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Introduction

Chronic diseases (CDs) are progressive disorders with 
a slow and prolonged course that do not resolve sponta-
neously and rarely resolve completely. CDs can last for 
months or years. This fact differentiates them from acute 
diseases, which may last a few days or weeks. CDs are 
responsible for 74% of deaths worldwide. Cardiovascu-
lar diseases (CVDs), cancer, chronic respiratory diseases 
(CRDs), and diabetes have the highest mortality rate (1). 
Other diseases with lower mortality rates are arthritis, 
Crohn’s disease, depression, bipolar disorder, Alzheimer’s 
disease, Parkinson’s disease, amyotrophic lateral sclerosis, 
and dementia (2-7). 

The major causes of CD are environmental and lifes-
tyle factors. Good dietary and exercise habits and reducing 
exposure to environmental factors play an important role 
in reducing their prevalence. Some authors have linked 
these diseases with age-related processes. However, in 
recent years, CDs have occurred in younger individuals, 
posing a challenge to the health system and the economy 
(8-11). 

Changing environmental factors and habits expose our 
cells to stress, and our cells possess different mechanisms 
to cope with this stress. However, depending on the stress 
level, cells may not overcome this damage. These mecha-

nisms counteract damage-causing factors such as oxidative 
stress, accumulation of misfolded proteins, and damage to 
the genome. Interestingly, these processes are conserved 
over time, allowing species survival and evolutionary de-
velopment. Herein, we discuss how these mechanisms are 
related to various degenerative diseases. 

This study aimed to complement the current preventive 
model for CDs. This model includes raising awareness of 
hereditary factors, limiting exposure to agents that trigger 
diseases, maintaining good eating habits, and promoting 
physical activity to achieve a healthy body.

Origin of chronic diseases
The origin of CDs is directly linked to time, that is, 

at the species and individual levels (12). All factors that 
interfere with normal cell function induce adaptations, and 
if cells cannot adapt, they malfunction or even die. The 
time and intensity with which a stimulus affects cells dic-
tate the adaptation rate of those cells. The environment is 
continuously changing, affecting cell function at different 
levels. These changes include slow changes, such as lifes-
tyle changes throughout human history, and fast changes, 
such as those occurring within a generation. The greatest 
impact is environmental changes that occur during dif-
ferent periods of our lifetime, from the womb to old age. 
The greater the speed of change, the greater the impact on 
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cell function.

Evolution, aging, and chronic diseases
Human evolution and development have brought many 

benefits to society. Among these, access to technology 
and ease of obtaining resources contribute to a better qua-
lity of life and greater life expectancy. Nevertheless, the 
modification of environmental factors is directly related 
to human lifestyle and has negative health consequences 
(13,14).

Evolution involves accumulating characteristics gained 
through mutations that support the survival or extinction 
of a species in changing environments. These changes are 
random and influenced by the environment. They occur 
over time and depend on the habits of the species (15). 

Humans were mainly hunters and gatherers during the 
Stone Age (Lower Paleolithic). However, their life expec-
tancy was between 20 and 40 years, as they lived in a hi-
ghly unpredictable environment. They constantly avoided 
predators and sought refuge near their food sources (16). 
This situation changed when humans acquired agricultural 
knowledge. This change reduced their exposure to dan-
ger in unknown regions, promoting technological deve-
lopment for their survival and improving their quality of 
life and expectancy. In the early 20th century, acute infec-
tious diseases were prevalent. Nonetheless, thanks to the 
development of antibiotics and vaccines, life expectancy 
increased significantly from 46 years in 1950 to 72 years 
in 2016 (17,18).

This increase in life expectancy may be related to an 
increase in CDs. Some theories explain the relationship 
between aging and the diseases associated with this pro-
cess. One of these theories is the “accumulation of muta-
tions,” which indicates that aging decreases the efficiency 
of eliminating genetic variants related to diseases that ma-
nifest in later stages of life, causing the accumulation of 
these mutations, a process known as senescence (19). Ad-
ditionally, the “antagonist pleiotropy theory” proposes that 
these mutations could be favored if they protect against a 
disease that could manifest in the fertile period or if they 
increase reproductive possibilities, notwithstanding that 
they lead to diseases later in life (20).

