
124

Introduction

Parkinson's disease (PD) is a rapidly growing disorder 
in the world and will affect 12 million people by 2024 (1).
PD is now considered to be a multisystem disease charac-
terized by movement disorders (bradykinesia, rigidity, and 
rest tremor) and non-motor disorders (depression, anxiety, 
fatigue) (2). The pathological hallmarks are the degene-
ration of dopaminergic neurons and the accumulation of 
misfolded α-synuclein (3). It is clear that the rising preva-
lence of PD places a strain on families as well as society. 
However, given the clinical heterogeneity and pathologi-
cal complexity of PD, there is a lack of satisfactory treat-
ment and no effective prevention strategies (4). So It is 
essential to develop targeted interventions by further ex-
ploring the underlying mechanisms of their heterogeneity 
and complexity.

Copper is essential for growth and survival and widely 
involved in vital biochemical reactions such as energy 
production, redox, and neurotransmitter biosynthesis as 
a cofactor for conserved enzymes (5,6). A complex and 
sophisticated set of mechanisms regulates the homeostatic 
balance of copper. In addition, copper homeostasis dysre-
gulation can result in cell death and is linked to neurode-
generative diseases (7). Cuproptosis, different from apop-
tosis, ferroptosis, and necroptosis, is a newly discovered 
form of programmed cell death. Recent studies have shown 
that Cuproposis depends on mitochondrial respiration and 
that copper can directly bind to lipid components of the 
tricarboxylic acid (TCA) cycle, causing protein aggrega-
tion and dysregulation, and eventually inducing cell death 

(8,9). Therefore, mitochondria play an essential role in 
Cuproptosis. It is important to note that mitochondrial dys-
function has a central function in PD progression (10,11). 
Thus, The correlation between cuproptosis-related genes 
(CRGs) and Parkinson's disease is significant for elucida-
ting mechanisms of PD heterogeneity and complexity.

Recent research shows that cuproptosis may play a role 
in the development of some cancers and neurodegenera-
tive diseases. Nevertheless, the role and immunologic cha-
racterization of cuproptosis have rarely been studied. Our 
study is systematically to explore the divergent expression 
of CRGs and immune features among normal and PD indi-
viduals. Furthermore, we develop a model for predicting 
the disclosure of patients by comparing 4 machine lear-
ning models. In addition, we classified PD patients into 
two clusters based on CRGs and three gene clusters based 
on differentially expressed genes (DEG) of CRGs clus-
ters. We further evaluated immunological characterization 
between the different clusters and created the CRG scores 
to quantify CRGs patterns successfully. Lastly, we assess 
the prediction of CRGs targeted drugs and the ceRNA 
network, providing new perspectives on the pathogenesis 
and management of PD.

Materials and Methods

Data acquisition and pre-processing 
Six PD microarray datasets were downloaded from the 

GEO database: GSE8397 (GPL96 platform), GSE20292 
(GPL96 platform), GSE20186 (GPL96 platform), 
GSE49036 (GPL570 platform), and GSE7621 (GPL570 
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platform). We analyzed three array datasets based on the 
same platform including GSE8397, GSE202922, and 
GSE20186. These microarray data were processed and 
normalized by the "affy" package and removed batch 
effects with the "sva" package. A total of 49 substantia 
nigra with PD patients and 47 substantia nigra with heal-
thy controls were included for further study. Additionally, 
two array datasets were combined as row external valida-
tion analysis, including the GSE49036 dataset (8 nigros-
triatal samples from healthy controls and 15 nigrostriatal 
samples from PD) and the GSE7621 dataset (9 nigros-
triatal samples from healthy controls and 16 nigrostriatal 
samples from PD). A dataset of 17 CRGs was obtained 
from previous related studies (5,9,12–14).

Correlation analysis of CRGs with infiltration of im-
mune cells

Single-sample gene set enrichment analysis (ssGSEA) 
was employed to evaluate the infiltration of immune cells 
in PD. We comprehensively assess every sample's immu-
nologic characteristics based on 28 peripheral immune 
cell types in the ssGSEA algorithm. For each immune cell 
type, the relative abundance is indicated by the enrichment 
score taken from the ssGSEA analysis carried out by the 
R package (GSVA, GSEABase, and limma). Correlation 
coefficients between CRGs and infiltrated immune cells 
were analyzed. P-value < 0.05 was considered a signifi-
cant correlation.

Construction of a prediction model based on machine 
learning.

