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1. Introduction
Ovarian carcinoma is the most lethal gynecologic mali-

gnancy, and high-grade serous carcinoma as the main his-
tologic subtype [1]. In 2020, there were 13,940 fatalities 
and 21,750 newly diagnosed cases of ovarian cancer [2]. 
Ovarian cancer is known as the "invisible killer" of wo-
men's health because of its atypical early symptoms and 
inadequate early diagnostic methods [3]. Initial therapy 
includes cytoreductive surgery and platinum-based che-
motherapy [4]. Patients are highly sensitive to platinum 
at the time of initial therapy, approximately 90% of stage 
IIIC patients relapse within 5 years and eventually have 
resistance to platinum-based chemotherapy [5]. Due to a 
high proportion of patients who acquire chemoresistance, 
novel treatment approaches are required to be developed.

Calcium ions (Ca2+) participate in a series of biologi-
cal behaviors as important second messengers in cells. The 
largest Ca2+ reservoir in the cell is the endoplasmic reticu-
lum (ER). and Calcium (Ca2+) is a crucial second messen-
ger in the cell and is involved in a variety of biological 

processes [6]. To obtain the proper Ca2+ signal, the Ca2+ 
concentration in the ER must be maintained in a stable 
state, and ER dysfunction Numerous human cancers, 
including ovarian carcinoma, and Ca2+ homeostasis are 
related [7]. The most notable ovarian cancer pathogenesis 
is Ca2+ transfer between the endoplasmic reticulum and 
mitochondria, which starts the Krebs cycle and enhances 
ATP production and biosynthesis while also promoting the 
spread of the disease [7]. Because ER-mitochondrial Ca2+ 
signaling causes cisplatin-triggered cell death, alterations 
in Ca2+ homeostasis within ER and mitochondria play 
a key role in ovarian cancer chemoresistance, including 
cisplatin resistance [8]. Transmembrane and coiled-coil 
domains 1 (TMCO1) is a highly conserved 188 amino 
acid cation channel resided in the membrane of ER and 
mitochondria [9]. TMCO1 diffuses easily throughout the 
ER membrane [10] and acts as a Ca2+ leak channel in the 
ER [11-13]. 

When ER Ca(2+) overloaded, TMCO1 released Ca(2+) 
load-activated Ca(2+) (CLAC) channel to maintaining 
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homeostasis of Ca(2+) (9). Female fertility and the deve-
lopment of ovarian follicles are dependent on TMCO1 be-
cause it maintains the ER Ca2+ homeostasis of granulosa 
cells, the loss of which results in ER stress-induced apop-
tosis and elevated cellular ROS levels in granulosa cells 
and impaired ovarian follicle development [14]. Some stu-
dies suggest that TMCO1 is a very important risk factor in 
the progression of colorectal cancer [15]. Nevertheless, the 
role of TMCO1 in ovarian carcinoma remains indistinct. 

Calreticulin (CALR), a highly conserved chaperone 
protein involved in numerous physiological processes, 
including cell adhesion, is a regulator of endoplasmic reti-
culum calcium homeostasis [16]. Studies have also shown 
that the interaction of CALR with natural cytotoxic trigger 
receptor 1 (NCR1) activates NK cells and participates in 
tumor immune escape mechanism [17]. TMCO1, CALR, 
and VDAC1 are all involved in the creation of the intracel-
lular calcium homeostasis mechanism in cellular calcium 
homeostasis. Endoplasmic reticulum calcium homeostasis 
is specifically controlled by TMCO1 and CALR, and the 
balance of endoplasmic reticulum calcium homeostasis can 
impact the mitochondrial calcium homeostasis process. 
VDAC1 is a component in the regulation of mitochondrial 
calcium homeostasis that is found in the outer membrane 
of mitochondria and is sensitive to calcium ion rise [15, 
18, 19]. The tumor microenvironment and metabolic reor-
ganization of cancer cells are mediated by mitochondrial 
malfunction through dysregulation of mitochondrial cal-
cium homeostasis [20]. Some of the proteins that control 
apoptosis and the permeability of the mitochondrial outer 
membrane are assumed to be calcium-signaling regulatory 
proteins that come from the endoplasmic reticulum [21].

Here, we demonstrate for the first time the role of 
TMCO1 in the progression of ovarian cancer, indicating 
that TMCO1 can reverse the mechanism of cisplatin resis-
tance. Experiments have shown that TMCO1 can regulate 
the proliferation, calcium ion levels, cytoskeleton, and 
metastasis of non-cisplatin-resistant and cisplatin-resistant 
ovarian cancer cells, as well as the expression of malignant 
phenotype marker proteins. In vivo experiments, silencing 
TMCO1 can significantly inhibit the growth, proliferation, 
and angiogenesis of non-cisplatin-resistant and cisplatin-
resistant ovarian cancer cells, and reduce the expression 
of CALR, VDAC1, and EMT-related marker proteins. In 
summary, we speculate that TMCO1 can regulate the cal-
cium homeostasis of ovarian cancer cells and the produc-
tion of cisplatin resistance through CALR regulation of 
VDAC1. This study proposes that targeting TMCO1 may 
be an effective new approach for the treatment of ovarian 
cancer.