In addition, the new fast-changing environmental 
conditions (in the evolutionary timescale), such as dietary 
and lifestyle changes, limit the adaptive capacity of the po-
pulation to keep pace with these changes (12). This limita-
tion leads to increased susceptibility to CD development, 
which could be linked to the onset of CD at younger ages 
(Figure 1). Therefore, CDs result from a gene maladapta-
tion to the modern environment (21).

The maternal environment influence
The “developmental origin of health and disease” is 

a recent theory that proposes that exposure to certain sti-
muli during critical development periods (particularly the 
embryonic, fetal, and neonatal stages) may increase the 
triggering of diseases in adulthood (22). This concept was 
proposed after observing that a lower birth weight was re-
lated to a higher prevalence of death due to ischemic heart 
disease (23). The main stimuli that act as stressors in the 
early stages of life are poor nutrition, exposure to chemi-
cals or drugs, infections, stress, and hormonal imbalances 
(24). Additionally, the dysregulation of maternal and fetal 
circadian rhythms (known as gestational chronodisrup-

tion) has been associated with increased susceptibility to 
noncommunicable diseases in adult life (25). Maternal en-
vironmental influences have been associated with a greater 
risk of acute lymphocytic leukemia (26), type 2 diabetes 
(27), metabolic syndrome and obesity (28,29), congenital 
heart disease (CHD) (30), and neurodegenerative diseases 
such as Alzheimer’s disease, among others (31). These 
influences reflect the complexity of the physiological pro-
cess needed for correct fetal development and how these 
factors affect adult health.

Genetic factors 
There is evidence of the relationship between genetic 

factors and how they influence the development of di-
seases (32); however, genetic influence has a small effect 
on the relative risk of CDs (33). On the other hand, genetic 
predisposition can be modified by different factors such 
as physical activity (34). Various studies have shown the 
importance of genetic predisposition in developing CDs 
by carrying out comparative studies between monozygotic 
or dizygotic twins against unrelated individuals, showing 
a higher prevalence of type 2 diabetes (35) and CVDs 
between twins (36,37).

Hereditary factors, such as genetic predisposition, 
and environmental factors, such as exposure to different 
toxic molecules mixed in the air, soil, and water, end up as 
part of our diet and, in turn, play an important role in CD 
development. Recent studies have shown the importance 
of genetic predisposition to major depressive disorder in 
their interaction with environmental pollutants, such as 
particles (PM2.5) and nitrogen oxides (NOx) (38). 

A correlation has been observed between stressors. For 
example, a study with 23 years of follow-up showed that 
patients with a previous diagnosis of cancer as a stressing 
factor, and even with a low genetic predisposition for 
CVD, have a higher risk of presenting CVDs (39). Other 
researchers have shown that genetic predisposition in mo-
nozygotic twin models is not the dominant factor in CD 
development since epigenetic factors play an important 
role (40,41).

Environmental factors
CDs are related to the environment according to the 

Figure 1. Factors contributing to CD development. Different factors 
that interact with humans can trigger different CDs, depending on the 
time and concentration of these factors. This figure was created using 
modified templates from (Medical Art, https://smart.servier.com/).
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or against the organism. This influence has a multifacto-
rial dependence that is still under study and is an area of 
growing interest in proteomics, transcriptomics, and meta-
bolomics (67). Recent studies have shown a link between 
alterations in the microbiome and the onset of CDs, such 
as inflammatory bowel disease, atopic asthma, type 2 dia-
betes, and behavioral disorders (68). As the microbiota 
has a high frequency of change in its composition, these 
changes may act as cell stressors (69,70). In addition, the 
microbiota generates a wide variety of metabolites that 
regulate immune function and, when altered, may be asso-
ciated with the generation of oxidative stress, ER stress, 
and chronic inflammation (71-73). 