We used "caret" R packages to establish machine lear-
ning models including the Random Forest Model (RF), 
Support Vector Machine Model (SVM), Generalized Li-
near Model (GLM), and extreme Gradient Boosting (XGB) 
based on the CRGs. Furthermore, the residual distribution 
and feature importance were visualized in the "DALEX" 
package. We identify the Optimal machine learning model 
according to the relevant results. Subsequently, we used 
the top 5 significant variables as crucial PD-associated 
predictor genes. Receiver Operational Performance (ROC) 
curves were utilized to assess the diagnostic performance 
of the model and validate it with an external database.

Construction of a nomogram model
We construct a nomogram model according to 5 pre-

dictive genes using the "rms" R package. We evaluate the 
predictive performance of the nomogram model using 
calibration curves and discriminant curve analysis (DCA). 
(15).

Identification of molecular subtypes of CRGs
We classify individuals into different CRGs patterns 

according to 5 significant PD-associated predictor genes 
with the "ConsensusClusterPlus" package (16). We com-
prehensively evaluated optimal clusters according to the 
cumulative distribution function (CDF) curve, the consen-
sus matrix, and the consistent clustering score (>0.9).

Identification of CRGs-related DEGs between sub-
types and functional enrichment analysis 

The "limma" package is intended for selecting differen-
tially expressed genes (DEGs) among different CRG pat-
terns. These genes need to have adjusted p-values <0.05 as 

well as fold changes >0.5. GSVA enrichment analysis was 
applied to explain the variations among different CRGs 
regarding gene enrichment biologically. Subsequently, we 
use "limma" R package to identify pathways and biolo-
gical functions of differently expressed in GSVA scores. 
The condition about (|t| >2, p < 0.05) was considered as 
significantly altered.

Estimation of the CRGs Gene Signature
The principal component analysis (PCA) algorithm 

computes each sample's CRGs scores and differentiates 
the CRGs-related patterns.

Construction of drug network
Gene-targeted drug predictions were made using the 

Drug-Gene Interaction Database (DGIdb), and drug struc-
ture information was sought from the DrugBank database.

Construction of ceRNA network
The mRNA-miRNA interaction pairs were predic-

ted according to four databases: miRTarBase(https://
mirtarbase.cuhk.edu.cn), miRDB(https://mirdb.org), and 
RNAInterhttp://www.rnainter.org/),miRWalk3 (http://
mirwalk.umm.uni-heidelberg.de/). Subsequently, we used 
the RNAInter to predict miRNA-lncRNA interaction pairs 
(confidence score>0.3) and finally constructed the ceRNA 
regulatory network. The ceRNA network was shown using 
Cytoscape (version 3.9.1).

Statistical analysis
All analyses were conducted in R (version 4.20). 

Student’s t-tests or Wilcoxon tests were employed to com-
pare the two groups. The Kruskal-Wallis test was utilized 
to compare three groups. The Pearson correlation was 
assessed for correlation analysis. P<0.05 was considered 
statistically significant.

Results

Landscape of cuproptosis regulators and immune infil-
tration analysis in PD patients

The 'limma' package was employed to evaluate the 
differences in 17 CRGs' expression levels between PD 
patients and healthy controls. Eight significantly different 
CRGs (NFE2L2, FDX1, DLD, DLAT, PDHB, MTF1, 
GLS, and LIAS) were filtered and visualized with a heat-
map and histogram (Figures 1A, B). NFE2L2 and MTF1 
expression levels were higher than the control, whereas the 
expression levels of LIAS, DLAT, DLD, FDX1, PDHB, 
and GLS were significantly lower than controls. The chro-
mosomal location of 17CRGs was visualized using the 
"RCircos" package (Figure 1C). To further explore whe-
ther CRGs have a critical function in PD, we explored 
the internal correlation of these differentially expressed 
CRGs. For example, DLD had a strong synergistic rela-
tionship with FDX1 (coefficient = 0.67) and DLAT (coef-
ficient = 0.65), whereas MTF1 and NFE2L2 demonstrated 
antagonistic effects (coefficient = -0.46).  (Figures 1E). 
Moreover, we further examined CRG correlation patterns 
and found that FDX1 and DLD were strongly associated 
with other regulatory factors. Figure 1D further illustrates 
the close relationship between these CRGs. 

To determine immune system differences between PD 
and healthy controls, we use ssGSEA to perform immune 
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suggests that the diagnostic model is generally applicable.