2. Materials and methods:
2.1. Public databases

The expression of TMCO1 was analyzed in ovarian 
carcinoma and normal tissue specimens in the integrated 
TCGA and GTEx data utilizing the Gene Expression Pro-
filing Interactive Analysis 2 (GEPIA2) web server (http://
gepia2. carcinoma -pku.cn/) [22]. Kapan-Meier curves of 
ovarian carcinoma subjects possessing highly and lowly 
expressed TMCO1 were conducted in the GSE26712 (n 
= 195) [23] and GSE27651 (n = 49) [24] cohorts from the 
Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/gds/) using the Kaplan-Meir Plotter (https://kmplot.
com/). Log-rank test was applied to evaluate the survival 

difference between groups.

2.2. Human specimens
All clinical specimens of 99 ovarian carcinoma pa-

tients were collected from The Fourth Hospital of Hebei 
Medical University. Paired ovarian carcinoma specimens 
and adjacent non-tumor specimens were harvested during 
operation, immediately immobilized with neutral forma-
lin solution, and then routine pathological diagnosis was 
performed. All the patients had no prior history of chemo-
therapy or radiotherapy. This project gained approval by 
the Ethical Committee of The Fourth Hospital of Hebei 
Medical University (2020166). Each patient signed writ-
ten informed consent.

2.3. Immunohistochemistry and immunofluorescence
Tumor tissues were fixed in 10% formalin, embedded 

in paraffin, and cut into 4 μm paraffin-embedded sections 
for immunohistochemistry and immunofluorescence as-
says. The sections were subjected to EDTA (PH8.0) an-
tigen repair, and immunofluorescence was performed with 
0.1 % Triton X-100 incubation for 15 min, followed by 
incubation with primary antibody against TMCO1 (1:100; 
27757-1-AP; Proteintech, Rosemont, IL, USA), β-catenin 
(1:150; 51067-2-AP; Proteintech, Rosemont, IL, USA), 
Vimentin (1:200; 10366-1-AP; Proteintech, Rosemont, 
IL, USA), N-cadherin (1:100; 22018-1-AP; Proteintech, 
Rosemont, IL, USA), E-cadherin (1:100; 20874-1-AP; 
Proteintech, Rosemont, IL, USA), CD34 (1:200; ab81289; 
Abcam, Cambridge, MA, USA), VDAC1 (1:100; 55259-
1-AP; Proteintech, Rosemont, IL, USA), and CALR 
(1:100; 27298-1-AP; Proteintech, Rosemont, IL, USA) 
at 4℃ overnight. For immunohistochemistry, the sections 
were incubated by HRP-labeled secondary antibody (PV-
6000; ZSGB-BIO, China) lasting 30 minutes. For immu-
nofluorescence, the sections were incubated with Alexa 
Fluor® 488 secondary antibody (1:100; ZF-0511; ZSGB-
BIO, China) lasting two hours. 

2.4. Cell culture
Ovarian carcinoma SK-OV-3 cells (Serial: TCHu185, 

National Collection of Authenticated Cell Cultures. https://
www.cellbank.org.cn/search-detail.php?id=76) and SK-
OV-3/DDP Cisplatin-resistant cells (Serial: NYZQ0035, 
Shanghai Zhong Qiao Xin Zhou Biotechnology Co.,Ltd. 
https://www.zqxzbio.com/Web/Index/p_more/pid/3629.
html) were grown in RPMI-1640 medium (Gibco, Rock-
ville, MD, USA) plus 10% fetal bovine serum (FBS), 100 
U/mL penicillin, and 100 μg/mL streptomycin.

2.5. Transfection
Gene silencing was conducted in SK-OV-3 as well 

as SK-OV-3-CDDP cells in 6-well plates (1 × 105 cells 
/ well). Plasmids carrying short hairpin RNAs (shR-
NAs) of TMCO1 (sh-TMCO1#1: TRCN0000062125: 
5’-CCCTAATGGGAATGTTCAATT-3’; sh-TM-
CO1#2: TRCN0000062127:5’-CATCGAAATC-
TGCTGGGAGAT-3’) or negative controls (sh-NC: 
TRCN0000072243:5’ -CTTCGAAATGTCCGTTCG-
GTT-3’) were purchased from company Shanghai Sangon 
(SangonBiotech, Shanghai, China, https://www.sangon.
com/). Full-length TMCO1 was cloned into pcDNA3.1(+) 
ZB02427(Cloning site: NheI/BamHI), Empty vector was 
utilized as a control. Both were purchased from compa-
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2.11. Cellular immunofluorescence
SK-OV-3 or SK-OV-3-CDDP cells were inoculated 