Chronic diseases and cell stress
Prolonged exposure to and excess environmental com-

ponents that humans develop impacts cells, altering their 
homeostasis. Homeostasis allows organisms to maintain 
their internal conditions to adapt to and survive conti-
nuous changes occurring in the external environment 
(74). An imbalance in homeostasis results in organ and 
tissue malfunctions. A common example is dehydration, 
which causes acute symptoms such as thirst and headache; 
however, prolonged thirst can cause renal damage and 
even death. These imbalances affect cells, causing acute or 
chronic cell stress, depending on the time of exposure and 
concentration of the stressor (75,76).

Cell stress is a response mechanism that generates va-
rious processes to repair damage and promote cell survival 
(77). If it is not possible to recover homeostasis, cell death 
mechanisms are activated (78).

Damage to genetic material
Stressors can cause cellular changes at different levels. 

One of the most studied alterations is that of DNA. These 
alterations can be heritable mutations, depending on whe-
ther they occur in germ or somatic cells. These mutations 
can alter protein expression in cells, causing dysregulation 
of their processes and cell malfunction. Cancer is most 
often linked to the accumulation of mutations in somatic 
cells (42,79).

Stressors, risk factors for CDs, can also induce epigene-
tic modifications. These modifications allow the regulation 
of gene expression without altering the DNA sequence. 
Methylation is an epigenetic mechanism that controls gene 
expression by adding methyl groups, predominantly at the 
cytosine of the CpG dinucleotide sequence, through DNA 
methyltransferase (80). Another epigenetic regulatory me-
chanism is the acetylation of histones, which are proteins 
that roll up DNA to maintain its organization and com-
pactness. Histone acetylation regulates gene expression. 
Depending on the region or different epigenetic factors, 
it compacts or relaxes DNA configuration, turning these 
genes on or off and changing cellular functions in response 
to the environment.

Mitochondrial Stress
In animal cells, mitochondria are the only organelles 

that contain DNA, in addition to the nucleus, implying 
that they have their own machinery for RNA and protein 
synthesis. Evolution has conserved this mechanism to 
achieve efficient energy production through its four pro-
tein complexes involved in the electron transport of the 
respiratory chain (81). An alteration in the respiratory 

analysis of the fractions attributable to leukemia, asthma, 
neurological diseases, cancer, lung diseases, and CVD 
(42). Environmental contamination by polluting particles 
directly affects human health. Soil contamination carries 
toxic agents such as chemical products, nanoplastics, and 
heavy metals to humans through crops; in turn, bodies of 
water are contaminated when soils with toxic agents are 
washed by rain or artificial sweeping into rivers. Finally, 
the removal of soil by deforestation or rotating crops leads 
to air pollution by particles released in the dust (43). 

Environmental stressors include exposure to gases or 
minerals such as manganese, which is neurotoxic. For 
example, chronic manganese exposure increases glutamate 
levels in the brain, causing Parkinson-like brain damage 
via excitotoxicity (44). It can be ingested through conta-
minated bodies of water, food, the atmosphere in mines or 
welding, and as a gasoline additive (45). Some pesticides, 
such as paraquat and rotenone, are linked to the develop-
ment of Parkinson’s disease. These compounds are used to 
control pests in agriculture (46), causing the formation of 
reactive oxygen species (ROS) and dopaminergic neuro-
toxicity (47,48).

Lifestyle and processed foods
Lifestyle influences the risk of developing chronic di-

sease. Diet is directly associated with multiple forms of 
CD. Even an excess of certain substances in the diet (i.e., 
sugar, alcohol, and fat) contributes to the development of 
cancer, dementia, heart disease, obesity, and diabetes (49). 
Other factors are tobacco use and low physical activity 
(50). These factors often interact with cellular machinery 
at different levels (this will be discussed later), altering the 
mechanisms involved in gene expression regulation (51). 

Ultra-processed foods play an important role in the 
development of ovarian and brain cancer (52), type 2 dia-
betes (53), CVDs (54), and CRDs (55). A higher risk of 
type 2 diabetes mellitus is associated with the consumption 
of sugar-sweetened beverages, red meat, whole grains, and 
processed meat (56). 

