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Introduction

Acute myocardial infarction (MI) is a major cause of 
death and disability worldwide. The preferred treatment 
strategy for MI patients is timely and effective myocardial 
reperfusion thrombolytic therapy or direct percutaneous 
coronary intervention to reduce myocardial ischemia in-
jury and restrict the extent of MI (1). However, cardiac 
cell death caused by the reperfusion process itself, namely 
myocardial reperfusion injury, cannot be effectively trea-
ted (2, 3). Reperfusion therapy for MI can result in unex-
pected cardiac complications. After the recovery of blood 
flow in the infarct area, a variety of inflammatory cells are 
attracted to the damaged site for tissue repair, in which 
macrophages are active participants (4). Several studies 
have shown that altering the polarization status of macro-
phages can reduce myocardial ischemia/reperfusion (I/R) 
injury in animal models (5, 6).

The use of cardiosphere-derived cell (CDC) therapy 
for the treatment of ischemic heart disease has been do-
cumented in animals and humans (7, 8). The underlying 
mechanism of cell therapy remains elusive. Exosomes 
are nanoscale lipid bilayer vesicles (30-150 nm) secreted 
by many cell types as a form of local or distal commu-
nication between cells. They contain specific amounts of 
small RNA and protein and are easily absorbed by many 
cells, including macrophages, fibroblasts, and endothelial 
cells (9). Recent researches have suggested that exosomes 

secreted by mesenchymal stromal cells (MSCs) can boost 
tissue repair after inflammation and injury in animal mo-
dels, suggesting that exosomes may contribute to the ef-
fect of cell therapy (10-12). It has been shown that genetic 
engineering that overexpresses C-X-C motif chemokine 
receptor 4 (CXCR4) enhances the mobilization, implan-
tation, and cardiac repair of MSC in vivo (13). After coro-
nary artery ligation in MI model rats, the administration of 
MSC-derived CXCR4-overexpressed exosomes preserves 
cardiac function and enhances MSC-mediated cardiopro-
tection (14). CXCR4-overexpressed exosomes secreted by 
CDCs have also been reported to confer cardioprotection 
following I/R injury (15, 16).

MicroRNAs (miRNAs) are short (20‐22 nucleotides), 
noncoding RNAs that are present in exosomes, can be 
absorbed by neighboring or distant cells, and then regu-
late the recipient cells (17). The dysregulation of exosomal 
miRNAs can affect the crosstalk between cancer cells and 
the tumor microenvironment (18). As reported previously, 
tumor-derived exosomal miR-934 promotes macrophage 
M2 polarization to accelerate colorectal cancer metastasis 
(19). Exosomal miR-500a-5p secreted by cancer-linked 
fibroblasts accelerates breast cancer cell proliferation (20). 
The involvement of several miRNAs in myocardial infarc-
tion and I/R injury therapy has been reported in numerous 
studies. MiR-27a-5p attenuates cardiomyocyte injury by 
regulating autophagy and apoptosis via Atg7 and with its 
downstream target Ppm1. MiR-27a-5p also modulates 
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macrophage M2-like polarization (21, 22). MSC-derived 
exosomes alleviate myocardial I/R injury in mice by deli-
vering miR-182 which regulates macrophage polariza-
tion (23). MSC-derived exosomes that contain miR-101a 
significantly reduce infarct size and improve cardiac func-
tion in mice suffering from myocardial I/R (24). In this 
research, we generated CXCR4-overexpressed exosomes 
secreted by CDCs and loaded miR-27a-5p, miR-182, or 
miR-101a into them. We observed a myocardial protective 
effect of these engineered exosomes in I/R model mice 
and demonstrated that they improved heart performance 
by modulating macrophage polarization.

Materials and Methods

Cell Culture 
Murine macrophage RAW264.7 cell line was cultured 

in Dulbecco’s modified Eagle’s medium (Gibco, USA) 
supplemented with 10% fetal bovine serum (FBS; Gibco, 
USA) and 1% penicillin-streptomycin (PS). Human CDCs 
were cultured in basic Iscove’s modified Dulbecco’s me-
dium (Lonza, Switzerland) supplemented with 20% FBS 
and 1% PS. All cells were cultured in an incubator with 
5% CO2 and 95% humidity at 37 ℃.