onto coverslips in a 12-well plate, which were then fixed 
by 4% paraformaldehyde lasting 10 minutes, permeabi-
lized by 0.1% triton X-100 lasting 15 minutes. Thereaf-
ter, the cells were sealed by 1% BSA for 1 hour at room 
temperature, as well as incubated by primary antibodies 
against TMCO1 (1:200; ab220729; Abcam, Cambridge, 
MA, USA), β-catenin (1:250; ab184919; Abcam, Cam-
bridge, MA, USA), Vimentin (1:200; 10366-1-AP; Pro-
teintech, Rosemont, IL, USA), N-cadherin (1:100; 22018-
1-AP; Proteintech, Rosemont, IL, USA), VDAC1 (1:100; 
55259-1-AP; Proteintech, Rosemont, IL, USA), CALR 
(1:200; 27298-1-AP; Proteintech, Rosemont, IL, USA) 
and E-cadherin (1:150; ab231303; Abcam, Cambridge, 
MA, USA) at 4°C overnight. After being washed 3 times 
in PBS, coverslips were incubated by Alexa Fluor® 488 
secondary antibody (1:100; ZF-0511; ZSGB-BIO, China) 
lasting two hours. Under fluorescence microscopy, images 
were captured.

2.12. Animal experiments
The animal experiment was presented strictly in accor-

dance with the Institutional Ethics Guidelines for Animal 
Experiments approved by the Animal Ethics Commit-
tee of The Fourth Hospital of Hebei Medical University 
(2020166). 4-week-old female nude mice (BALB/C; 18–
20 g) were purchased from Beijing Vital River Laboratory 
Animal Technology Co., Ltd., Beijing, China, and fed fol-
lowing specific pathogen-free conditions. All nude mice 
were randomized into four groups (n = 5). Approximately 
5× 106 sh-TMCO1- or sh-NC-treated SK-OV-3 or SK-OV-
3-CDDP cell lines were suspended by 0.1 mL sterile PBS, 
as well as injected subcutaneously into the axilla of mice, 
respectively. Tumor width (W) and length (L) were mea-
sured every week following the appearance of tumor, and 
the tumor volume (V) was calculated following the formu-
la V = (W2 × L)/2. After 4 weeks, all mice were euthanized 
through intraperitoneal injection of pentobarbital sodium 
(200 mg/kg), and tumors were collected.

2.13. Detection of the intracellular calcium concentra-
tion

The cells were washed with HBSS 3 times and incu-
bated with 1μM Fluo-4 AM (Thermo-Fisher, Waltham, 
MA, USA) dye at 37°C for 30 min. After incubation, the 
cells were washed 3 times with HBSS to fully remove the 
remaining working fluid. Finally, the cells were examined 
under a fluorescence microscope. 

2.14. Actin cytoskeleton staining
According to the instruction of Actin-Tracker Green-488 

(Beyotime, Shanghai, China), the cells were washed twice 
with PBS, fixed with 3.7% paraformaldehyde with PBS 
for 15 min, washed twice with 0.1% Triton-X100/PBS, 
Added Actin-Tracker Green and incubated for 30 minutes. 
Using fluorescence microscopy to observe changes in ac-
tin cytoskeleton and photograph.

2.15. Statistical analysis
All experiments were repeated at least thrice, and re-

sults were displayed as the mean ± standard deviation. All 
analysis was implemented utilizing the student’s t-test or 
one-way analysis of variance. The chi-square tests were 

ny Shanghai Sangon (SangonBiotech, Shanghai, China, 
https://www.sangon.com/). The shRNAs were transfected 
into cells using Lipofectamine 8000 transfection reagent 
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s instructions. Cultured at 37℃ with 5% CO2 for 
24 h, cells were collected for Western blotting assay.

2.7. Western blotting
Cells or tissues were washed with PBS, and lysed using 

ice-cold RIPA buffer plus protease inhibitor cocktail and 
phosphatase inhibitor cocktail. Afterwards, the protein 
concentration was quantified with BCA kit. The protein 
was separated through 8~10% SDS-PAGE, followed by 
transference to PVDF membranes. The membranes were 
sealed in 5% skim milk lasting one hour at room tempe-
rature, as well as incubated by primary antibody against 
TMCO1 (1:500; 27757-1-AP; Proteintech, Rosemont, IL, 
USA), β-catenin (1:2000; 51067-2-AP; Proteintech, Rose-
mont, IL, USA), VDAC1 (1:1000; 55259-1-AP; Protein-
tech, Rosemont, IL, USA), CALR (1:1000; 27298-1-AP; 
Proteintech, Rosemont, IL, USA), MMP2 (1:1000; 66366-
1-Ig; Proteintech, Rosemont, IL, USA), MMP9 (1:1000; 
10375-2-AP; Proteintech, Rosemont, IL, USA), N-cadhe-
rin (1:1000; 22018-1-AP; Proteintech, Rosemont, IL, 
USA), E-cadherin (1:1000; 20874-1-AP; Proteintech, Ro-
semont, IL, USA), Vimentin (1:2000; 10366-1-AP; Pro-
teintech, Rosemont, IL, USA), Ki-67 (1:1000; ab16667; 
Abcam, Cambridge, MA, USA) or GAPDH (1:5000; 
10494-1-AP; Proteintech, Rosemont, IL, USA) at 4 °C. 
Following being washed in TBST, incubation with secon-
dary antibody (1:5000; ZB-2301 or ZB-2305; ZSGB-BIO, 
China) was presented at room temperature for 1 hour. The 
protein band was developed by chemiluminescence utili-
zing ECL reagent. GAPDH served as an internal control. 
Band intensity was quantified using ImageJ software.