Correlation between CRGs and clinical PD
We further explore the correlation of CRGs expression 

levels with age and gender in PD patients. LIAS and age 
were negatively correlated (p = 0.001), while NFE2L2 
and age were positively correlated (p = 0.05) (Figure 4B, 
C). In addition, FDX1 was more highly expressed in men 
(p<0.041) (Figure 4J). Other genes were not significantly 
correlated with Age and Gender (Figure 4A, D, E, F, G, 
H, I).

Analyses of immune infiltration and functional enrich-
ment in CRGs clusters 

The relationship network diagram shows the close rela-
tionship between the five genes (Figure 1D). The cohort 
was separated into two groups: Cluster 1 (n = 26) and 
Cluster 2 (n = 23) based on consensus cluster analysis 
of 49 PD samples. The results showed that k = 2 had the 
lowest intergroup differences and the CDF curve fluctua-
ted in a minimal range (Figure 5A, B, C). PCA analysis 
showed that five different CRGs could completely distin-
guish between the two CRGs patterns (Figure 5D). First, 
we synthetically evaluated the expression of five CRGs 
among Cluster 1 and Cluster 2. Two CRGs patterns exhi-
bit different CRGs expression landscapes (Figure 5E). The 
expression of NFE2L2 and FDX1 was higher in cluster 2 
than in cluster 1., while MTF1 was the opposite.DLD and 

infiltration analysis showing differences of immune cell 
types in PD versus controls (Figure 1F). The findings indi-
cated that Activated.B.cells, CD56dim.natural.killer.cells, 
Mast.cel, MDSC, Monocyte, Natural. Killer.cells, Neutro-
phils, Plasmacytoid. dendritic.cell, T.follicular.helper.cel, 
Central.memory.CD8.T.cell, which was a high expression 
in PD patients, Activated.CD8.T.cel, Gamma.delta.T.cel, 
Immature.dendritic.cell was a low expression, showing 
that immune system alterations play a role in PD progres-
sion (Figure 1G). The results show that CRGs probably 
have a crucial function in the regulation of molecular and 
immunological infiltration of PD patients.

Construction and assessment of machine learning mo-
dels

We validated the differential CRGs in four machine-
learning models (RF, XGB, SVM, and GLM) for the iden-
tification of high-diagnostic genes. We used the "DALEX" 
package to interpret and plot the distribution of residuals 
in the test set. The XGB model had the maximum area 
under the curve and relatively low residuals (AUC = 0.847 
Figure 2A, B, D). Therefore, the XGB model is regarded as 
the most appropriate prediction model for PD. In the end, 
the top 5 most significant genes (MTF1, FDX1, NFE2L2, 
LIAS, and DLD) were chosen as the candidate genes for 
subsequent analysis (Figure 2C).

Construction of the nomogram model and validation
We created a nomogram to predict the risk of Cuprop-

tosis clusters based on five candidate genes. (Figure 3A). 
Moreover, DCA and calibration curves show the model's 
remarkable predictive ability. (Figure 3B, C). Then, we 
used an external combination data set of GSE49036 and 
GSE7621 to verify the prediction model. The optimistic 
performance in the test set (AUC = 0.784) (Figure 3D) 

Figure 2. Construction and assessment of machine learning mo-
dels. (A)The Boxplots of 4 machine learning models. (B) Cumulative 
distribution of residual (C) The features importances (D) The ROC 
curves.

Figure 1. Landscape of cuproptosis regulators and immune infil-
tration analysis in PD patients. (A) The heatmap demonstrated the 
expression of 17 CRGs. *p < 0.05, **p < 0.01, and ***p < 0.001. 
(B) Boxplots showed the expression of 8 CRGs in PD patients and 
healthy controls. (C) The chromosomal locations of 17 CRGs. (D) 
Gene relationship network diagram of 8 CRGs. (E) The area of the 
pie chart indicates correlation analysis of 8 CRGs. (F) The heatmap 
of 28 infiltrating immune cells. (G)The differences between immune 
cell infiltration levels in PD and non-PD controls.

Figure 3. Construction of the nomogram model and validation. 
(A) The nomogram model is based on 5 CRGs. (B) calibration curve. 
(C)The predictive efficiency of the nomogram model. (D)ROC analy-
sis of XGB model in test train.
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DLAT were not significantly different between clusters 1 
and 2 (Figure 5F). We used GSVA to understand the pos-
sible effects of these two clusters on biological behavior 
(Figure 5G). Cluster 1 was significantly enriched in immu-
nological activation pathways such as Linoleic acid me-
tabolism, Retinol metabolism, Cysteine and methionine 
metabolism, and drug metabolism, while cluster 2 was 
enriched in metabolism-related pathways like ErbB signa-
ling pathway, Oxidative phosphorylation, and peroxisome.