Tobacco and alcohol are known to increase the risk of 
many types of cancer, such as of the gastrointestinal and 
respiratory tracts and other tissues, including the oral ca-
vity, pharynx, larynx, esophagus, stomach, colon, bladder, 
kidney, cervix, pancreas, and leukemia (57,58). In contrast, 
alcohol is related to rectal, liver, and breast cancer (58). 
Quitting tobacco reduces the risk of these diseases (59,60) 
and the appearance of malignant neoplasia (61). Quitting 
tobacco has also been shown to improve the response to 
anti-cancer therapy (62).

A sedentary lifestyle or low physical activity is associa-
ted with the development of CVDs (heart failure, stroke, 
and coronary disease) (63) but not with total cancer risk 
(64). Other reports have shown a correlation between phy-
sical activity, obesity, and sedentary behavior in cancer, 
emphasizing the strong association between higher phy-
sical activity levels and a reduced risk of bladder, breast, 
colon, endometrial, esophageal adenocarcinoma, and gas-
tric cardia cancers (65).

Alterations in the microbiome
The term "microbiome" refers to the compound of 

viruses, bacteria, and fungi living in the human body 
(66). It has become clear that these microorganisms and 
their genetics influence metabolic functions, acting on 



29

José Juan Pérez-Trujillo et al. / Chronic diseases, 2023, 69(15): 26-37

chain due to external factors or mutations in the system 
will cause the overproduction of ROS and a deficiency in 
the antioxidant enzyme system.

Superoxide dismutase (SOD), catalase (CAT), gluta-
thione reductase (GR), and glutathione peroxidase (GPx) 
are antioxidant enzymes. Other components of the antioxi-
dant system that protect cells from oxidative stress include 
vitamins E and C, glutathione (GSH), and various carote-
noids and flavonoids (82). When ROS exceeds the thres-
hold of antioxidants, they cause DNA damage and protein 
and lipid degradation. Chronic oxidative stress can cause 
significant alterations in cell and tissue functions (83,84).

Endoplasmic reticulum stress and proteostasis
The endoplasmic reticulum (ER) is the organelle in 

charge of calcium stores, protein synthesis directed to dif-
ferent organelles, synthesis of secretory proteins, and pro-
teostasis, characterized by controlling protein synthesis, 
folding, transportation, and degradation (85). However, 
different physiological and pathological factors can alter 
ER homeostasis and cause dysfunction in protein synthe-
sis. Examples include increased protein demand, viral 
infections, nutrient deficiency, hypoxia, inflammatory 
cytokines, sudden changes in temperature, environmen-
tal toxins, and the expression of mutant proteins, leading 
to the accumulation of misfolded proteins and oxidative 
stress (86,87).

When the cell is in a state of stress caused by the 
aforementioned factors, failures in protein synthesis can 
occur, for example, excess free radicals or mutations in 
the genome that lead to abnormal protein production (88). 
Among a cascade of responses, the unfolded protein res-
ponse (UPR) is activated to counter this damage. This res-
ponse aims to attenuate the synthesis of general proteins 
and to overexpress proteins with chaperone functions, 
which will help relieve the accumulation of misfolded 
proteins (89). Chaperones guide misfolded proteins to 
one of their corresponding protein degradation pathways. 
Depending on their half-life or aggregate formation, they 
will be degraded by the proteasome pathway or autophagy 
(90-92) (Figure 2).

Proteasomes are protein complexes present in the cyto-
sol of all eukaryotic cells. It involves the degradation of 
damaged or unnecessary proteins. Once in the ER, cha-
perones recognize misfolded proteins that have not been 
corrected and are labeled with ubiquitin, a 76-amino acid 
peptide. This label helps retro-translocate the protein to 
the cytoplasm to direct misfolded proteins to the protea-
some for degradation to restore proteostasis (93).