2.8. Clonogenic assay
SK-OV-3 cells or SK-OV-3-CDDP cells were inocu-

lated onto 6-well plates (1000 cells / well). All cells were 
cultivated until visible colonies were formed. Afterwards, 
the cells were fixed in 4% paraformaldehyde for 15 min, 
and the colonies were stained with 0.1% crystal violet for 
20 min. After photographing, colonies were counted (one 
colony with over 50 cells).

2.9. Wound healing assay
SK-OV-3 cells or SK-OV-3-CDDP cells were inocula-

ted onto 6-well plates. When the cells reached confluence, 
the monolayers were gently scratched utilizing pipette 
tips, and then carefully washed with PBS to remove de-
bris. Images were captured 0 and 24 h after scratching.

2.10. Transwell experiment
Transwell Inserts (8 µm pore-size, Corning, Corning, 

NY, USA) was applied for measuring cellular invasion. 5 
× 104 SK-OV-3 cells or SK-OV-3-CDDP cells were resus-
pended in serum-free medium and loaded onto uncoated 
inserts with polycarbonate membrane. Inserts were placed 
in a 24-well plate containing complete media (10% FBS) 
in the incubator. Following 24 hours, cells migrated to 
the underside of the insert were washed in PBS, fixed in 
paraformaldehyde lasting half hour, as well as stained by 
0.1% crystal violet. Migrative cells were counted under 5 
random regions.
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utilized for evaluating the interactions of TMCO1 expres-
sion with clinical parameters. All tests were conducted 
utilizing Statistic Package for Social Science (SPSS) or 
GraphPad Prism 8.0 (GraphPad, La Jolla, CA, USA).

3. Results
3.1. TMCO1 is highly expressed in ovarian cancer and 
is associated with tumor size, late FIGO stage, lymph 
node metastasis, and overall survival

Evidences have indicated that TMCO1 dysfunction 
is linked with carcinogenic processes [25]. The analysis 
of comprehensive TCGA and GTEx profiles showed that 
compared to normal tissue (n=88), TMCO1 was signifi-
cantly upregulated in ovarian cancer (n=426) (Figure 1A). 
In the GSE26712 and GSE27651 cohorts, ovarian cancer 
patients with high TMCO1 expression exhibited poorer 
overall survival compared to patients with low TMCO1 
expression (Figure 1B, 1C). 

We retrospectively collected tissue specimens and 
clinicopathological information from 99 patients with 
ovarian cancer. Immunohistochemistry confirmed that 
TMCO1 expression was significantly upregulated in ova-
rian cancer compared to adjacent non-tumor tissue spe-
cimens (Figure 1D, 1E). TMCO1 is mainly expressed in 
cytoplasm and cell membrane of tumor cells. The results 
of immunofluorescence were also consistent with those 
of immunohistochemistry (Figure 1F, 1G). Among the 99 
patients, 61 were cisplatin-sensitive, 42 were positive for 
TMCO1 expression (68.85%), 38 were cisplatin-resistant, 
and 25 were positive for TMCO1 expression (65.79%). 
The expression level of TMCO1 in both cisplatin-sensitive 
and cisplatin-resistant patients was significantly correlated 
with tumor size, late FIGO stage, and lymph node metas-
tasis (Table 1). These data suggest the role of TMCO1 in 
ovarian cancer progression and its clinical value for drug 
resistance and prognosis.

3.2. Effect of TMCO1 on proliferation of non-cisplatin-
resistant/Cisplatin-resistant ovarian cancer cells

To evaluate the role of TMCO1 in ovarian cancer, 

TMCO1 was silenced and overexpressed in SK-OV-3 
cells. The expression of sh-TMCO1#2 was more obvious, 
which was used as the follow-up experimental sequence 

Clinical parameters

TMCO1 expressionn in 
Cisplatin sensitive patients P-value

TMCO1 expressionn in 
Cisplatin-resistant patients P-valueTotal

(n=61)
Positive 
(n=42)

Negative 
(n=19)

Total
(n=38)

Positive 
(n=25)

Negative 
(n=13)

Age
≤60 35 22 13 0.241 23 16 7 0.544>60 26 20 6 15 9 6

Tumor size (mm)
≥30 31 25 6 0.043 23 18 5 0.045<30 30 17 13 15 7 8

FIGO stage
I-II 20 8 12 0.001 13 5 8 0.010III-IV 41 34 7 25 20 5

Pathologic type
 Serous 42 31 11 0.214 20 14 6 0.564 Mucous and others 19 11 8 18 11 7
Lymph node metastases

Positive 46 36 10 0.005 18 16 2 0.004Negative 15 6 9 20 9 11
Distant metastases

Positive 9 4 5 0.087 21 14 7 0.899Negative 52 38 14 17 11 6

Table 1. Associations between TMCO1 expression and clinicopathological characteristics of ovarian carcinoma patients.

