD tumor samples (Figure 4A). As shown in Figure 
4B, the correlation between the expression of LDHA and 

Figure 2. Identification of co-expression network modules. (A) Clus-
tering dendrogram of samples and heat map of clinical characteristics, 
based on the expression matrix of tumor samples and normal samples 
DEGs from LUAD for clustering, including color intensity positively 
correlated with T_stage, M_stage, N_stage, Tumor_Stage, Sex, Age, 
except that white represents female, surviving or normal samples, red 
represents male, death or tumor samples, and gray indicates absence. 
(B) DEGs clustering dendrogram based on the phase dissimilarity 
measure (1-TOM), TOM: topological overlap matrix; (C) Heat map 
of correlation between module feature genes and clinical features.

Figure 3. Screening of pivotal genes. (A) Correlation between mo-
dule gene members and gene significance in the turquoise module; (B) 
Protein-protein interaction network (PPI) of 187 overlapping genes 
was constructed by Cytoscape software; (C) Top 10 pivotal genes 
with the highest MCC scores.

Figure 4. Identification of pivotal genes. (A) Expression of 10 pivotal 
genes between LUAD tumor samples and normal samples; (B) Heat 
map of correlation between the expression of 10 pivotal genes.

Figure 5. Forest plot of multivariate COX proportional risk regres-
sion analysis for the pivotal genes. (A) Univariate COX proportional 
risk regression analysis; (B) Univariate COX proportional risk regres-
sion analysis.

Figure 6. Minimum absolute shrinkage and selection operator (LAS-
SO) model development and validation. (A) plotting of LASSO coef-
ficient curves based on the ten cross-validations of the minimum; (B) 
selection of the tuning parameter in the LASSO model; (C) classifica-
tion of high and low-risk groups of patients according to the median 
risk score and plotting of risk factor linkage (risk score, survival time 
and status, gene expression clustering); (D) subject of patients in high 
and low-risk groups working characteristic curves; (E) KM overall 
survival curves for high and low-risk groups.
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and para-cAMP, and are involved in signaling pathways 
such as pyruvate metabolism and HIF-1 (Figure 8).

Discussion

Since the joint launch of the TCGA project by the Na-
tional Cancer Institute and the National Institute of Human 
Genetics in 2006, a steady influx of 33 cancer cases in hu-
mans has been added to the TCGA database, and the rich-
ness and size of the TCGA dataset have helped one to de-
fine human cancers more meaningfully (7). By analyzing 
and comparing the altered genetic signatures in TCGA 
tumor samples, key genes that drive altered tumor patterns 
in a targeted manner can be obtained, and targeting these 
drivers can effectively improve clinical treatment planning 
and reduce vulnerability in treatment selection, providing 
an opportunity to improve targeted sniping in cancer treat-
ment (7,8).

In our current study, we found 6129 DEGs in 513 tu-
mor samples and 59 normal samples from LUAD by dif-
ferential analysis, and these genes were commonly asso-
ciated with the extracellular matrix, intercellular adhesion, 
cAMP signaling, and other BPs that affect cell migration 
ability (9), and altering matrix arrangement and coordina-
ting intercellular adhesion are targeted cell invasion abi-
lity in cancer treatment important targets for preventing 
distant metastasis of cancer cells and improving chemo-
therapy efficacy (10-12) .GSEA is a governing method to 
gain insight into the biological characterization of gene 
sets (13), and our current analysis by GSEA revealed that 
genes upregulated in LUAD tumor tissues are significant-
ly enriched in relevant pathways in inflammatory cancer 
transition, and these signaling pathways are often in main-
taining the dynamic homeostasis of tissues have a crucial 
role, and targeting these signaling could provide potential 
alternative therapies for tumor treatment (14-17).

Since WGCNA can identify correlations between gene 
pairs and group them (18,19), WGCNA is now widely 
used to find modules and hub genes associated with spe-
cific traits (20,21). This time, we focused on the DEGs in 
LUAD samples, and a total of 26 different color modules 
were classified. Among them, the turquoise module has a 
relatively high correlation with tumors. The high correla-
tion between MM and GS in a turquoise module indicates 
that the gene members of a turquoise module are closely 
related to LUAD status. And by calculating the MCC 
scores, we found that all of the top 10 genes centrally lin-
ked to PPI were upregulated in tumor samples with LUAD 
and high expression levels suggesting poor patient pro-
gnosis.

LASSO COX is a powerful survival prediction model 
commonly used to identify prognostic factors associated 
with cancer risk and is able to treat all genes equally to 
assess the risk of death from LUAD (22,23). The current 
study constructed a risk-scoring system based on 10 genes 
and classified patients into two different risk groups, and 
patients at higher risk was also found to have a worse pro-
gnosis, indicating that all 10 could be used as powerful 
markers for prognosis prediction in LUAD. Based on mul-
tifactorial COX proportional risk regression analysis, we 
further screened for three independent prognostic factors 
for LUAD: LDHA, TRIP13, and TTK, whose upregulated 
expression showed poorer survival, and these three genes 
were identified as important mRNAs affecting LUAD pro-

gnosis. NAD metabolism, cAMP, and other cancer-related 
processes are involved in cancer development (24-26).

LDHA is considered an ideal target in cancer therapy 
due to its indisputable role in the Warburg effect (27). It 
was shown that silencing LDHA does not induce apoptosis 
or autophagy through the mitochondrial pathway, despite 
the fact that LDHA exhibits similar high expression levels 
in prevalent tumor cells (28). However, its phosphoryla-
tion-mediated LDHA activation enhances the invasive 
potential of cancer cells and promotes tumor metastasis 
(28). Yu (29) et al. Have already found in their study that 
LDHA expression is upregulated in non-small cell lung 
cancer tissues and can act as an independent prognostic 
factor to predict overall and recurrence-free survival in 
LUAD. Encouragingly, LDHA-targeted inhibitors with 
anti-proliferative activity for lung cancer cells have been 
identified (30), providing strong support for their use as 
molecular targets for LUAD. In contrast, overexpression 
of TRIP13 and TTK has also been shown to be closely 
associated with malignant progression and poor prognosis 
of LUAD (31,32).

TRIP13 may be overexpressed in cancer cells in va-
rious forms, affecting the mitotic process of cells, leading 
to tumorigenesis and promoting the malignant transfor-
mation of cancer cells (33,34). TTK, on the other hand, 
is considered a potential therapeutic target and biological 
marker for lung cancer, and upregulation of TTK protein 
expression implies a more advanced lung cancer stage as 
well as poorer survival (35,36).

In conclusion, we in this study constructed co-expres-
sion networks and identified pivotal genes associated with 
LUAD by identifying DEGs in the LUAD expression 
profile in the TCGA database. This study provides a solid 
theoretical basis for the targeted treatment of LUAD, but 
further validation of this study is needed in future in vivo 
and ex vivo experiments, which will be the main direc-
tion of our subsequent research. This will also be the main 
direction of our subsequent research.

Figure 7. Survival curves of patients with high and low expression 
of key genes. (A) Kaplan-Meier analysis of LDHA; (B) TRIP13; (C) 
TTK high and low expression in LUAD patients. Red is the high-ex-
pression group and blue is the low-expression group.

Figure 8. Functional and pathway enrichment analysis of key genes. 
Regarding LDHA, TRIP13, TTK, (A) top 5 GO terms in GO enrich-
ment analysis; (B) top 5 signaling pathways in KEGG pathway en-
richment analysis.
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