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Introduction

Cervical cancer (CC) is the fourth most common mali-
gnancy diagnosed in women worldwide, after breast can-
cer, colorectal cancer and lung cancer (1). It is also widely 
recognized as a malignancy caused by the infection of 
human papillomavirus (1). Despite the increasing rates 
of early screening and vaccination for CC, the incidence 
and mortality rates have not decreased significantly. In 
2018, approximately 570,000 women developed CC and 
311,000 women died of CC (2). The treatment plan of CC 
is decided according to the clinical stage. Surgery is still 
the treatment method for early CC. Postoperative adjuvant 
chemoradiotherapy is decided according to the pathologi-
cal results. At present, the prognosis of patients with CC 
is mainly determined by the selection of stage, local tumor 
size, pathological type and differentiation degree, but they 
are not enough to accurately estimate the prognosis of 
patients, and there are no effective biomarkers to predict 
the prognosis of CC (3). Therefore, it is very important to 
find new reliable biomarkers for the treatment selection 

and prognosis assessment of CC.
Undoubtedly, the most important prognostic factors for 

CC are FIGO stage, pelvic lymph node metastasis, and cli-
nicopathological features of the primary tumor, including 
tumor size, deep interstitial invasion, Periuterine infiltra-
tion, positive surgical margin, and LVSI (4,5). There is in-
creasing interest in biomarkers that can predict response to 
treatment and survival, driven by the need to individualize 
treatment and assess outcomes for patients (6). By correla-
ting the aggressive clinical phenotype of tumors with gene 
expression profiles, a series of molecular markers with 
potential prognostic value have been identified.

The rapid development of high-throughput sequencing 
technology enables researchers to obtain tumor genome, 
transcriptome, and proteome information (7). The Cancer 
Genome Atlas (TCGA) database effectively integrates the 
data and information of high-throughput sequencing (8). 
The data resources are shared by researchers, which is of 
great value to cancer research (8). TCGA is an important 
database of cancer genomes jointly managed by the Natio-
nal Cancer Institute (NCI) and the National Human Ge-
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nome Research Institute (NHGRH) (8). TCGA database 
provides genomic, epigenome and transcriptome informa-
tion for patients with different types of cancer, including 
gene expression and clinical data for CC. However, how 
to reliably transform the biological codes contained in big 
data into results with clinical guiding value is still facing 
great challenges (9). Nowadays, with the help of various 
bioinformatics tools and machine learning algorithms, 
more candidate molecules with potential prognostic value 
for CC have been reported successively (10–12). Howe-
ver, the prognostic relevance of some biological factors 
requires further investigation due to the lack of high-
throughput data or validation failures in independent cen-
ters. Although some biomarkers have been used to predict 
the clinical outcome of patients with CC, their sensitivity 
and/or specificity are still unsatisfactory. Therefore, there 
is an urgent need to find more valuable biomarkers to dia-
gnose, monitor recurrence and assess prognosis (6,13).

The R language is a kind of free software programming 
language and operating environment that can be used in 
statistical analysis, drawing and data mining. The R lan-
guage can carry out some basic statistical tests, build li-
near or nonlinear models, analyze time series, or classify 
and cluster data. The source code of R can be freely down-
loaded for use. The functionality of R can be enhanced 
by specially written packages. A package is a well-defined 
collection of R functions, data, and precompiled code. R 
package can be added with statistical methods, drawing 
methods, programming interfaces and data output, input 
and other functions (14,15).

N6-methyladenosine (m6A) is a specific methylation 
modification of the sixth nitrogen atom (N) on adenine (A) 
catalyzed by methyl transferase, which can exist in a va-
riety of RNAs, but is most abundant in mRNA of eukaryo-
tic cells (16,17). In recent years, through an in-depth study 
on the mechanism of m6A methylation, it has been found 
that the m6A methylation modification process in mRNA 
is not stable (18), but reversible regulation and action of 
three related molecules, methyl transferase, demethylase 
and binding protein (19). Among them, m6A methyl trans-
ferases are also called writers (20), m6A demethylases are 
also called erasers (21), and m6A binding proteins are also 
called readers (20,21). The m6A methylation of mRNA is 
similar to the methylation of DNAi, which modifiers the 
expression products after transcription without changing 
the gene base sequence (22). Related studies have shown 
that m6A affects and changes gene expression mainly by 
intervening and regulating mRNA splicing, translation and 
stability (23). The mechanism of m6A methylation modifi-
cation in cervical cancer still needs to be further explored.