Fig. 1. TMCO1 presents high expression in ovarian carcinoma and 
is linked with undesirable clinical outcomes. (A) Box plot shows the 
RNA expression of TMCO1 in 426 ovarian carcinoma tissues (T) 
and 88 normal tissues (N) in the integrated TCGA and GTEx data. 
*P<0.05. (B, C) Kaplan-Meier analysis depicts the survival diffe-
rence in ovarian carcinoma patients possessing high TMCO1 expres-
sion relative to those possessing low TMCO1 expression in the (B) 
GSE26712 and (C) GSE27651 cohorts. (D) Immunohistochemistry 
shows the expression and distribution of TMCO1 in adjacent normal 
tissues and ovarian carcinoma tissues. Scale bar, 20 μm. (E) A bar 
graph visualizes TMCO1 expression in two groups following immu-
nohistochemistry results. **P<0.01. (F) Immunofluorescence exa-
mines the expression and distribution of TMCO1 in adjacent normal 
tissues and ovarian carcinoma tissues. Scale bar, 20 μm. (G) A bar 
graph shows TMCO1 expression in two groups in accordance with 
immunofluorescence results. ***P<0.001.
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(Figure 2A-D). In SK-OV-3 and SK-OV-3-CDDP cells, 
TMCO1 upregulation significantly increased the num-
ber of colonies (Figure 2E-G). In contrast, by knocking 
down TMCO1, SK-OV-3 and SK-OV-3-CDDP cell lines 
significantly reduced the number of colonies. Therefore, 
TMCO1 can regulate the proliferation ability of non-cis-
platin-resistant and cisplatin-resistant ovarian cancer cells.

3.3. TMCO1 regulated the migration of non-cisplatin-
resistant/cisplatin-resistant ovarian cancer cells

In the wound healing experiment, overexpression of 
TMCO1 significantly shortened the wound distance of 
SK-OV-3 and SK-OV-3-CDDP cells (Figure 3A-D). In ad-
dition, silencing TMCO1 significantly widened the wound 
distance. Transwell results showed that overexpression of 
TMCO1 significantly increased the number of invasive 
cells (Figure 3E-H). On the contrary, silencing TMCO1 
expression significantly reduced the number of invading 
cells. Comparing SK-OV-3 and SK-OV-3-CDDP cells in 
the same group, it was found that the migration and inva-
sion abilities of SK-OV-3-CDDP cells were significantly 
enhanced. Therefore, TMCO1 can regulate the migration 
and invasion ability of SK-OV-3 and SK-OV-3-CDDP 
cells, indicating that TMCO1 plays a key role in the pro-
gression of ovarian cancer and the mechanism of cisplatin 
resistance.

3.4. TMCO1 regulated calcium levels and cytoskeletal 
remodeling in SK-OV-3 and SK-OV-3-CDDP cells

Overexpression of TMCO1 can upregulate the cal-
cium ion levels in SK-OV-3 and SK-OV-3-CDDP cells, 

promote the remodeling of actin microfilaments (Figure 
4A-C), and induce the increase and elongation of cell edge 
protrusions. After silencing TMCO1, this phenomenon 
weakens (Figure 4D-F). The results indicate that TMCO1 
can affect cytoskeletal remodeling by regulating intracel-
lular calcium levels, and participate in the mechanisms of 
ovarian cancer cell metastasis and drug resistance in this 
way.

3.5. The interaction of TMCO1 with CALR and VDAC1 
and its influence on the expression of EMT markers

We found that overexpression of TMCO1 could up-re-
gulate the expression of CALR, VDAC1 and EMT-related 
marker proteins β-catenin, Vimentin, N-cadherin and de-
crease the expression of E-cadherin in SK-OV-3 and SK-
OV-3-CDDP cells. Silencing TMCO1 expression yielded 
opposite results (Figure 5A-P). CALR is involved in endo-
plasmic reticulum calcium homeostasis regulation. In this 
experiment, TMCO1 can regulate the expression of CALR 
and also affect the expression of VDAC1 in the mitochon-
drial outer membrane. Immunofluorescence experiments 
showed that TMCO1, CALR, and VDAC1 were mainly 
expressed in the cytoplasm of SK-OV-3 and SK-OV-
3-CDDP cells. Overexpression and silencing of TMCO1 
expression could regulate the expression of CALR and 

Fig. 2. TMCO1 up-regulation enhances proliferation of cisplatin-
sensitive as well as resistant ovarian carcinoma cells. (A, B) Western 
blot verifies TMCO1 expression in SK-OV-3 cells administrated with 
specific shRNAs against TMCO1. (C, D) Western blot validates the 
overexpression of TMCO1 in SK-OV-3 cells. (E, F) The clonogenic 
assay shows the colonies of SK-OV-3 cell line with TMCO1-knoc-
kout or overexpressed plasmids. (G, H) Clonogenic assay displays 
the colonies of SK-OV-3-CDDP cell line with TMCO1-knockout or 
overexpressed plasmids. **P<0.01; ***P<0.001; ****P<0.0001.