We further assessed the role of CRGs in the immune 
microenvironment. The two clusters have significantly 
different immune cell infiltration (Figure 6A). Cluster 1 
was associated with CD4+ T cell activation compared to 
cluster 2, suggesting that cluster 1 may be associated with 
autoimmune activation (Figure 6B). Further, in addition, 
the relationship between five CRG regulators and immune 
cells was assessed. The result revealed that DLD was signi-
ficantly correlated with numerous immune cells. (Figure 
6C), so we assessed the immune cell infiltration of patients 
with high and low DLD levels. DLD was positively cor-
related with CD56bright.natural.killer.cell, Immature.den-
dritic.ce, Type.2.T.helper.cell, negatively correlated with 
Activated.dendritic.cell, CD56dim.natural.killer.ce, Mast.
cel, Natural.killer.T.cell, Type.1.T.helper.cel(Figure 6D), 
suggesting immune function was weak in PD patients with 
high DLD expression.

Identification of gene patterns and development of the 
CRGs gene signature

We employed a consensus clustering method to sepa-
rate Parkinson's disease patients into gene patterns accor-
ding to 64 CRGs-related DEGs (Figure S1). PD patients 
may be separated into three gene patterns (geneCluster A, 
B, and C) (Figure 7A-C). Figure 7D-E shows the DEG 
expression in the three gene groups. We discovered that 
the expression of CRGs and immune cell infiltration va-
ried considerably between gene clusters. (Figure 7F). We 
used the PCA algorithms to compute five CRG scores per 
sample to quantify the gene pattern and compared the 
CRGs scores between CRGs patterns and gene patterns. 

Figure 4. Correlation Between CRGs and clinical in PD (A-E) 
Correlation between DLD. (A), NFE2L2 (B), LIAS(C), MTF1 (D), 
FDX1 (E), and age. (F–J) Correlation between DLD (F), NFE2L2 
(G), LIAS(H), MTF1 (I), FDX1 (J), and Gender. 

Figure 5. Analyses of immune infiltration and functional enrich-
ment in CRGs clusters. (A) Consensus matrices when k = 2. (B) 
consensus CDF. (C) Delta area. (D)Principal component analysis 
shows a remarkable difference in transcriptomes between the two 
CRG patterns. (E) The expression of 5 significant CRGs in Cluster1 
and Cluster2. (F) The differential expression of 5 significant CRGs 
in Cluster1 and Cluster2. (G) The differences between Cluster1 and 
Cluster2 samples in the GSVA method.

Figure 6. Analyses of immune infiltration and functional enrich-
ment in CRGs clusters. (A) The different expressions of 28 infil-
trating immune cells between Cluster1 and Cluster2 were presented 
in the heatmap. (B) The differences between immune cell infiltration 
levels in cluster1 and cluster2 (C) The correlation with five significant 
CRGs and the immune cells. (D)The different expressions of infil-
trating immune cells between high and low DLD expression groups.

Figure 7. Identification of gene patterns and development of the 
CRGs gene signature. (A) Consensus matrix when k =3. (B) Delta 
area. (C) consensus CDF. (D)Expression heat map of the 64 CRGs-
related DEGs in three gene patterns. (E) The different expression of 8 
CRGs regulators in three gene patterns. (F) The different expression 
of infiltrating immune cells in three gene patterns. (G)The relation-
ship between CRGs patterns, gene patterns, and CRGsscores in the 
Sankey diagram. (H)The variations in CRGs scores among gene Clus-
ters. (I)The variations in CRGs scores among CRGs Clusters.
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Figure 7G shows two CRG score groups, two CRGs pat-
terns, and three CRGs gene patterns visualized in the San-
key diagram. CRG scores varied statistically significantly 
across CRG patterns. Cluster 1 had higher CRG scores 
than Cluster 2 (Figure 7I). Figure 7H displays that the 
highest CRG scores were geneCluste A, while there was 
no difference in geneCluster B and C.

Prediction of marker gene-targeted drugs
The interaction was analyzed using the DGIdb database 

to identify drugs targeting the marker genes. Figure 8 illus-
trates a visualization of the results by Cytoscape software. 
A total of 31 drugs targeted at markers genes were que-
ried, of which 30 were NFE2L2 and 1 was MTF1. Unfor-
tunately, we did not predict drugs targeting the remaining 
genes.