Materials and Methods

Data acquisition and processing for CC
The transcriptome expression data and clinical data of 

CC used in the study were obtained from TCGA database 
(https://cancergenome.nih.gov/) (24,25). TCGA database 
contains 309 CC tissues and 3 adjacent tissues. A total of 
23 m6A-related genes (FMR1, RBMX, METTL3, HNR-
NPC, YTHDC1, VIRMA, LRPPRC, YTHDF1, YTHDF2, 
YTHDF3, ALKBH5, METTL14, METTL16, WTAP, 
HNRNPA2B1, IGFBP2, YTHDC2, ZC3H13, RBM15, 
IGFBP1, IGFBP3, RBM15B, and FTO) were acquired 
from the earlier literature (21,26). GEPIA2 tool was used 

to explore the relationship of genes with clinical informa-
tion in TCGA (http://gepia2.cancer-pku.cn/). Single-cell 
RNA data was downloaded from the GEO (GSE 171894) 
and processed by the Seurat and the Cell chat R package.

Analysis of differentially expressed genes for CC
The edgeR package works on a table of integer read 

counts, with rows corresponding to genes and columns 
corresponding to individual libraries. The count represents 
the total number of readings aligned to each gene (or other 
genomic loci). edgeR focuses on differential expression 
analysis rather than quantification of expression level (27). 
It is related to the relative changes in expression levels 
under different conditions, but not directly related to the 
estimated absolute expression levels. In this study, the 
edgeR package was used to screen differentially expressed 
genes (27).

Weighted correlation network analysis
The concept of Weighted correlation network analysis 

(WGCNA) was first proposed in 2005 (28). Based on the 
similarity of expression profiles among different samples, 
a group of genes with the same expression pattern were 
grouped into different modules, which were involved in 
separate biological functions and/or regulated by a com-
mon mechanism, so as to identify co-expressed gene sets 
(29). Candidate biomarkers or potential therapeutic targets 
can then be identified based on the correlation between 
gene sets and between gene sets and clinical phenotypes 
(30,31). We used the WGCNA package to construct gene 
co-expression networks and screen hub genes (32). The 
steps are as follows: (1) Eliminate outlier samples to 
ensure the reliability of network construction results; (2) 
The standard scale-free model fitting index R2=0.9 was 
used to select the soft threshold (power=5); (3) Transform 
the adjacency matrix as a measure of topological simila-
rity into topological overlap matrix (TOM), and calculate 
the corresponding dissimilarity degree (1-TOM); (4) The 
system cluster map was drawn to determine the module 
composed of a set of interrelated genes; (5) module eigen-
genes (MEs) were calculated to evaluate the correlation 
between each module eigengenes and clinical features; 
(6) Extraction of hub genes in important modules; (7) The 
correlation coefficient between gene significance (GS) and 
module membership (MM) was calculated and the p-value 
was obtained.

Establishment of m6A-clusters for CC patients
Consensus clustering is an algorithm that can be used 

to identify the members and number of clusters in a data 
set, such as microarray gene expression. Consensus clus-
tering is usually used to determine the optimal number of 
clusters k. Consensus clustering verifies the rationality of 
clustering based on resampling, and its main purpose is to 
evaluate the stability of clustering. Consensus clustering 
was carried out using the ConsensusClusterPlus package 
to establish m6A-clusters in this study (33). 

Single-sample gene set enrichment analysis
The single-sample gene set enrichment analysis (ssG-

SEA) quantifies the relative abundance of each immune 
cell type in the tumor microenvironment (TME) of a single 
sample by normalized enrichment score (NES) (34). The 
28 defined immune cell types and corresponding gene tags 
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Western blot
The cancer tissue and paracancerous tissue samples of 

cervical cancer patients were removed from the liquid ni-
trogen tank, fully ground by hand, and centrifuged to take 
the supernatant, and the protein concentration was mea-
sured by total protein concentration determination (BCA 
method).  The following primary antibodies: PFKFB4 
polyclonal antibody (Abcam, ab154588, 1:1000) and the 
GAPDH-specific polyclonal antibody (Abcam; ab8245, 
1:1000).