Fig. 3. High TMCO1 expression facilitates migration of cisplatin-sen-
sitive as well as resistant ovarian carcinoma cells. (A, B) A wound-
healing experiment was applied to examine the migration capacity 
of SK-OV-3 cells subjected to TMCO1-knockout or overexpressed 
plasmids. Scale bar, 200 μm. (C, D) A wound wound-healing expe-
riment was applied to evaluate the migrative capacity of SK-OV-
3-CDDP cells subjected to TMCO1-knockout or overexpressed plas-
mids. Scale bar, 200 μm. (E, F) A Transwell assay was conducted to 
investigate the number of migrative cells of SK-OV-3 cells subjected 
to TMCO1-knockout or overexpressed plasmids. Scale bar, 50 μm. 
(G, H) Transwell assay was presented for assessing the number of 
migrative SK-OV-3-CDDP cells with TMCO1-knockout or overex-
pressed plasmids. Scale bar, 50 μm. *P<0.05; **P<0.01; ***P<0.001; 
****P<0.0001.
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VDAC1, accompanied by changes in N-cadherin and 
E-cadherin expressions, which were consistent with the 
above results. Further, confirm the role of TMCO1 in the 
progression of ovarian cancer. We speculate that TMCO1 
may affect VDAC1 expression through CALR regulation 
of endoplasmic reticulum calcium levels, regulating ova-
rian cancer cell proliferation, cytoskeleton remodeling, 
and metastasis (Figure 6A-L). 

To verify the interaction relationship between TMCO1 
and CALR, VDAC1, we constructed CALR, VDAC1 siR-
NA sequences to transfect SK-OV-3 and SK-OV-3-CDDP 
cells. Si-CALR#3 and si-VDAC1 #3 were more signifi-
cantly expressed as subsequent experimental sequences 
(Figure 7A-D). Tmco1-oe +CALR siRNA can block the 
effect of TMCO1 overexpression on up-regulation of 

CALR. Importantly, TMCo1-OE does not up-regulate 
the expression of VDAC1. However, the expression of 
CALR in the TMCO1-OE+VDAC1 siRNA group showed 
an up-regulated trend, indicating that the knockdown of 

Fig. 4. TMCO1 regulated calcium levels and cytoskeletal remodeling 
in SK-OV-3 and SK-OV-3-CDDP cells. (A,B) Representative photo-
graphs of cytosolic Ca2+ level in SK-OV-3 cells and SK-OV-3-CDDP 
via Fluo-4 AM staining were displayed. Bar, 20 μm. (C,D) Phalloidin 
staining (Green) after TMCO1-knockout or overexpressed plasmids. 
Bar, 20 μm.

Fig. 5. The interaction of TMCO1 with CALR and VDAC1 and its 
influence on the expression of EMT markers. (A-H) Western blotting 
was conducted for examining (B) TMCO1, (C) VDAC1, (D) CALR, 
(E) Vimentin, (F) β-catenin, (G) N-cadherin, and (H) E-cadherin ex-
pression in SK-OV-3 cells subjected to TMCO1-knockout or overex-
pressed plasmids. (I-P) Western blotting was conducted to examine 
(J) TMCO1, (K) VDAC1, (L) CALR, (M) Vimentin, (N) β-catenin, 
(O) N-cadherin, and (P) E-cadherin expression in SK-OV-3-CDDP 
cell line subjected to TMCO1-knockout or overexpressed plasmids. 
*P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.

Fig. 6. The interaction of TMCO1 with CALR and VDAC1 and its 
influence on the expression of EMT markers. (A, B) Representative 
images of immunofluorescence for SK-OV-3 or SK-OV-3-CDDP cell 
lines. Bar scale, 20 μm. (C-G) The expression levels of (C) TMCO1, 
(D) CALR, (E) VDAC1, (F) N-cadherin, and (G) E-cadherin were 
quantified in SK-OV-3 cells subjected to TMCO1-knockout or ove-
rexpressed plasmids. (H-L) The expression levels of (H) TMCO1, (I) 
CALR, (J) VDAC1, (K) N-cadherin, or (L) E-cadherin were quanti-
fied for SK-OV-3-CDDP cell line with TMCO1-knockout or overex-
pressed plasmids. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.

Fig. 7. The interaction of TMCO1 with CALR and VDAC1. (A-L) 
Western blotting was conducted to examine (B) TMCO1, (C)CALR 
and( D) VDAC1 expression with CALR-siRNA and VDAC1-siRNA 
transfections. (E-H) Western blotting was conducted for examining 
(F) TMCO1, (G) CALR, (H) VDAC1 in SK-OV-3 cells. (I-L) Wes-
tern blotting was conducted for examining (J) TMCO1, (K) CALR, 
(L) VDAC1 With TMCO1 overexpression or CALR-siRNA and 
VDAC1-siRNA transfections in SK-OV-3-CDDP cells.
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VDAC1 did not affect the expression of CALR, but the 
expression of VDAC1 was significantly reduced. (Figure 
E - L). CALR and VDAC1 knockdown had no significant 
effect on TMCO1 expression. Interestingly, the expression 
of VDAC1 can be down-regulated by lowering CALR. 
However, knocking down VDAC1 did not modulate 
CALR expression (Figure 8A-H).