Exosome Isolation and Identification
Exosomes from CDCs were isolated based on a total 

exosome isolation kit (Invitrogen, USA). The morphology 
of isolated exosomes was examined using transmission 
electron microscopy. The concentration and particle size 
distribution of isolated exosomes were quantified using 
nanoparticle tracking analysis.

Exosome PKH26 Staining and Cellular Uptake
Isolated exosomes were labeled with PKH26 (Sigma-

Aldrich, USA). Briefly, the PKH26 dye was mixed with 
exosomes and incubated at room temperature. The tagged 
exosomes were extracted by ultra-centrifugation and cultu-
red with RAW264.7 cells after the staining reaction was 
stopped. Cells were then fixed with 4% paraformaldehyde 
(PFA) and stained with 4’, 6-diamidino-2-phenylindole 
(DAPI). The cellular uptake of exosomes was determined 
using confocal laser microscopy.

Western Blot
Protein was obtained by resuspending the samples 

in radioimmunoprecipitation assay (RIPA) lysis buffer 
(Beyotime, China). The concentration was determined 
using a bicinchoninic acid (BCA) Protein Assay kit (Beyo-

time, China). The protein was subjected to 10% sodium 
dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to polyvinylidene fluoride (PVDF) 
membranes. The membranes were blocked with 1% bo-
vine albumin serum (BSA), and incubated with primary 
antibodies overnight at 4 ℃, and subsequently incubated 
with secondary antibodies. Antibodies used were as fol-
lows: anti-CD63 (Abcam, USA, 1:1000), anti-Alix (Ab-
cam, USA, 1:1000), anti-CD81 (Abcam, USA, 1:1000), 
CD105 (Abcam, USA, 1:1000), CXCR4 (Abcam, USA, 
1:1000), Arg1 (Abcam, USA, 1:1000), INOS (Abcam, 
USA, 1:1000), β-Actin (Santa Cruz, USA, 1:1000), and 
Goat Anti-Rabbit IgG H&L (HRP) (Abcam, USA, 1:5000). 
After staining with enhanced chemiluminescence solution, 
signals were detected and the expression of certain protein 
was analyzed using ImageJ analysis software.

Reverse transcription-polymerase chain reaction (RT-
PCR)

RNA was extracted using RNAiso Plus reagent (Taka-
ra, Japan). The concentration was determined using a Na-
noDrop 2000 spectrophotometer (Thermo Fisher, USA). 
Complementary DNA (cDNA) was obtained using a Pri-
meScript™ RT kit (Takara, Japan) and quantified using an 
RT-PCR assay labeled with a SYBR Green PCR Mix Kit 
(Takara, Japan). Results were quantified using the 2-ΔΔCT 
method. Primers used are listed in Table 1.

Myocardial Ischemia/Reperfusion (I/R)
A thoracotomy at the fourth intercostal space on 

8-week male C57BL/6 mice anesthetized with 2% isoflu-
rane was performed. During myocardial I/R surgery, the 
left anterior descending coronary artery was ligated with a 
7-0 silk suture and then released 45 minutes later to allow 
for reperfusion.

Cardiac Function
A two-dimensional echocardiography was performed 

using Vevo770 (VisualSonics, Canada) to evaluate cardiac 
function. Three representative cycles were determined 
for each mouse, and the left ventricular ejection fraction 
(LVEF), left ventricular fractional shortening (LVFS), left 
ventricular end-diastolic volume (LVEDV), as well as 
with left ventricular end-systolic volume (LVESV) was 
calculated. 

Immunohistochemistry
Mice were perfused intracardially with 4% PFA. Isola-

ted heart tissue was fixed in 4% PFA and then processed 

Target Forward sequence (5'→3') Reverse sequence (5'→3')
β-Actin CATTGCTGACAGGATGCAGAAGG TGCTGGAAGGTGGACAGTGAGG
Arg1 CATTGGCTTGCGAGACGTAGAC GCTGAAGGTCTCTTCCATCACC
IL-10 CGGGAAGACAATAACTGCACCC CGGTTAGCAGTATGTTGTCCAGC
CD206 GTTCACCTGGAGTGATGGTTCTC AGGACATGCCAGGGTCACCTTT
TGFβ TGATACGCCTGAGTGGCTGTCT CACAAGAGCAGTGAGCGCTGAA
U6 ATCGGTTGGCAAACGTTTC TGCGCAGTGGTTTTTGA
miR-27a-5p GCGGCGGAGGGCTAGCTGCTTG ATCC AGTGCAGGGTCCGAGG
miR-182 CGTCCTTTGGCAATGGTAGAACTC GCAGGGTCCGAGGTATTC
miR-101a TCGTATCCAGTGCAGGGTCCGAGGTG CACTGGATACGACTCATACAG