Results

The landscape of CNV frequency and expression of 
m6A-related genes in CC

There was a total of 23 m6A-related genes (FMR1, 
RBMX, METTL3, HNRNPC, YTHDC1, VIRMA, 
LRPPRC, YTHDF1, YTHDF2, YTHDF3, ALKBH5, 
METTL14, METTL16, WTAP, HNRNPA2B1, IGFBP2, 
YTHDC2, ZC3H13, RBM15, IGFBP1, IGFBP3, 
RBM15B, and FTO) included in our study. We carried out 
an analysis to evaluate the CNV frequency and we found 
that CNV alteration of the 23 m6A-related genes in CC 
was common (Figure 1A). Our data revealed FMR1 and 

were obtained from The Cancer Immunome Atlas (TCIA, 
https://tcia.at/) (35). ssGSEA algorithm can also score 
genes in the genome of interest (36). In this study, the 
value obtained by summarizing m6A-related genes was 
m6Ascore.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) is to evaluate the 

distribution trend of gene set S with known phenotype in 
sequencing data L to be analyzed and arrange in descen-
ding order according to the association degree between 
gene members or gene subsets in S and known phenotype. 
The contribution of gene members of a gene set S to the 
known phenotype is judged according to whether the gene 
members are enriched at the top or bottom of L (37). In 
this study, we use the GSEA function in the clusterProfi-
ler package for enrichment analysis (38). Reference gene 
sets were downloaded from the molecular signature data-
base (MsigDB) (39), including classical pathway gene sets 
from the Kyoto Encyclopedia of Genes and Genomes, and 
bioprocess gene sets from Gene Ontology (GO) annota-
tions.

Comparative analysis of somatic mutations
We converted somatic mutation information from 

ANNOVAR annotation files to MAF file format using the 
AnnovarToMaf function in the maftools package (40). 
Finally, we obtained the mutation data of CC samples to 
evaluate the mutation frequency of m6A-related genes 
and compare the mutation frequency differences among 
different subgroups.

RT-PCR 
Total mRNA was isolated from cultured cells or liver 

samples using TRIzol reagent (Invitrogen), according to 
the manufacturer’s instructions. 1ug mRNA was reverse 
transcribed into cDNA using HiScript III All-in-one RT Su-
perMix Perfect for qPCR according to the manufacturer’s 
protocol. SYBR Green (YEASEN Biotech) was applied to 
quantify PCR amplification. The RT-PCR Primer as follows: 
PFKFB4-F:TCCCCACGGGAATTGACAC,PFKFB4-
R:GGGCACACCAATCCAGTTCA.

Cervical cancer tissue samples
The research was approved by the Research Ethics 

Committee of The Second Affiliated Hospital of Fujian 
Medical University in the study. Total, 14 pairs of cervical 
cancer tissues and their corresponding adjacent normal tis-
sues were obtained from patients who underwent surgery 
between March 2020 and May 2021 at the Second Affi-
liated Hospital of Fujian Medical University, Quanzhou 
City, China. The 14 paired samples were applied to protein 
extraction for Western blot detection.

Cell culture and transfection
cervical cancer cell lines C-33a, Si-Ha, CaSki and 

HUCEC cells were purchased from the Cell Bank of Type 
Culture Collection of the Chinese Academy of Sciences. 
All cells were routinely cultured in DMEM (Invitrogen) 
supplemented with 10% fetal bovine serum (FBS; Life 
Technologies, New York, USA) in a humidified incubator 
containing 5% CO2 at 37°C.