3.6. Targeting TMCO1 inhibits the growth of SK-OV-3 
and SK-OV-3-CDDP cells in xenograft models

To further confirm the role of TMCO1 in the progres-
sion and resistance mechanism of ovarian cancer, we di-
vided the experimental group into four groups: non-cis-
platin-resistant sh-NC (Control), cisplatin-resistant group 
(CDDP), non-cisplatin resistant+silenced TMCO1 group 
(sh-TMCO1), and cisplatin resistant+silenced TMCO1 
group (CDDP+sh-TMCO1). Inject four groups of cells 
into the subcutaneous model of BALB/C mice. After 4 
weeks, compared to the control group or CDDP group, 
silencing the expression of TMCO1 significantly inhibited 
tumor growth (Figure 9A-C). Immunohistochemistry 
(Figure 9D, E) and immunofluorescence (Figure 9F, G) 
were used to measure the expression of CD34 to evaluate 
angiogenesis. Silencing TMCO1 significantly reduced the 
microvessel density of tumor tissue in SK-OV-3 and SK-
OV-3-CDDP cells. In summary, the above data demons-
trate the anti-ovarian cancer progression and reversal of 
cisplatin resistance of TMCO1 in vivo.
 
3.7. Targeting TMCO1 inhibited the expression of 
CALR, VDAC1 and EMT markers in xenograft tumors

Western blot showed that silencing TMCO1 signifi-
cantly decreased the expression of CALR, VDAC1 and 
EMT marker proteins (Vimentin, N-cadherin, β-catenin, 
MMP2, MMP9) in SK-OV-3 and SK-OV-3-CDDP tumor 
tissues. it also decreased the expression of cell prolifera-
tion index ki-67, indicating that the proliferation ability of 

tumor cells was impaired. In addition, silencing TMCO1 
enhanced the expression of E-cadherin, indicating the 
inactivation of EMT signal in tumor cells (Figure 10A-K).

In addition, we utilized immunohistochemistry and 
immunohistochemistry fluorescence staining to vali-
date the expression of TMCO1, CALR, VDAC1, and 
EMT marker proteins. It was found that the expression 
of TMCO1, CALR, and VDAC1 in the cisplatin-resis-
tant group (CDDP) was significantly higher than that of 
Control, while there was no significant difference in the 
expression of other indicators. These results further de-
monstrate the key role of TMCO1, CALR, and VDAC1 
in the mechanism of cisplatin resistance (Figure 11A-P). 
Importantly, silencing TMCO1 can significantly reduce 
CALR, VDAC1, and EMT-related markers (Vimentin, 
N-cadherin β- Catenin expression is accompanied by an 
increase in E-cadherin expression. In summary, we elu-
cidated the role of TMCO1 in ovarian cancer progression 
and cisplatin resistance mechanisms from in vitro to in 
vivo using non-cisplatin-resistant and cisplatin-resistant 
ovarian cancer cells.

4. Discussion
The relationship between the endoplasmic reticulum 

and the mitochondria is becoming increasingly clear as a 
factor in the development of cancer cell metastasis [26-

Fig. 8. The interaction of TMCO1 with CALR and VDAC1. (A-D) 
Western blotting was conducted for examining (B) TMCO1, (C) 
CALR and (D) VDAC1 expression with CALR-siRNA +VDAC1-
siRNA or sh-TMCO1 with CALR-siRNA and VDAC1-siRN in SK-
OV-3 cells. (E-H) Western blotting was conducted for examining (F) 
TMCO1, (G) CALR and (H)VDAC1 expression with CALR-siRNA 
+VDAC1-siRNA or sh-TMCO1 with CALR-siRNA and VDAC1-
siRNA in SK-OV-3-CDDP cells.

Fig. 9. Targeting TMCO1 inhibits the growth of SK-OV-3 and SK-
OV-3-CDDP cells in xenograft models. (A) Photographs of nude 
mouse models with sh-NC-transfected SK-OV-3 cell line (control 
group), mice injected with sh-NC-transfected SK-OV-3-CDDP cell 
line (CDDP group), mice injected with sh-TMCO1-transfected SK-
OV-3 cells (sh-TMCO1 group), mice injected with sh-TMCO1-trans-
fected SK-OV-3-CDDP cells (CDDP + sh-TMCO1 group). (B) Photo-
graphs of tumors from above four groups. (C) Tumor growth curves in 
each group. Compared with control group, *p<0.05; ****P<0.0001. 
Compared with CDDP group, ####P<0.0001. (D, E) Immunohisto-
chemistry examining the expression of CD34 in tumors from four 
groups. Bar scale, 20 μm. (F, G) Immunofluorescence detecting CD34 
expression in tumors from four groups. Bar scale, 20 μm. *P<0.05; 
***P<0.001; ****P<0.0001.
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28]. Ca2+ can go from the endoplasmic reticulum to the 
mitochondria, taking involvement in lipid production and 
metastasis, protein homeostasis, and mitochondrial trans-
port. These processes change as tumors develop, including 
ovarian cancer [29]. The endoplasmic reticulum calcium 
homeostasis mechanism contains a calmodulin called 
TMCO1 that regulates Ca2+ homeostasis in the endoplas-
mic reticulum via CLAC channels (30). Tandem repeat 
assay research revealed that TMCO1 carries a greater risk 
of colorectal cancer [15]. 

