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Introduction

As the incidence of cerebral ischemia (CI) constant-
ly increases, it has become one of the major diseases of 
human mortality and disability, with more than 600,000 
new cases worldwide every year (1). According to statis-
tics, CI diseases have become the third cause of unnatu-
ral death of human beings, second only to malignancies 
and cardiovascular diseases (2). FCI results from a series 
of complex pathophysiological events, including excito-
toxicity, oxidative stress, inflammation, and apoptosis (2). 
However, there is currently no optimal clinical treatment 
for FCI, as the cellular and molecular changes in such a 
disease are not fully understood, which is also one of the 
reasons leading to neuronal apoptosis. Currently, throm-
bolytic therapy remains the mainstay of clinical treatment 
for CI. Although timely treatment can effectively relieve 
patients' symptoms and ensure their life safety, it still can-
not reverse the neuronal damage and apoptosis caused by 
CI, resulting in a greater possibility of disability in most 
patients (3, 4). Thus, finding a more valid treatment plan 
for cerebral ischemic diseases is of great significance to 
the life and prognosis of patients.

As the technology of cultivating neural stem cells 

(NSCs) in vitro gradually matures, accumulating evi-
dence has found that exogenous NSCs transplanted into 
rat brains can save dying neurons and integrate with host 
cells to form a good neural network, which provides hope 
for the treatment of cerebral ischemic diseases (5). The 
endogenous nervous system consists of intestinal neurons 
and intestinal glial cells, of which the latter can maintain 
the integrity of the enteric nervous system and secrete 
glial cell-derived neurotrophic factor (GDNF), a nutritio-
nal factor that promotes neuronal growth, differentiation, 
and repair (6). The PI3K/AKT axis involved in GDNF has 
also been shown to work in the maintenance and differen-
tiation of NSCs in the developing brain and contributes to 
the recovery of neurological function after CI injury (7, 8). 
However, it remains to characterize whether NSC trans-
plantation plays a role in treating ischemic brain injury 
through the GDNF/PI3K/AKT axis.

Therefore, it is of great significance to study the mole-
cular mechanism of FCI in order to formulate effective 
treatment plans for improving patient outcomes. In this 
study, by establishing a rat model of middle cerebral artery 
occlusion (MCAO)-induced focal cerebral ischemia (FCI) 
and conducting NSC transplantation, this study explores 
whether NSC transplantation is neuroprotective in CI rats 
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and observes changes in GDNF/PI3K/AKT axis expres-
sion, in the hope of rendering more reliable theoretical 
guidance for the future application of stem cell transplan-
tation therapy.

Materials and Methods

Animal data
Fifteen clean-grade healthy male Sprague-Dawley (SD) 

rats (weight: 260-300 g), ordered from Suzhou Truway 
Biotechnology Inc. with the animal license number SYXK 
(Su) 2022-0032, were fed in the environment of 23-26℃, 
50-60% humidity and 12h-12h day-night alternating cycle 
with feed and water freely available.

Model building
Referring to the study of Yu et al. (9), a model of left 

MCAO-induced FCI was established: Rats who had been 
adaptively fed for one week were given an intraabdominal 
injection of 10% chloral hydrate (3 mL/kg) for anesthe-
sia and then fixed supine to create a longitudinal incision 
in the middle of the posterior neck. The muscular nerves 
were then bluntly separated layer by layer, exposing the 
left common (CCA), internal (ICA), and external carotid 
arteries (ECA). After that, a diagonal incision was made 
in the ECA, through which a suitable thread plug was in-
serted and passed through the ICA to the middle cerebral 
artery. The thread plug was inserted 1.8~2.0cm away from 
the CCA bifurcation and pulled out after 2 hours of ische-
mia to restore the filling of the ICA. Animals were scored 
for their neurological function (10) after recovery from 
anesthesia: 0: normal with no obvious behavior changes; 
1: inability to fully extend the right forelimb; 2 points: turn 
slightly to the right side when walking; 3 points: difficul-
ty in walking and tipping to the right side; 4 points: no 
spontaneous activity and loss of consciousness. Rats with 
a score of 0 or 4 were considered modeling failures and 
were removed from the study.