Autophagy
As mentioned above, autophagy is a mechanism res-

ponsible for the degradation of long-half-life proteins, 
and macromolecular complexes are generally degraded 
by a mechanism called autophagy. There are three types 
of autophagy: macroautophagy, microautophagy, and cha-
perone-mediated. In macroautophagy, one of the factors 
inducing autophagy is the misfolding of proteins, a pro-
cess in which substrates are sequestered within double-
membrane cytosolic vesicles called autophagosomes (94). 
In this process, eukaryotic cells recycle macromolecules 
and organelles. Depending on the context, autophagy can 
offset stress-induced endoplasmic reticulum expansion, 
increase cell survival, or commit cells to a non-apoptotic 

type of death (95). Microautophagy is characterized by the 
formation of vesicles directly with the invagination of ly-
sosomes. Only lysosomes engulf proteins for degradation 
(96). In chaperone-mediated autophagy, no vesicles were 
observed. Soluble proteins cross directly from the cytosol 
to the lysosome through the membrane with the help of 
chaperones, such as heat shock cognate protein of 70 kDa 
(Hsc70) through the KFERQ pentapeptide motif (97,98). 
Chaperone-mediated autophagy participates in protein 
homeostasis (proteostasis) by adapting cells to stress. Its 
deficiency is associated with various pathologies such 
as cancer, heart disease, neurodegenerative diseases, and 
immunodeficiency (99). This process may be associated 
with inflammation-dependent oxidative damage or stress 
signals in the ER, leading to cell death and feedback in-
flammation (100-102).

Cell death
Cell death occurs when cellular activity and vital func-

tions cease. Depending on the death-inducing factor, it can 
be sudden or programmed, triggered by different bioche-
mical pathways that activate death by necrosis or apopto-
sis. Although many types of cell death have been reported, 
we focus on these two because they are the most frequent.

The first type of cell death is necrosis, which results in 
swelling of organelles, rupture of the plasma membrane, 
and the release of intracellular contents into the extracellu-
lar space of the injured tissue. This process is exclusive of 
aggressive events that cause irreversible cell injury, such 
as trauma, hypoxia, extreme temperature, radiation, high-
energy electrical discharges, poison, and drug toxicity 
(103,104).

Apoptosis is the second type of cell death. Once the 
cell survival mechanisms are overwhelmed by factors that 

Figure 2. Cellular stress, causes, and consequences. Cellular stress 
is a response to an imbalance in homeostasis triggered by different 
factors and their concentrations. Each can be located in a key orga-
nelle for cell vitality; therefore, they have regulatory mechanisms to 
maintain life. If organelle failure exceeds the threshold of survival 
mechanisms, cell death and/or onset of CDs occur. The figure was 
created using modified templates from (Servier Medical Art, https://
smart.servier.com/).
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activate cell stress, apoptosis is activated. It is a molecu-
lar process that is dependent on proteins called caspases. 
Apoptosis is a programmed cell death activated in cells 
that threaten the organism (105). Apoptosis is a mecha-
nism of great importance in organisms and takes part in 
different life cycle processes, such as cell turnover in tis-
sues and during embryonic development, for example, 
when the interdigital membranes of the hands are elimina-
ted. It is also associated with hormone-dependent atrophy 
and cytotoxic agent-induced cell death. Cell death mecha-
nisms can give rise to inflammation and, thus, inflamma-
tory diseases (106-108).

Chronic inflammation
Metaflammation, a recently studied phenomenon, is 

a chronic low-grade inflammation throughout the body 
caused by consuming a high-calorie diet, chronic overea-
ting, and sedentary lifestyles in Western societies (109). 
Evidence shows that aging and age-related diseases share 
some basic mechanical aspects that largely converge with 
inflammation. Inflammation refers to the process that 
contributes to the pathogenesis of age-related diseases. 
Several stimuli sustain inflammation from an evolutionary 
perspective, including pathogens, endogenous cell debris, 
stray molecules, nutrients, and the gut microbiota (110). 
Metaflammation is characterized by the same mechanisms 
that underlie inflammation. Maintenance of proper cell 
balance is crucial for health and has significant implica-
tions for pathological conditions such as diabetes, obesity, 
CVD, cancer, and degenerative neurological disorders. 
CDs redundantly accelerate aging and are considered a 
manifestation of accelerated aging (102,111).

The most prevalent chronic diseases and their relation-
ship with cell stress

CDs share molecular mechanisms of cell stress due 
to prolonged exposure to different insults. We review the 
most relevant chronic disorders. In addition, there is infor-
mation regarding their relationship with cell stress mecha-
nisms.