Figure 1. Landscape of CNV frequency and expression of m6A-re-
lated genes in CC. (A) CNV frequency of gain and loss for 23 m6A-
related genes. (B) Circus plots displaying distributions of m6A-rela-
ted genes and corresponding. (C) The expression of 21 m6A-related 
genes between normal and tumor tissues for CC. (D) The mutation 
frequency of the m6A-related genes in waterfall chart. (E) The ex-
pression differences of three m6A regulators (YTHDC1, FTO, and 
FMR1) between CC patients with ZC3H13 non-mutant and ZC3H13 
mutant. (F) The results of survival analysis for ZC3H13, FMR1, and 
YTHDF1.
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RBMX were observed with a general frequency of CNV 
gain (Figure 1A), while IGFBP2, ZC3H13, RBM15, and 
WTAP had a widespread frequency of CNV loss (Figure 
1A). Further, we displayed the location of the 23 m6A-
related genes on chromosomes, as follows: YTHDF2 
(chr1), RBM15 (chr1), LRPPRC (chr2), IGFBP2 (chr2), 
RBM15B (chr3), YTHDC1 (chr4), METTL14 (chr4), 
YTHDC2 (chr5), WTAP (chr6), HNRNPA2B1 (chr7), 
IGFBP1 (chr7), IGFBP3 (chr7), YTHDF3 (chr8), VIRMA 
(chr8), ZC3H13 (chr13), HNRNPC (chr14), METTL3 
(chr14), FTO (chr16), METTL16 (chr17), ALKBH5 
(chr17), YTHDF1 (chr20), RBMX (chrX), and FMR1 
(chrX). Among the 23 m6A-related genes, we found a total 
of 21 m6A-related genes (METTL3, METTL14, WTAP, 
ZC3H13, RBM15, RBM15B, YTHDC1, YTHDC2, 
YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1, LRP-
PRC, HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3, RBMX, 
FTO, and ALKBH5) differentially expressed between nor-
mal and CESC tissues (Figure 1C). We summarized the 
mutation frequency of the m6A-related genes in water-
fall chart (Figure 1D). Among the 289 CC samples, 41 
experienced mutations, accounting for 14.19% of the total 
samples (Figure 1D). LRPPRC (3%), ZC3H13 (3%) and 
YTHDC2 (3%) showed the highest mutation frequency. 
VIRMA (2%), RBM15 (2%), YTHDC1 (1%), FMR1 (1%), 
METTL3 (1%), YTHDF2 (1%), METTL14 (1%), WTAP 
(1%), YTHDF1 (1%), and FTO (1%) occurred genetic 
mutations in CC (Figure 1D). Nevertheless, METTL16, 
RBM15B, YTHDF3, HNRNPC, RBMX, ALKBH5, HN-
RNPA2B1, IGFBP1, IGFBP2, and IGFBP3 had nonsense 
mutation (Figure 1D). Subsequently, we compared the ex-
pression differences of three m6A regulators (YTHDC1, 
FTO, and FMR1) between CC patients with ZC3H13 non-
mutant and ZC3H13 mutant, and we found that the expres-
sion of these three m6A regulators was higher in ZC3H13 
non-mutant (Figure 1E). The results of survival analysis 
showed that CC patients with low expression of ZC3H13 
had a better prognosis, while those with low expression of 
FMR1 and YTHDF1 had a worse prognosis (Figure 1F).

Characteristics of m6A-clusters for CC patients
To further explore the value of m6A-related genes in 

CC, we used the ConsensusClusterPlus algorithm from R 
to perform a clustering analysis of m6A-related genes, thus 
determining the optimal number (k=2) of m6A-clusters 
and two clusters named m6AclusterA, m6AclusterB (Fi-
gure 2A and Supplemental Table S1). We observed better 
clinical outcomes of CC patients in m6AclusterA, howe-
ver, the difference in survival between m6AclusterA and 
m6AclusterB did not reach statistical significance (Figure 
2B). The heatmap showed the distribution of expression 
values of 21 m6A-related genes in different subclusters, 
ages and tumor node metastasis (TNM) classifications. It 
was easy to observe that the expression values of IGFBP2 
and IGFBP3 were higher in m6AclusterA than that in 
m6AclusterB (Figure 2C). Interestingly, the expression 
value of IGFBP1 was low in both m6Aclusters (Figure 
2C). Based on ssGSEA analysis, we evaluated the infiltra-
tion of 23 immune cells of each CC patients and compared 
the differences between m6AclusterA and m6AclusterB. A 
total of 14 immune cell types (Activated CD4 T cell, Acti-
vated CD8 T cell, CD56 bright natural killer cell, Gamma 
delta T cell, Immature B cell, MDSC, Macrophage, Mast 
cell, Natural killer T cell, Neutrophil, Regulatory T cell, T 

follicular helper cell, Type I T helper cell) showed signi-
ficant differences between the two m6Aclusters, and all 
of them showed higher levels of infiltration in m6Aclus-
terB (Figure 2D). We performed GSVA analysis for the 
two m6Aclusters, the results suggested that Taurine and 
Hypotaurine metabolism, glycosaminoglycan biosynthe-
sis keratan sulfate, basal cell carcinoma, and hedgehog 
signaling pathways were enriched in m6AclusterB (Figure 
2E). In addition, complement and coagulation cascades, 
antigen processing and presentation, autoimmune thyroid 
disease, graft versus host disease, type I diabetes mellitus, 
allograft rejection, systemic lupus erythematosus, asthma, 
intestinal immune network for IGA production, cytosolic 
DNA sensing pathway, RIG I like receptor signaling pa-
thway, NOD-like receptor signaling pathway, JAK-STAT 
signaling pathway, Toll-like receptor signaling pathway, 
Natural killer cell-mediated cytotoxicity, and leishmania 
infection signaling pathways were enriched in m6Aclus-
terA (Figure 2E).