Isolation and culture of NSCs
Neonatal SD rats were killed by cervical dislocation 

under anesthesia. The collected whole brain tissue was 
rinsed in D-Hank's solution, the meninges were peeled 
off, and the brain tissues were cut into pieces for culture 
with a small amount of DMEM/F12 basal medium. The 
cell suspension was formed after mechanical pipetting. 
Cells were then collected by centrifugation and dripped 
into DMEM/F12 culture medium containing B27, bFGF, 
EGF and streptomycin. After filtration, they were inocula-
ted in a 25cm2 culture flask at 1.0×109/L and incubated at a 
constant temperature. The medium was added once every 
2 ~ 3 days, and the passage was carried out once every 5 
~ 6 days by mechanical pipetting or Accutase digestion.

Grouping and treatment
Rats were randomized into the following three groups 

for corresponding treatment: (1) NSCs group was treated 
with NSC transplantation. NSCs were labeled continuous-
ly with 10 μmol/L BrdU for 3 days, and the cell concen-
tration was adjusted to 2.5×107 cells/ml. 20 μL cell sus-
pension (number of transplanted cells: 5×105) was used 
for transplantation. (2) GDNF/NSCs group was subjected 
to transplantation of NSCs transfected with recombinant 
adenovirus pAdEasy-1-pAdTrackCMV-GDNF. Accor-

ding to the rat GDNF cDNA sequence, a pair of specific 
primers were designed and synthesized as follows: sense: 
5’-TTTGGTACCATGAAGTTATGGGATGTCGT-3’, 
anti-sense: 5'-TTTAAGCTTTCAGATACATCCACATC-
CACACCGTT-3’. Before transplantation, 2 wells of 
cells were collected and the supernatant was discarded by 
centrifugation, followed by the addition of 20 μL culture 
medium. The number of transplanted cells was 4~5×105. 
(3) Blank group was treated with normal saline transplan-
tation. Intracerebral transplantation was performed using a 
rat brain stereotaxic instrument. The transplantation time 
was 3 days after reperfusion, and the transplantation site 
was the right ventricle.

Behavior testing
Rat behavior tests were performed at 1 and 4 weeks 

after NSC transplantation, including the rotarod test (the 
initial speed was 4 RPM/min, which was accelerated to 
the maximum rotation speed of 40 RPM/min within 5 mi-
nutes. The test ended when the rat fell from the rotating 
rod, clung to the rotating rod for 2 consecutive rotations 
without any movement, and/or the movement time of the 
rat on the rotating rod reached 300s. The number of rod 
turns was recorded) and the corner turn test (two boards, 
30cm×20cm×1cm, was used to form a 30° angle, and the 
rats were placed in the corner of the edge. When the rats 
started to move, the board was turned, and the turning 
times were recorded 10 consecutive times. The turning 
times of the rats were recorded).

ELISA
Carotid artery blood samples were collected at 1 and 4 

weeks after NSC transplantation to quantify inflammatory 
factors (IFs) such as tumor necrosis factor-α (TNF-α) and 
interleukin-6/8 (IL-6/8) and stress injury markers like su-
peroxide dismutase (SOD) and malondialdehyde (MDA), 
using kits all ordered from Wuhan Fine Biotech.

HE staining
Rats were sacrificed with the neck broken under 

anesthesia to obtain complete brain tissue, which was pre-
served in 4% paraformaldehyde and prepared into paraf-
fin sections after dehydration with gradient ethanol. After 
baking at 60℃ for 2 h, the paraffin slices were subjected 
to xylene dewaxing, HE dyeing, dehydration with etha-
nol gradient, and xylene permeation. Following air drying 
and mounting, the slices were observed and photographed 
under a light microscope.

Western blotting
RIPA was added to the rat brain tissue for lysis, and 

then the protein was quantified by BCA. After SDS-PVDF, 
the protein was sealed with 5% skim milk. GDNF, PI3K, 
AKT and p-AKT primary antibodies (1: 500) were then 
added to incubate at 4℃ overnight. Following three TBST 
washes the next day, the membrane was immersed in a 
secondary antibody (1: 3000) to incubate for 1 hour. After 
ECL development, the relative expression was calculated 
with GAPDH as the reference protein.

Statistical analyses
Data were input into SPSS19.0 for statistical analysis. 