Construction of ceRNA network 
We constructed a ceRNA network based on 5 marker 

genes from miRWalk3, miRDB, miRTarBase, and RNAIn-
ter. (Figure 9). Additionally, we discovered that 5 lncRNA 
(HCG27, HULC, TOB1-AS1, UCA1 and ZEB2-AS1) 
could bind hsa-miR-27b-3p to regulate FDX1, MTF1 and 
NFE2L2. In particular, hsa-miR-27b-3p was the only miR-
NA to regulate FDX1. For DLD, we found that 44 lncR-
NAs and 49 lncRNAs were able to regulate the DLD ex-
pression by competitively binding hsa-miR-106b-5p and 
hsa-miR-106a-5p. Of these, 44 lncRNAs were shared in 
the hsa-miR-106b-5p and hsa-miR-106a-5p. Meanwhile, 
hsa-miR-106-5p could also regulate other MTF1, LIAS, 
and NFE2L2. Thus, hsa-miR-106-5p played a crucial role 
in cuproptosis.In the ceRNA network of LIAS, a total of 
13lncRNA can bind hsa-miR-17-5p to regulate the gene. 
Moreover, hsa-miR-106-5p was also the key miRNA to 
regulate the other three genes. Details of ceRNA networks 
can be found in Figure 9.

Discussion

Parkinson's disease, common neurodegenerative disor-
der, is characterized by the loss of dopaminergic neurons 
in the substantia nigra. Recent evidence suggests that mi-
tochondrial dysfunction is essential to the development of 
PD (17).

It was necessary for neurons with high energy demands 
for their survival and excitability, for dopaminergic neu-
rons, this demand was even 20 times higher (18). Dopa-
mine neurons were strongly dependent on mitochondrial 
aerobic respiration to produce ATP for energy, so the subs-

tantial metabolic demand was one of the fundamental rea-
sons for their selective vulnerability to mitochondrial dys-
function(19,20). Additionally, Tsvetkov P (9)found a close 
correlation between cuproptosis and cellular mitochon-
drial respiration. Dopamine neuron cells are more suscep-
tible to copper toxicity because mitochondrial respiration-
dependent cells are 1000 times more sensitive to copper 
ionophores than glycolytic cells. Nonetheless, the precise 
mechanisms of cuproptosis in the regulation of PD have 
not yet been thoroughly investigated. A higher proportion 
of patients would be cured if the mechanisms and early 
prediction were investigated more. Therefore, we aimed 
to disclose additional potential mechanisms by elucidating 
the function about CRGs in the PD phenotype and immune 
microenvironment. 

We performed a comprehensive analysis of CRG ex-
pression profiles in PD patients and healthy controls. CRGs 
may play a crucial role in the pathogenesis of PD based on 
the significant difference in CRG expression between PD 
patients and healthy controls. Next, we further evaluated 
the intercorrelation between CRG to elucidate the relation-
ship between CRG and PD. Some CRGs were found to 
have obvious synergy or antagonism, as demonstrated by 
CRG interaction in patients with PD. Changes in immune 
cell abundance were observed between controls and PD 
patients. PD patients showed higher B-cell, neutrophil, 
NK cell levels, and MDSC infiltration, consistent with pre-
viously identified studies in blood or brain tissue (21–23).

In addition, we construct a high-accuracy prediction 
model by comparing the prediction performance of dif-
ferent machine models. Subsequently, we selected five 
significant variables (MTF1, FDX1, NFE2L2, LIAS, and 
DLD) from eight significant regulators of CRGs through 
the XGB-based model.MTF1(Metal-responsive transcrip-
tion factor 1) acts as a protector in the oxidative stress res-
ponse of neuronal cells (24). Thus, MTF1, a key regulator 
of neurological cells, maybe a potential therapy choice for 
PD patients. FDX1(Ferredoxin 1)and protein acetylation 
were crucial regulators of copper cell death(9), which was 
closely related to multiple basis metabolism (25). Our 
subsequent research will also investigate whether FDX1 
depletion has a positive and beneficial function on clini-
cal symptoms and neuronal protection in animal models 
of PD. NFE2L2(nuclear factor, erythroid derived 2, like 
2), as a mediator of inflammation and oxidative stress, 
played an important part in the development and mana-Figure 8. Prediction of marker gene-targeted drugs.