WGCNA analysis identifying seven modules
We identified genes that were differentially expressed 

between the two m6Aclusters, and then, to further eluci-
date the mechanistic differences of these differentially ex-
pressed genes, we performed WGCNA analysis for these 

Figure 2. Characteristics of m6A-clusters for CC patients. (A) Clus-
ter diagram for subtype analysis of CC samples. The intragroup cor-
relations were the highest and the inter-group correlations were low 
when k=2. (B) Kaplan-Meier survival curve showing survival proba-
bility of m6AclusterA and m6AclusterB. (C) The heatmap showed 
the distribution of expression values of 21 m6A-related genes in dif-
ferent subclusters, ages and tumor node metastasis (TNM) classifica-
tions. (D) The differences between m6AclusterA and m6AclusterB 
in the infiltration of 23 immune cells. (E) GSVA analysis for the two 
m6Aclusters.
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genes. Firstly, the soft threshold was set to five (Figure 
3A). High correlation genes were aggregated into modules 
based on dynamic pruning and clustering, thus clustering 
these modules and merging modules with a correlation 
coefficient greater than 0.9 (Figure 3B). A total of seven 
modules were integrated (Figure 3C). Among the seven 
modules, the yellow (0.27), blue (0.28), turquoise (0.2), 
and grey (0.29) modules were positively correlated with 
m6AclusterA, while the brown (-0.2) and red (-0.14) mo-
dules were negatively correlated with m6AclusterA (Fi-
gure 3D). As for m6AclusterB, the yellow (-0.27), blue 
(-0.28), turquoise (-0.2), and grey (-0.29) modules were 
negatively correlated with m6AclusterB, on the contrary, 
the brown (0.2) and red (0.14) modules were positively 
correlated with m6AclusterB (Figure 3D).

Enrichment pathway analysis of m6Aclusters
After WGCNA analysis, we screened out genes that 

were significantly correlated with m6Aclusters to explore 
their biological processes. The genes correlated with 
m6AclusterA were enriched in the developmental pro-
cess, multicellular organismal process, response to stimu-
lus, localization, metabolic process, biological regulation, 
signaling, immune system process, negative regulation 
of the biological process, cellular process, regulation of 
the biological process, positive regulation of the biolo-
gical process, locomotion, growth, reproductive process, 
biomineralization, detoxification, and biological process 
involved in interspecies interaction between organisms 
(Figure 4A). The genes correlated with m6AclusterB were 
enriched in the immune system process, regulation of the 
biological process, cellular process, response to stimulus, 

positive regulation of the biological process, locomotion, 
signaling, negative regulation of the biological process, 
the biological process involved in interspecies interaction 
between organisms, multicellular organismal process, lo-
calization, biological regulation, metabolic process, deve-
lopmental process, and viral process (Figure 4C). Hence, 
the genes correlated with the two m6Aclusters were both 
enriched in the developmental process, multicellular orga-
nismal process, response to stimulus, localization, meta-
bolic process, biological regulation, signaling, immune 
system process, negative regulation of the biological pro-
cess, cellular process, regulation of the biological process, 
positive regulation of the biological process, locomotion, 
and biological process involved in interspecies interaction 
between organisms. A network diagram of interactions 
between different gene sets for m6AclusterA (Figure 4B) 
and m6AclusterB (Figure 4D) were shown in Figure 4B 
and Figure 4D.

Characteristics of gene Clusters for CC patients
We identified genes that were differentially expressed 

between the two m6Aclusters (Supplemental Table S2 and 
Table S3).  Utilizing Univariate Cox analysis, the diffe-
rential genes with prognostic value were filtrated, which 
were identified as prognostic genes. Further, we used the 
ConsensusClusterPlus algorithm from R to perform a clus-

Figure 3. WGCNA analysis integrating seven modules correla-
ted with m6Aclusters. (A) Scale independence. The soft Threshold 
(power) represents the weight, and the ordinate represents the square 
value of the correlation coefficient between connection degree k and 
p(k). (B) Mean connectivity. Soft Threshold (power) represents the 
weight, and the ordinate represents the average connection. It is gene-
rally required that the power when the square value of the correlation 
coefficient between k and p(k) reaches 0.9 for the first time is taken 
as the β value, which can be seen as β=5. (C) Systematic cluster tree 
of genes and gene modules generated by dynamic clipping method. 
Different colors represent different genetic modules. (D) Heatmap of 
the correlation between module eigengenes and m6Aclusters.