Table 1. Primers used for RT-QPCR.
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somes by RAW264.7 cells. We pre-treated exosomes with 
PKH26, a lipophilic dye that stained the lipid membrane of 
exosome vesicles. PKH26-labeled exosomes were cultured 
with RAW264.7 cells and the confocal laser microscopy 
revealed the presence of PKH26-positive RAW264.7 cells 
in both the Exo group and the CXCR4-Exo group (Figure 
2A). The CXCR4 expression in RAW264.7 cells was mea-
sured by flow cytometry. After co-culture with CXCR4-
Exo, the CXCR4 fluorescent signals of RAW264.7 cells 
were more intense (Figure 2B), indicating that these cells 
had successfully taken up CXCR4-Exo. 

Engineered exosomes modulated the polarization of 
macrophages to M2 phenotype

Based on CXCR4 overexpression, we generated ove-
rexpressed DC-exosomes of miR-27a-5p, miR-182, or 
miR-101a by electroporation, and we confirmed the effica-
cy of exogenous miRNA transfection by RT-PCR (Figure 
3A). RAW264.7 cells were activated with lipopolysaccha-
ride (LPS) and the engineered exosomes or Exo-NC was 
added to the medium 6 h later. Compared with Exo-NC 
co-cultured cells, the expression of miR-27a-5p, miR-182, 
and miR-101a was increased in cells co-cultured with 
Exo-miR after 48 h (Figure 3B). 

Enzyme-linked immunosorbent assay (ELISA) was 
adopted to measure the levels of pro-inflammatory cyto-
kine IL-6 and anti-inflammatory cytokine IL-10 in the 
supernatant. We discovered that Exo-miR reduced LPS-

with paraffin embedding. After staining with anti-CD68 
(Abcam, USA) overnight at 4 °C, the secondary antibody 
was applied to evaluate infiltrated macrophages. Confocal 
microscopy was used to analyze the samples after incuba-
tion with DAB solution. Images were processed by ImageJ 
software.

Statistical analysis
All experiments were performed in triplicate. Data were 

exhibited as means ± standard deviation (SD). Statistical 
analyses were implemented by GraphPad Prism. Between 
the two groups, a student t-test was used. For three or more 
groups, a one-way analysis of variance was used. P-va-
lue<0.05 was considered statistically significant.

Results

Construction and characterization of CXCR4-overex-
pressed CDC-derived exosomes

We first cultured CDCs in vitro and collected exo-
somes secreted by these cells from the culture media. The 
morphology of CDC-derived exosomes (CDC-Exo) was 
examined using transmission electron microscopy (TEM) 
(Figure 1A). Purified CDC-Exo presented a round-sha-
ped vesicular membrane structure. The concentration and 
particle size distribution of CDC-Exo within the culture 
media were analyzed by nanoparticle tracking analysis 
(Figure 1B). For CDC-Exo characterization, we perfor-
med a western blot to detect three typical exosome mar-
kers (CD63, CD81, and Alix) and a CDC surface marker 
CD105 (Figure 1C). Then, we obtained CXCR4-overex-
pressed exosomes (CXCR4-Exo) by transfecting CXCR4-
overexpressing plasmids in CDCs. Exosomes secreted by 
CDCs transfected with empty plasmids were used as a 
control. Flow cytometry as well as western blot demons-
trated that CXCR4 could be examined on the CXCR4-Exo 
(Figure 1D, E). 

Uptake of CXCR4-Exo by macrophages
After the successful construction of CXCR4-Exo, we 

investigated the internalization of these engineered exo-

Figure 1. Identification of CDC-Exo and CXCR4 expression. (A) 
CDC-Exo morphology observed by TEM. Scale bars, 200 nm. (B) 
Concentration and particle size distribution were measured by nano-
particle tracking analysis. (C) Quantification of CDC-Exo surface 
markers by Western blot. (D) Exosomal CXCR4 expression was 
detected by flow cytometry. (E) Exosomal CXCR4 expression was 
quantified by Western blot. N=5, ***p < 0.001.