Figure 9. Construction of ceRNA network.
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gement of PD. In addition, the role of NFE2L2 has been 
reported in the regulation of autophagy and acute and 
chronic neuroinflammation (26,27). LIAS(Lipoteichoic 
acid synthase) synthesizes mitochondria-related metabolic 
enzymes, energy metabolism and antioxidant responses 
(28). Several studies have demonstrated that LIAS muta-
tions may result in complex metabolic diseases due to their 
association with mitochondrial energy metabolism (29). 
However, little correlation has been reported between 
LIAS and Parkinson's disease. DLD(dihydrolipoamide 
dehydrogenase), an NAD+-dependent oxidoreductase, 
functions in a number of mitochondrial complexes (30).
In addition, DLD also can adhere to metal-oxide surfaces 
and bind DNA which leads to the apoptotic processes (31).
In our study, DLD was correlated with several immune 
cells and more research is required to explore the correla-
tion between DLD-mediated immune responses and PD. 
We used a combined external validation dataset (AUC = 
0.784) to validate the predictive model. What's more, we 
established a nomogram model for diagnosing PD sub-
types using MTF1, FDX1, NFE2L2, LIAS, and DLD. The 
model was shown to have a significant predictive effect 
and clinical application based on DCA curves. 

In the early 1980s, McGeer (32) first noticed micro-
glia activation and lymphocyte infiltration in PD patients. 
Since then, numerous studies found increased concentra-
tions of pro-inflammatory cytokines in PD patients (33,34). 
Moreover, there are many changes in cellular immunity 
in the blood, including changes in the Platelet-to-lympho-
cyte ratio and neutrophil-to-lymphocyte ratio (35). There 
has been growing evidence that suggests that inflamma-
tion may have an essential part in the pathogenesis of PD. 
Our study identified two distinct molecular subtypes by 
the CRGs. Cluster 2 was highly linked to less memory.
CD4.T.cell and had higher expression levels of FDX1, 
NFE2L2. It is acknowledged that memory.CD4.T.cell 
plays a central role in orchestrating adaptive immune res-
ponses. Based on our results, we proposed the following 
assumptions: 1. whether the decrease in memory CD4 T 
cells is linked with CRGs, 2. whether CRGs reduce the 
proliferative capacity of memory CD4 T cells or promote 
memory CD4 T cell death,3.whether the function of death 
is cuproptosis. We would conduct more experiments to 
explore the result.Then, three gene clusters were identified 
by the DEGs of the two CRGs clusters and the PCA algo-
rithm used to calculate the CRGs scores to quantify the 
pattern of CRGs. We found that CRGs cluster 1 and gene 
cluster A showed a higher CRG score than other clusters.

Finally, we analyzed the CRGs-targeted drugs and the 
ceRNA network. For the MTF1, APTO-253 could selec-
tively induce CDKN1A (p21) and promote G0-G1 cell-
cycle arrest without producing myelosuppression (36). 
However, there were no reports of the function of neuro-
logical diseases. Cholecalciferol (Vitamin D3) was asso-
ciated with NFE2L2, which was thought to be an essential 
factor in developing and regulating brain activity. It has 
been reported that PD had less VD3 than the control popu-
lation in recent years. The evidence supported that VD3 
presented anti-inflammatory and improved mitochondrial 
function in PD models (37,38). However, the role of VD3 
in cuproptosis has not been clarified. Etodolac was the 
selective COX-2 inhibitor, which has been reported to 
affect anti-inflammation and oxidative stress (39).  
It was found to repair cognitive deficits in AD mice while 

reducing Aβ plaques, so it was a promising drug to treat 
neurodegenerative diseases (40). Non-coding RNA has an 
essential effect in PD development, miR-27b-3p, besides 
more, miR-106a-5p, miR106b-5p, and miR-17-5p were 
closely related to CRGs. Whether the role of gene-targeted 
drugs and non-coding RNA is unclear in PD, which needs 
more prospective studies.

There are several restrictions on our research. First, the 
data we used was only based on public sources; other, the 
more critical clinical samples (blood, tissue), which would 
confirm the prediction of the model and expression of 
CRGs were necessary. Furthermore, the potential associa-
tion of CRGs with immunity needs to be further explored, 
especially the emphasis on the role of a single gene in the 
immune.  

Conclusion 
Overall, our study systematically analyzed the role of 

CRGs and the infiltration of immune cells in patients with 
PD. Furthermore, we built a prediction model chosen from 
different machine learning models. Finally, we investigate 
the prediction of CRGs drugs and the ceRNA network. In 
summary, our study uncovered the importance of CRG, 
providing a meaningful foundation in PD diagnosis and 
personalized management.
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