Figure 4. Enrichment pathway analysis of m6Aclusters. (A) The bio-
logical processes for m6AclusterA. The color represents the p-value. 
(B) A network diagram of interactions between different gene sets for 
m6AclusterA. (C) The biological processes for m6AclusterB. The 
color represents the p-value. (D) A network diagram of interactions 
between different gene sets for m6AclusterB.
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tering analysis of prognostic genes, thus determining the 
optimal number (k=2) of geneClusters and two clusters 
named geneClusterI, geneClusterII (Figure 5A). We ob-
served better clinical outcomes of CESC patients in gene-
ClusterII (Figure 5B). The heatmap of gene expression 
values in the two geneClusters was shown in Figure 5C. 
As we could see, the expression values of these genes were 
higher in geneClusterII than that in geneClusterI (Figure 
5C). We compared the expression values of m6A-related 
genes between geneClusterI and geneClusterII. Our data 
showed that the expression values of METTL3, YTHDF1, 
YTHDF3, HNRNPC, LRPPRC, IGFBP1, and IGFBP2 
were higher in geneClusterI than that in geneClusterII 
(Figure 5D). Utilizing the ssGSEA algorithm, the m6As-
core for each CC patient was calculated. According to the 
median m6Ascore, CC patients were divided into a high 
m6Ascore group and a low m6Ascore group. The better 
clinical outcomes of CC patients with low m6Ascore were 
observed (Figure 5E). The m6Ascore was also positively 
correlated with the majority of immune cells (Figure 5F). 
The Sankey diagram showed that most CC patients in 

m6AclusterA were in the low m6Ascore group, and the 
prognosis was poor. However, most patients in m6Aclus-
terB were divided into the high m6Ascore group, and the 
prognosis was good (Figure 5G).

Genomic mutation analysis for m6Ascore
The mutational data in the waterfall plot from our study 

showed that CC patients with low m6Ascore had a lower 
frequency of gene mutations and tended to be wild-type, 
while CC patients with high m6Ascore had the oppo-
site frequency (Figure 6A-B). TTN, PIK3CA, KMT2C, 
MUC16, KMT2D, FLG, SYNE1, EP300, FBXW7, 
DMD, LRP1B, RYR2, DST, USH2A, ADGRV1, MUC17, 
HUWE1, LRP2, PCLO, and SYNE2 were the top 20 
genes with highest mutation rates (Figure 6A). TTN, PIK-
3CA, KMT2C, MUC16, KMT2D, FLG, SYNE1, EP300, 
FBXW7, DMD, LRP1B, RYR2, DST, USH2A, ADGRV1, 
MUC17, HUWE1, LRP2, PCLO, and SYNE2 (Figure 6B). 
Thus, the top 20 genes with mutation rates in the two sub-
groups were the same (Figure A-B). Further, we explored 
the prognostic differences of high and low m6Ascore in 
different clinical factors. The survival curves showed that 
m6Ascore was a protection factor both for patients with 
T1-T2 (Figure 6C) and T3-T4 (Figure 6D). In addition, we 
investigated the sensitivity of high and low m6Ascore to 
immunotherapy (Figure 6E-I).

Figure 5. Characteristics of geneClusters for CC patients. (A) Cluster 
diagram for subtype analysis of CC samples. The intragroup correla-
tions were the highest and the inter-group correlations were low when 
k=2. (B) Kaplan-Meier survival curve showing survival probability 
of geneClustersI and geneClustersII. (C) The heatmap of gene ex-
pression values in the two geneClusters. (D) The expression values 
of m6A-related genes between geneClusterI and geneClusterII. (E) 
Kaplan-Meier survival curve showing survival probability of m6As-
core. (F) Correlation heat map between m6Ascore and immune cells. 
(G) The Sankey diagram shows the relationship among m6Acluster, 
geneCluster, m6Ascore, and fustat.

Figure 6. Genomic mutation analysis for m6Ascore. (A) Gene mu-
tation frequency in low-m6Ascore. (B) Gene mutation frequency in 
high-m6Ascore. (C) The survival curves for patients with T1-T2. (D) 
The survival curves for patients with T3-T4. (E-I) The sensitivity of 
high and low m6Ascore to immunotherapy.
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Integrated analysis of Single-cell and m6Ascore 
Single-cell sequencing data belonging to CC were 