Figure 3. Verification of miRNA transfection into CXCR4-Exo and 
macrophage uptake. (A) RT-PCR examined the efficiency of miRNA 
transfer into exosomes. (B) RT-PCR analysis of the miRNA expres-
sion in RAW264.7 cells after co-culture for 48 h. N=5, ***p < 0.001. 

Figure 2. Uptake of CXCR4-Exo by macrophages. RAW264.7 cells 
were cultured with Exo or CXCR4-Exo and pre-treated with PKH26. 
(A) Fluorescent imaging of RAW264.7 cells. (B) CXCR4 expression 
of RAW264.7 cells detected by flow cytometry.
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induced IL-6 production and enhanced the secretion of IL-
10, with Exo-miR-101a causing the most notable change 
(Figure 4A). Western blot analysis was used to assess the 
expression of the M1 and M2 macrophage markers INOS 
and Arg1, respectively. In comparison to the LPS group, 
the expression of INOS in three miR-Exo groups was 
down-regulated, and the expression of Arg1 was up-regu-
lated (Figure 4B), indicating that M2 macrophages were 
more than M1 macrophages. By using RT-PCR, we also 
measured the M2 macrophage marker and anti-inflamma-
tory cytokine expression levels. We found that the expres-
sion of Arg1, CD206, IL-10, and TGF-β was elevated by 
Exo-miR (Figure 4C). These findings showed that M1 
macrophages could be converted in vitro into M2 macro-
phages by engineered exosomes.

Engineered exosomes improved cardiac performance 
following myocardial ischemia/reperfusion injury

To determine the therapeutic effect of engineered exo-
somes in vivo, Exo-miR or Exo-NC was injected intra-
venously after myocardial ischemia/reperfusion (I/R) in-
jury. Echocardiography was performed to detect cardiac 
function and tissue was collected for histological exami-
nation. Exo-miR administration significantly reduced left 
ventricle dilation caused by I/R (Figure 5A). When com-
pared to the Exo-NC group, Exo-miR treatment dramati-
cally decreased LVEDV and LVESV and increased LVEF 
and LVFS (Figure 5B). The infarct size and the collagen 
area of the hearts were next evaluated. Masson trichrome 
staining showed that the infarct size of the three Exo-miR 
groups was significantly smaller, and the reduction of the 
infarct size of the Exo-miR-101a group was the largest 
(Figure 5C). Sirius Red staining revealed that all therapeu-
tic groups experienced a substantial decrease in collagen 
area (Figure 5D). Together, these findings indicated that 
engineered exosomes could significantly enhance heart 
function following I/R injury. 

Engineered exosomes reduced macrophage infiltration 
and promoted M2 macrophage polarization in vivo

Engineered exosomes have been shown to have the-
rapeutic effects on I/R model mice, and we speculated it 
was connected to the status of macrophages. Immunohis-
tochemistry and flow cytometry were employed to identify 
heart-infiltrating macrophages after myocardial I/R injury. 
Macrophage infiltration was decreased significantly in 
the three Exo-miR groups (Figure 6A, B). Next, we iso-
lated cardiac macrophages from mice treated with either 
Exo-miR or Exo-NC and measured the expression levels 
of macrophage phenotype markers. Results from RT-PCR 
revealed that Arg1, IL-10, CD206, and TGF were all up-
regulated in Exo-miR treatment group (Figure 6C).

Discussion

Currently, in the treatment of acute myocardial infarc-
tion (MI), surgery and drug therapy are mainly used to 
restore myocardial perfusion. Even if blood flow is res-
tored rapidly, the phenomenon of myocardial reperfusion 
injury may still occur. Ischemia/reperfusion (I/R) initiates 
a chain of events that leads to inflammation of the heart 
(25). Myocardial ischemic infarction and scar formation 
are closely related to the duration and intensity of these 
inflammatory processes. Macrophages, along with other 
inflammatory cells, are crucial in the modulation of car-
diac inflammation (26). Macrophages are composed of 
different subtypes. They provide powerful pro-inflamma-
tory signals to injured cardiomyocytes and repair clues to 

Figure 4. Exo-miR regulated the macrophage polarization to M2 
phenotype in response to LPS stimulation. LPS was used to activate 
RAW264.7 cells for 6 h before co-culturing cells with Exo-miR-27a-
5p, Exo-miR-182, and Exo-miR-101a for 48 h. (A) The concentra-
tion of IL-6 and IL-10 in the supernatant was measured by ELISA. 
N=5, **p < 0.01, ***p < 0.001 compared with control. ##p<0.01, 
###p<0.001 compared with LPS. (B) Western blot showing the ex-
pression of INOS and Arg1 in RAW 264.7 cells. (C) Quantification 
of Arg1, IL-10, CD206, and TGFβ expression of RAW 264.7 cells by 
RT-PCR. N=5, **p < 0.01, ***p < 0.001. 