Cardiovascular disease
CVDs are responsible for 17.9 million deaths annually. 

Several risk factors are related to CVDs, including gene-
tic factors (intrinsic factors) and personal habits (extrin-
sic factors). Some lifestyle habits correlated to CVD in-
clude excessive consumption of high-calorie diets and a 
sedentary lifestyle. In addition, they are correlated with 
the metaflammation. These risk factors can trigger cel-
lular mechanisms leading to metabolic disorders such as 
atherosclerosis, dyslipidemia, atheromatous plaque forma-
tion, and inflammation (112,113). These factors have been 
associated with chronic stress in endothelial cells of the 
circulatory system, triggering the response to misfolded 
proteins that lead to cell death by apoptosis (114), causing 
hardening and narrowing of the arteries with the formation 
of atheroma. These areas of the lesion in the innermost 
layer of an artery are characterized by the accumulation of 
low-density lipoprotein (LDL) particles that reduce blood 
flow and distribution of oxygen and nutrients to the tissues 
(115). 

Among CVDs, coronary artery disease (CAD) is the 
leading cause of death worldwide. CAD causes decreased 
myocardial blood flow, leading to an excessive increase 

in ROS and oxidative stress. Consequently, it can lead to 
cell death, triggering heart failure, angina, or myocardial 
infarction (116).

Cancer
Cancer, with 9.3 million deaths per year, is the second 

leading cause of death worldwide, with nine million deaths 
per year. It is characterized by a loss of cellular growth 
control, leading to uncontrolled multiplication and disse-
mination. It is capable of growing on its tissue of origin 
without invasion (benign tumor) or with invasion into this 
tissue and dissemination through metastases (malignant 
tumor) (117).

Although cancer is closely associated with changes 
at the DNA level, alterations in other organelles, such as 
the mitochondria and ER, are also related to the induction 
of this disease. Several agents have been associated with 
mitochondrial and ER imbalance, such as alcohol abuse 
and excessive fat intake (118,119), indicating an associa-
tion between a high rate of cell proliferation and prolonged 
activation of the UPR, giving rise to different types of can-
cer (120-122). 

Several strategies have been proposed to target the 
main pathways of cell stress in cancer. For example, acute 
induction of ER stress with silencing of the GRP78 pro-
tein using combined carfilzomib (proteasome inhibitor) 
and ACY-1215 (human histone deacetylase 6 -selective 
inhibitor) treatment resulted in a marked accumulation 
of protein aggregates that induced apoptotic death in a 
colorectal cancer model (123). Although autophagy and 
UPR have paradoxical roles in cancer, their correct mana-
gement could lead to novel therapeutic strategies against 
this disease (124-126).

Chronic respiratory diseases
CRDs are the third leading cause of death worldwide, 

with 4.1 million deaths per year. Diseases that affect the 
airways and other lung structures are caused by dissolved 
particles in the air, such as tobacco smoke, allergens, do-
mestic wood smoke, chemicals derived from combustion, 
and respiratory infections. 

One of the most common CRDs is chronic obstructive 
pulmonary disease (COPD) (127). COPD is characterized 
by chronic airway inflammation, which limits the airflow. 
It is primarily associated with smoking. However, irritant 
gases from air pollution play an important role in the de-
velopment of this disease, generating free radicals (128). 
These gases include hydrogen chloride, sulfur dioxide, 
nitrogen dioxide, carbon monoxide, and ammonia (129). 
Cigarette smoke triggers failures in protein synthesis, and 
the response mechanisms to misfolded proteins activate 
an immune response (130). The immune response mainly 
involves leukocytes and macrophages that release ROS 
and reactive nitrogen species (RNS). Increased oxidative 
stress causes cell damage and impairs respiratory function 
(131,132).