obtained, and 15 clusters based on 13447 cells were 
identified by Seurat QC and other standard processes for 
subsequent analysis (Figure 7A). The clusters included 
cluster0 (1629 cells), cluster1 (1562 cells), cluster2 (1376 
cells), cluster3 (1311 cells), cluster4 (1168 cells), cluster5 
(1027 cells), cluster6 (999 cells), cluster7 (975 cells), clus-
ter8 (858 cells), cluster9 (771 cells), cluster10 (678 cells), 
cluster11 (495 cells), cluster12 (378 cells), cluster13 (166 
cells), cluster12 (54 cells). We then identified 12 cell types 
with the help of singleR tool and manual annotation (Fi-
gure 7B). The 12 cell types were named as Conventional T 
(2307 cells), Regulatory T (1562 cells), Monocytes (3402 
cells), CD8+ T (1311 cells), NK (1027 cells), Cancer (999 
cells), NKT (975 cells), B (771 cells), Monocyte-derived 
macrophages (495 cells), Epithelial (378 cells), Plasma-
cytoid dendritic (166 cells), and Endothelial (54 cells). In 
addition, we also scored m6A-related genes with the Seu-
rat R package to cell types. The violin (Figure 7C) and 
UMAP (Figure 7D) diagrams showed that m6Ascore was 
different in each cell type.

Crosstalk between m6Ascore and single cell
Utilizing the CellChat algorithm, the impact of m6A-

related genes on cell–cell communication was investiga-
ted by dividing Epithelial and Tres cells into m6A_high, 
m6A_median, and m6A_low subgroups (Figure 8A-B). 
Individual signaling pathways or ligand-receptor-media-
ted cellular interactions are shown in Figure 8C-F and 
Supplemental Table S4.

PFKFB4 Expression 
Given the significant prognostic values of the m6A 

score in CESC, PFKFB4 with the biggest HR values was 
regarded as the key gene by using the cox-regression ana-
lysis for CESC (Figure 9A). Then, we found that PFKFB4 
had a significant difference in KM curves between high 
PFKFB4 and low PFKFB4 groups in the GPEIA2 (Figure 

Figure 8. Crosstalk between m6Ascore and single cell. (A) Number 
of interactions for Cell–cell interaction in cell clusters analyzed by 
Cell Chat. (B) Interaction weights/strength for Cell–cell interaction in 
cell clusters analyzed by Cell Chat. (C-D) Connection probability of 
main signaling pathways in cell clusters. (E-F) Cell–cell interaction 
in cell clusters analyzed by cellphonedb.

Figure 7. Integrated analysis of Single-cell and m6Ascore. (A) 
Single-cell sequencing data belonging to CC identifying 15 clusters. 
(B) 12 cell types were identified using the singleR tool and manual 
annotation. (C) The violin diagram shows the level of m6Ascore in 
each cell type. (D) UMAP diagram showing the level of m6Ascore 
in each cell type.

Figure 9. Validation of the key gene of m6A score in public and in-
house data.
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9B) and a significant relationship with TNM (Figure 9C). 
PFKFB4 expression was higher in tumor tissues than 
that in the normal tissue in TCGA-CESC (Figure 9D). In 
validation, we examined the mRNA level of PFKFB4 in 
cervical cancer cell lines compared with HUCEC cells, 
and we found that the mRNA expression of PFKFB4 was 
significantly increased in cervical cancer cell lines com-
pared with HUCEC cells (Figure. 9E). We also examined 
the expression of PFKFB4 at the protein level by Wes-
tern blot. As shown in Figure 9F, PFKFB4 expression was 
dramatically increased in most of cervical cancer tissues 
when compared to their normal adjacent tissues.

Discussion

Despite the continuous improvement of medical tech-
nology, cancer is still an incurable disease. At present, the 
main treatment methods for malignant tumors are surgery, 
radiotherapy, chemotherapy and targeting (41). However, 
after the initial treatment, patients will still have a recur-
rence, metastasis, and then lead to the failure of treatment 
(42). Prognostic factors, such as progression-free time and 
survival, are critical for tumor treatment. The survival time 
of tumor patients is often related to the malignant degree 
and clinical stage of the tumor (43). Accurately judging 
the survival time of tumor patients can indirectly judge the 
degree of malignancy of the tumor, and develop effective 
treatment strategies based on this (44). For patients with 
better prognoses, follow-up can be strengthened to reduce 
unnecessary chemoradiotherapy or targeted therapy and 
immunotherapy, while for patients with poor prognoses, 
active complementary therapy should be given to finally 
benefit the patients (44). It is of great significance to pre-
dict the survival time after the first diagnosis. The survi-
val time of cancer patients largely depends on the degree 
of malignancy of cancer cells (45). With the deepening 
understanding of disease, the molecular characteristics 
can more accurately predict the degree of malignancy and 
disease progression of tumor, which is helpful for inter-
vention, reducing recurrence and enhancing the ability 
of disease management (46). According to the degree of 
tumor malignancy, the selection of appropriate treatment 
is very important for tumor management and prevention of 
recurrence and can also avoid the occurrence of overtreat-
ment. Therefore, it is of great significance to accurately 
predict the survival time of cancer patients.