Figure 5. Engineered exosomes enhanced cardiac function following 
myocardial I/R injury. Exo-miR or Exo-NC was injected intravenous-
ly after myocardial I/R injury. (A) Representative echocardiogram 
of mouse hearts after exosome administration. (B) LVEDV, LVESV, 
LVEF, and LVFS in mice intravenously injected exosomes. N=5, *p 
< 0.05, **p < 0.01, ***p < 0.001. (C) Masson trichrome staining of 
transverse heart sections showing infarct region. (D) Sirius Red stai-
ning images showing collagen area.
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tissue healing (27). In animal models, changing the pola-
rization status of macrophages can attenuate cardiac I/R 
injury (5, 6), indicating that macrophage polarization is a 
potent therapeutic target for MI.

Currently, the benefit of CDC therapy in myocardial 
ischemic injury has been proven in animal and clinical stu-
dies (7, 8). The positive effects of cell treatment are long-
lasting, but there are also some drawbacks such as limited 
cardiac retention (28). It has been reported that exosomes 
secreted by CDCs reduce scarring and improve heart func-
tion in porcine myocardial infarction (29). CXCL12 is a 
member of the CXC chemokine family, and its expression 
is upregulated in the infarcted myocardium due to the acti-
vation of hypoxia-inducible factor-1 (HIF-1) (30). Studies 
have shown that the plasma level of CXCL12 is eleva-
ted in patients after MI, and CXCL12 recruits CXCR4-
expressing cells, including circulating progenitor cells by 
binding CXCR4 (31). The function of CXCL12 to attract 
circulating progenitor cells into infarcted areas facilitates 
tissue repair. Ciullo A, et al have reported that overexpres-
sing CXCR4 enhances the bioavailability of cardioprotec-
tive CDC-derived exosomes to ischemic hearts (32).

The relationship between miRNAs and myocardial in-
farction and I/R injury has been extensively studied in re-
cent years. For instance, miR-22 is increased in I/R model 
rats and inhibits miR-22 and reduces the damage induced 
by I/R. In addition, an increased level of miR-22 in vitro 
exacerbates oxidative stress and mitochondrial damage 
carried on by I/R (33). By lowering oxidative stress and 
decreasing ROS, miR-126 overexpression repairs endo-
thelial progenitor cell injury (34). In rat ventricular car-
diomyocytes, miR-145 dramatically downregulates CaM-
KII levels, inhibits calcium overload caused by hydrogen 
peroxide, and reduces the production of ROS. MiR-145 
protects cardiomyocytes subjected to oxidative stress and 
the hearts of I/R model mice (35, 36). MiR-340-5p ove-
rexpression suppresses ROS and MDA levels and restores 
cell viability of cardiomyocytes impaired by I/R (37- 39). 

In this study, we generated and identified CXCR4-
overexpressed exosomes from CDCs (CXCR4-Exo) 
and demonstrated its normal cellular internalization by 
RAW264.7 cells. Then, we loaded CXCR4-Exo with 
miR-27a-5p, miR-182, or miR-101a, whose myocardial 

protective functions have been reported following I/R 
injury. These engineered exosomes were added into the 
RAW264.7 cell culture media to regulate cell polarization. 
Next, we intravenously injected the engineered exosomes 
into myocardial I/R model mice and observed significant 
improvements in cardiac function and infarct size compa-
red to Exo-NC. The myocardial protection was achieved 
by inhibiting macrophage infiltration and boosting M2 
phenotype polarization. Our study combined CDC-de-
rived exosomes, CXCR4 genetic modification, and miR-
NA treatment. This approach may represent as an alterna-
tive promising strategy for alleviating ischemic coronary 
syndromes.

Conclusions
In conclusion, our study demonstrated that CXCR4-

overexpressed exosomes from cardiosphere-derived 
cells attenuated myocardial ischemia/reperfusion injury 
by transferring miRNA to macrophages and regulating 
macrophage polarization, which might provide a promi-
sing target for the treatment of myocardial ischemia/reper-
fusion injury.
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