All the tests were run in triplicate, and the results were 
described as (χ±s). One-way analysis of variance (ANO-



127

Hongbo Xu et al. / Effect of neural stem cell transplantation on cerebral ischemia, 2023, 69(9): 125-129

while no difference was determined between NSCs and 
GDNF/NSCs groups (P>0.05). In the 4th week after trans-
plantation, elevated IFs were observed in the blank group, 
higher than those in the other two groups (P<0.05); while 
IL-6, IL-8 and TNF-α in NSCs and GDNF/NSCs groups 
were reduced compared with the levels at the 1st week 
after transplantation, especially in GDNF/NSCs group 
(P<0.05). Figure 3

Stress damage changes
Subsequently, detection of stress damage indexes 

showed that SOD was the lowest and MDA was the highest 
in the blank group at 1 and 4 weeks after transplantation; 
while compared with GDNF/NSCs group, SOD in the 
NSCs group was lower and MDA was higher (P<0.05). 
Compared with the value at 1 week after transplantation, 
the SOD was reduced in the blank group at week 4 af-
ter transplantation, while it was elevated in the other two 
groups (P<0.05); MDA was increased in the blank group 
at the 4th post-transplantation and was decreased in the 
other two groups (P<0.05). Figure 4

Comparison of brain tissue injury
HE staining showed that the ischemic side of rat brain 

tissue in the blank group was loose, with interstitial ede-
ma, blurred cell contour, invisible nucleoli, increased cy-

VA) was used for comparisons. LSD-t tests were used for 
data that met the normality and variance homogeneity, and 
nonparametric tests were used otherwise. P<0.05 was the 
significance level.

Results

Modeling results
All the rats were successfully modeled without deve-

loping peritonitis. In the blank group, the nerve defect 
score of one rat was 4 points and was therefore excluded. 
Before NSC transplantation, the nerve defect scores of 
blank, NSCs, and GDNF/NSCs groups were (2.75±0.50), 
(2.80±0.45) and (2.80±0.45) respectively, showing no sta-
tistical difference among them (P>0.05). Figure 1

Rat behavior changes
One week after transplantation, the time on the rod 

and number of turnings of rats in the blank group was 
the lowest in the three groups (P<0.05), but no difference 
was identified between NSCs and GDNF/NSCs groups 
(P>0.05). In the fourth week, the time on the rod in NSCs 
and GDNF/NSCs groups increased (P<0.05), but the num-
ber of turnings remained unchanged (P>0.05); while in the 
blank group, the time on the rod and number of turnings 
were further reduced (P<0.05). The comparison among 
the three groups also identified that the time on the rod and 
number of turnings were the lowest in the blank group, 
while those in the NSCs group were lower compared with 
GDNF/NSCs group (P<0.05). Figure 2

Inflammatory reaction changes
According to the detection results of IFs, IL-6, IL-8 

and TNF-α were also the lowest in the blank group among 
the three groups one week after transplantation (P<0.05), 

Figure 1. Neural deficit scores after modeling.

Figure 2. Results of behavioral tests. a) Results of rotarod test. b) 
Results of corner turn test. Note: # indicates a statistically signifi-
cant difference from the blank group, & indicates a statistically signi-
ficant difference from the NSCs group, and * indicates a statistically 
significant difference from the results of the same group after 1 week 
(i.e., P<0.05).

Figure 3. Inflammatory reaction changes. a) Comparison of IL-6 
assay results. b) Comparison of IL-8 assay results. c) Comparison 
of TNF-α assay results. Note: # indicates a statistically significant 
difference from the blank group, & indicates a statistically significant 
difference from the NSCs group, and * indicates a statistically signi-
ficant difference from the results of the same group after 1 week (i.e., 
P<0.05).

Figure 4. Stress damage changes. a) Comparison of SOD assay 
results. b) Comparison of MDA assay results. Note: # indicates a 
statistically significant difference from the blank group, & indicates 
a statistically significant difference from the NSCs group, and * indi-
cates a statistically significant difference from the results of the same 
group after 1 week (i.e., P<0.05).
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toplasmatic eosinophilia and obvious vacuole formation. 
In contrast, the pathological damage of rat brain tissue was 
ameliorated in both the NSCs group and the GDNF/NSCs 
group, and the neurons in GDNF/NSCs group were arran-
ged regularly and tightly, with almost normal morphology 
and clear nucleoli. Figure 5