At present, clinical features are the main prediction 
parameters for the survival of cancer patients, including 
pathological classification, stage, tumor size, lymph node 
metastasis, etc. Clinical features have the characteristics 
of long-term accumulation and are easy to extract (47). 
However, the clinical features are mostly the surface fea-
tures of tumor cells, which is not enough to distinguish 
the internal heterogeneity of tumor cells (48). The same 
pathological type and stage often have different survival 
times. The reason for this is that in addition to the treat-
ment methods, the heterogeneity of the tumor itself is also 
found. The molecular characteristics of tumors reflect the 
internal mechanism of tumor cells and are an important 
basis for distinguishing the intrinsic heterogeneity of tu-
mor cells (49,50). Therefore, molecular features are more 
suitable to be used as indicators to construct prediction 
models for the survival of cancer patients. TCGA is cur-
rently recognized as the leading cancer research database 

(8). With the development of genomics, transcriptomics, 
proteomics, Genome-wide Association Study (GWAS), 
TCGA and other projects (24,51) the layers of molecular 
biology and genomics of diseases including cancer have 
been gradually unveiled (52). The relationship between 
molecular and genetic changes and human diseases has 
been intensively studied, and the research results in this 
field have been applied to various clinical fields (53). In 
the field of cancer, compared with clinical indicators, the 
information content of molecular features is huge. It is of 
great significance to effectively mine the useful informa-
tion of these molecular features for clinical research and 
basic research (54). In conclusion, molecular features can 
better reflect the nature and intrinsic heterogeneity of tu-
mor cells than clinical features and are better features for 
predicting the prognosis and survival of tumor patients. 

With the advent of the era of big data, the size of the 
original sample data is very large. To find the rules behind 
these data by using the traditional single algorithm, the 
calculation amount will be very huge, and the operation 
process is very complex, the cost cannot be underestima-
ted, and the reliability of the obtained results cannot gua-
rantee integrity and accuracy (55). Compared with tradi-
tional statistics, machine learning has the ability to quickly 
extract and analyze a large number of different types of 
data (56). With the continuous mining of massive infor-
mation, machine learning can achieve better prediction 
results than traditional statistical methods in the case of 
data with high latitude and multicollinearity (57). When 
dealing with large samples of data, machine learning has 
non-negligible advantages (58). The molecular informa-
tion of cancer is also very complex data (59). The molecu-
lar information of cancer can be roughly divided into gene 
mutation, chromatin variation, copy number variation, 
DNA modification variation, gene expression and so on 
(60,61). Among them, there are more than 20,000 human 
genes, with countless types and numbers of mutations and 
complex methylation changes (62,63). To sum up, the mo-
lecular information of cancer is a huge and complex multi-
dimensional information, which needs to be analyzed by 
using the advantages of machine learning.

The classification of cancer is closely related to the 
diagnosis, treatment and prognosis of cancer. Through the 
classification of cancer, we can provide personalized me-
dicine for patients belonging to different cancer subtypes. 
The classification of cancer also plays an important role 
in the design and selection of anticancer drugs (64). The 
origin of tumor cells can influence but not completely de-
termine the cell classification. The results of cancer classi-
fication based on molecular biology and pathological clas-
sification based on organs and tissues converge, but there 
are still some differences (53). Cancer is a disease caused 
by gene mutations or changes. Studying the classification 
of tumors from the perspective of molecular biology, such 
as gene expression, epigenetics, and gene mutations, will 
have a more fundamental understanding of tumors.

At present, the global high incidence of CC is still fa-
cing huge challenges, still has the risk of recurrence or me-
tastasis after the initial cure, but in addition to the clinical 
information of clinical stage and pathological type, tumor 
inherent characteristic of biological information whether 
the prognosis of patients with CC can help its treatment 
decisions, it remains to be further exploration, to be sure 
is accurate to predict the prognosis of CC patients. It is of 



97

Xiaoqiu Zhu et al. / m6A features in cervical cancer, 2023, 69(9): 89-99

great significance to improve the treatment and manage-
ment level of CC patients. Common clinical indicators, to 
accurately predict the prognosis of patients with cervical 
cancer survival condition to provide enough useful infor-
mation, therefore, we carried out this study.
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