Diabetes
Diabetes causes 2 million deaths annually. It is a group 

of diseases with an excess of sugar in the blood. Type 2 
diabetes, the most frequent type of diabetes, presents with 
insulin resistance. Insulin is required to move blood glu-
cose into cells (133). Insulin resistance is related to high 
blood glucose, high body fat, high sodium intake, seden-



31

José Juan Pérez-Trujillo et al. / Chronic diseases, 2023, 69(15): 26-37

tary lifestyle, and genetics in some cases (134).
Insulin resistance is the desensitization of insulin re-

ceptors in body cells due to chronic exposure to blood glu-
cose, mainly in hepatocytes, muscle cells, and adipocytes. 
High blood glucose levels cause oxidative stress, leading 
to activation of the misfolded protein response, which is 
related to insulin receptor desensitization (135), which 
decreases the use of blood glucose for energy.

When there is an increase in blood glucose, pancreatic 
β-cells maintain glucose homeostasis by secreting insulin 
(136). As secretory cells, β-cells may have a high metabolic 
activity; however, they have weaker antioxidant defenses 
than other cells and tissues, making them more susceptible 
to free radicals derived from hyperglycemia (137). This 
susceptibility can cause pancreatic cell death and decrease 
insulin release. The detailed inflammatory process in me-
tabolic diseases is important for understanding etiopatho-
logy. Recently, the role of adipose tissue macrophages was 
described. In obesity, macrophages residing in the adipose 
tissue are polarized to a pro-inflammatory M1 phenotype 
when exposed to free fatty acids, blocking the action of 
insulin. Therefore, metabolic disorders, such as obesity 
and dyslipidemia, lead to insulin resistance, resulting in 
diabetes (138).

Interestingly, Latinos suffer from diabetes more than 
other populations (139). Although genetic factors are not 
the direct cause of this disease, they are associated with a 
predisposition in this population.

Some neurodegenerative and mental diseases
Neurodegenerative diseases are characterized by pro-

gressive neuronal loss. Depending on the metabolic disor-
der or the presence of toxic agents, they cause motor, co-
gnitive, and emotional alterations or a combination of these 
(140). Several studies have shown an association between 
ER stress and various neurodegenerative diseases. For 
instance, amyotrophic lateral sclerosis and Guam demen-
tia, a type of Parkinsonism, are present in the natives of 
Guam on the Mariana Islands. Several compounds have 
been found in flour extracted from plants of the Cycas 
genus. When consumed, they stimulate the accumulation 
of α-synuclein protein in neurons, forming hydrophobic 
aggregates known as Lewy bodies, characteristic inclusion 
bodies in these diseases (141,142). 

Other diseases manifest protein aggregation that leads 
to cell stress, such as Alzheimer´s disease, Huntington´s 
disease, and neural prion diseases (143). In addition, pa-
tients with schizophrenia show failure in protein degrada-
tion and antioxidant systems (144,145).

Exercise reduces the risk of chronic disease
As seen in this review, CDs have different mechanisms 

in common and thus greatly impact long-term human 
health. However, they are preventable and treatable. Dif-
ferent studies have shown that modifying environmental 
factors, lifestyle, diet, and exercise, to mention a few, 
improves the quality of life of patients with CDs and de-
creases the risk of onset. Exercise and healthy diets have in 
common the activation of anti-inflammatory and antioxi-
dant mechanisms, which restore proteostasis (146-149). 

Exercise improves CDs, such as coronary disease and 
heart failure [149], and reduces the mortality of older 
adults (150). In addition, physical activity decreases the 
risk of bladder, breast, colon, endometrial, esophageal, 

renal, and gastric adenocarcinoma (151). Type 2 diabetes 
mellitus studies have shown that aerobic exercise has an 
anti-inflammatory effect on the TNF-α/NF-κB pathway 
[145], decreasing ER stress, increasing autophagy, and 
reducing insulin resistance (147,152). Physical exercise 
also benefits chronic mental illnesses such as dementia, 
attenuates neuropsychiatric symptoms, and helps main-
tain mental capacities (153). These results were reinfor-
ced by Xia et al. They demonstrated that exercise reduces 
β-amyloid protein (Aβ) plaques and negatively regulates 
the UPR in an Alzheimer's model in mice (154).