Comparison of GDNF/PI3K/AKT axis-related protein 
expression

Finally, the detection of GDNF/PI3K/AKT axis-re-
lated protein expression in rat brain tissue showed that 
GDNF, PI3K, AKT and p-AKT protein levels were lower 
in a blank group than in the other two groups, while those 
in GDNF/NSCs group were higher compared with NSCs 
group (P<0.05). Figure 6

Discussion

NSCs complete self-renewal and differentiation by 
means of symmetric or asymmetric division of metro-
cytes. There is increasing evidence that NSC transplanta-
tion is an effective method to treat ischemic brain injury 
and that NSCs can rebuild neural circuits by replacing and 
repairing damaged brain cells (11). Besides, NSCs can 
secrete a variety of neurotrophic factors, improve the lo-
cal microenvironment and reduce the expression of genes 
related to microglia activation and inflammation (12). In 
this study, we transplanted NSCs into rats with FCI. The 
results showed that compared with rats in the blank group, 
the behavior, inflammatory reaction and stress injury of 
animals in NSCs and GDNF/NSCs groups were signifi-
cantly improved; moreover, with the increase of transplan-
tation time, the injury of NSCs and GDNF/NSCs groups 
ameliorated more obviously, while the injury of the blank 
group was getting worse. Subsequently, by observing the 
brain tissue injury of the three groups of rats, it can be seen 
that the injury of NSCs and GDNF/NSCs groups were also 
more significantly relieved. Therefore, NSC transplanta-
tion has an excellent ameliorating effect on FCI. In pre-
vious studies, NSC transplantation has been repeatedly 
confirmed to exert excellent repairing effects on nerve in-
juries such as cerebral infarction and stroke (13-15), which 
undoubtedly further supports our findings. The protective 
mechanism of NSCs on brain tissue is mainly divided 
into direct action (differentiation into neurons) and indi-
rect action (paracrine active secretions) (16). We believe 
that NSCs may secrete brain-derived neurotrophic factor, 
GDNF, microvesicles and other active secretions through 
paracrine action to inhibit inflammatory responses of 
nerve cells and protect neurons. On the other hand, inflam-
mation is known to aggravate blood-brain barrier injury, 
microvascular failure, brain edema and oxidative stress, 
and directly induce neuronal death. NSCs may also play a 
neuroprotective role by reducing inflammatory reactions 
and inhibiting neuronal apoptosis (17), which has also 
been confirmed in the research of Luciani et al. (18). Fur-
thermore, the death of nerve cells in FCI has been sug-
gested to be a unique process different from apoptosis and 
necrosis and is related to mitochondrial dysfunction (19), 
but whether this is related to NSCs remains to be further 
studied and confirmed.

To confirm the repair mechanism of NSCs on brain 
injury, we further set up NSCs transfected with GDNF for 
intervention (GDNF/NSCs group). The results showed that 

compared with conventional NSC transplantation (NSCs 
group), the behavior, inflammatory reaction, stress injury, 
and brain histopathology of rats in the GDNF/NSCs group 
were more significantly alleviated. Moreover, further 
detection of GDNF/PI3K/AKT axis-related proteins in 
each group identified that compared with the blank group, 
GDNF, PI3K and AKT protein levels in NSCs and GDNF/
NSCs groups were activated, especially in GDNF/NSCs 
group. This indicates that the repair of FCI-induced nerve 
injury by NSC transplantation may be carried out through 
the GDNF/PI3K/AKT axis, consistent with the results of 
a number of previous studies (20-22). Undoubtedly, this 
fully reveals the action pathway of NSC transplantation 
and can provide a more reliable reference for the future 
clinical application of NSCs.

However, this study still has many limitations that need 
to be addressed. For example, more experiments are nee-
ded to confirm the repair mechanism of NSC transplan-
tation on nerve injury, and the role played by the GDNF/
PI3K/AKT axis requires more precise experimental vali-
dation. In the future, we will also conduct more in-depth 
research on the above limitations to provide a more com-
prehensive reference for clinical practice.

NSC transplantation can improve neurological function 
and relieve inflammatory responses and stress injury in 
MCAO-induced FCI rats via the GDNF/PI3K/AKT axis, 
which is expected to be a treatment scheme for MCAO-in-
duced FCI in the future, providing a reliable guarantee for 
the prognosis and health of patients.

Ethics Approval and Consent to Participate 
Not applicable.
 
Acknowledgments 
Not applicable. 
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