Several studies have reported that exercise mitigates 
ER stress and thus cell death, counteracting CDs, such 
as CVD, and neurodegenerative diseases, such as Alzhei-
mer’s disease and neurological deterioration (155-160). 
Although it may seem paradoxical, the activation of in-
flammation, UPR, and oxidative stress responses during 
exercise benefits health by improving over time the ex-
pression of proteins that regulate endoplasmic reticulum 
stress, proteostasis, and oxidative stress, inducing adap-
tation responses (161,162). To better understand cellular 
stress responses and their relationship with age, resear-
chers have demonstrated that the UPR is more active after 
exercise in young people aged 27 ± 5 years than in those 
older than 75 ± 5 years, suggesting that an age-related 
decline in the activation of the protective UPR after exer-
cise could be associated with the deterioration of skeletal 
muscle over time (163). 

Diet can also improve health through different mecha-
nisms

Various studies have shown that a variety of foods pre-
vent CDs. This is the case for nut and legume consump-
tion for treatment of type 2 diabetes mellitus and CRDs 
(56,164). In addition, moderate consumption of lean red 
meat instead of high-fat red meat, replacing red and pro-
cessed meat with fish, eggs, dairy products, and poultry, 
and a diet that includes white grains, high-fiber foods, and 
fruits and vegetables lowers the risk of cancer, CVDs, and 
CRDs (164-168).

Healthy foods (169-175) also provide exogenous an-
tioxidants and anti-inflammatory effects that improve cell 
homeostasis, including vitamins A, C, E, K, beta-carotene, 
ubiquinone (176), polyphenols, such as phenolic acids 
(ferulic acid, caffeic acid, p-coumaric acid, gallic acid, 
chlorogenic acid, and rosmarinic acid) (177), and flavo-
noids (anthocyanidins, flavones, isoflavones, flavonols, 
flavanones, flavanols, and flavanonols) (178). 

Vitamins C, E, and K protect against lipid peroxida-
tion by neutralizing ROS, showing positive effects against 
cancer, CVDs, neurodegenerative diseases, and diabetes 
(170,179-181). In turn, vitamin K inhibits the activation of 
12-lipoxygenase (12-LOX) (181). In contrast, vitamin A 
and beta-carotenoids stabilize peroxyl radicals after their 
combination and neutralize thiyl radicals, which have posi-
tive effects against CVD (182). The donation of hydrogen 
atoms is the main method for the elimination of free radi-
cals in phenolic acids; however, other methods, such as 
the reactivity of the phenol fraction, which replaces the 
hydroxyl in the aromatic ring, affect free radical structure 
stabilization, causing their extinction, and exhibit neuro-
protective, anti-carcinogenic, and anti-diabetic activities, 
among others (177). Ubiquinone (Q10) and flavonoids 
suppress the generation of ROS (178,183) and improve 
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CVDs, obstructive pulmonary disease, diabetes, and neu-
rodegenerative diseases (178,184).

Among the anti-inflammatory role of components in 
healthy foods, vitamin K and Q10 induce the inhibition 
of the pro-inflammatory NF-кB pathway (181,183) while 
flavoinoids induce the inhibition of the NF-κB, MAPK, 
and STAT pathways (178). 

Probiotic and prebiotic supplementation also improves 
general health, reducing the risk of cancer (185), CVDs 
(186), CRDs (187), and type 2 diabetes (188).

Conclusions
Undoubtedly, quality of life has improved over time. 

However, our current lifestyle and its interaction with en-
vironmental factors and genetic load have negatively af-
fected society. These interactions trigger oxidative stress, 
genetic material damage, and mitochondrial and ER stress. 
Excessive exposure to these phenomena leads to the deve-
lopment of CDs. The emergence of CDs leads to increased 
morbidity and mortality in humans. 

CDs alter immune function and increase the risk of 
death from infectious diseases, such as cytomegalovirus, 
tuberculosis, herpes zoster, and pneumococcal pneumo-
nia, particularly in the current context of COVID-19.

The CD treatment model aims to reduce mortality 
through prevention and to avoid complications. We expect 
that a better understanding of the cell mechanisms shared 
by these diseases will contribute to their prevention and 
the generation of novel therapeutic strategies.
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