This work is the first to describe the role of TMCO1 in 
the course of ovarian cancer, and it shows that tumor size, 
advanced FIGO, and lymph node metastases were subs-
tantially linked with TMCO1 expression levels in both cis-
platin-sensitive and resistant individuals. TMCO1 might 
therefore be a biomarker for ovarian cancer prognosis. In 
vitro tests revealed that TMCO1 can regulate the growth 
and metastasis of ovarian cancer cells that aren't resistant 
to cisplatin as well as those that are. It can also regulate 
VDAC1 through CALR to affect intracellular calcium ion 
levels and cytoskeletal remodeling while suppressing the 
expression of EMT-related markers to disrupt the mecha-
nism by which cisplatin-resistant ovarian cancer cells 
spread. The involvement of TMCO1 in cell proliferation 
and angiogenesis of non-cisplatin-resistant and cisplatin-
resistant ovarian cancer tissues was further supported by 
in vivo research. Similar to in vitro studies, TMCO1 silen-
cing also had an anti-tumor impact. As a result, TMCO1 is 
an important factor in the development of ovarian cancer 
and the mechanism of cisplatin resistance, offering a new 
guideline for the treatment of ovarian cancer.

The endoplasmic reticulum protein CALR is a calcium-
binding protein that has been linked to the development 
of cancer [31]. When secreted proteins and membrane 
proteins are being synthesized, maturing, and being trans-
ported, CALR is involved in quality control. The primary 
roles of CALR are calcium homeostasis regulation and 
protein chaperoning. Tumor development may result from 
aberrant cell proliferation triggered by improper calcium 
ion homeostasis regulation [32]. By interacting with other 
improperly folded proteins, CALR promotes myeloproli-
ferative tumors [33]. The response to paclitaxel therapy 
for ovarian cancer is associated with CALR expression 
[34]. Our research demonstrates that TMCO1 regulated 
the expression of CALR, and this impact is consistent 
with variations in intracellular calcium ion concentrations. 
It has been reported that TMCO1 and CALR control cell 
proliferation and death, respectively, in order to maintain 
calcium homeostasis in the endoplasmic reticulum [35]. 
However, our results showed that TMCO1 silencing also 
inhibited cell proliferation and cytoskeletal reorganization 
in addition to lowering CALR expression. Mitochondrial 
outer membrane protein is also involved in the control 
mechanism of intracellular calcium homeostasis. The 
mitochondrial outer membrane protein VDAC1 reacts 
preferentially to variations in intracellular calcium levels 
[36]. Additionally, VDAC1 has a role in cell division 
and apoptosis [37]. Overexpression of VDAC1 has been 
shown in breast cancer research to facilitate the growth, 
migration, and invasion of breast cancer cells [38]. Regu-
lation of VDAC1 causes mitochondrial dysfunction and 
significant alterations in the signaling pathways that pro-
mote malignancy in prostate cancer [39]. One of the pri-
mary regulatory mechanisms for cancer cells to overcome 

Fig. 10. Targeting TMCO1 inhibited the expression of CALR, VDAC1 
and EMT markers in xenograft tumors. (A-K) Western blot was ap-
plied for examining (B) TMCO1, (C) VDAC1, (D) CALR, (E) Ki-67, 
(F) MMP2, (G) MMP9, (H) N-cadherin, (I) Vimentin, (J) β-catenin, 
or (K) E-cadherin expression within xenograft tumors developed by 
sh-NC or sh-TMCO1-transfected SK-OV-3 or SK-OV-3-CDDP cell 
line. **P<0.05; ***P<0.001; ****P<0.0001.

Fig. 11. The role of TMCO1, CALR, and VDAC1 in xenograft tu-
mors. (A, B) Representative images of (A) immunohistochemistry 
as well as (B) immunofluorescence in xenograft tumors. Bar scale, 
20 μm. (C-I) Expression of (C) TMCO1, (D) VDAC1, (E) CALR, 
(F) β-catenin, (G) Vimentin, (H) N-cadherin, or (I) E-cadherin was 
quantified in xenograft tumors developed by sh-NC or sh-TMCO1-
transfected SK-OV-3 or SK-OV-3-CDDP cell line according to immu-
nohistochemistry. (J-P) Expression of (J) TMCO1, (K) VDAC1, (L) 
CALR, (M) β-catenin, (N) Vimentin, (O) N-cadherin, or (P) E-cadhe-
rin was quantified within xenograft tumors developed by sh-NC or sh-
TMCO1-transfected SK-OV-3 or SK-OV-3-CDDP cell line according 
to immunofluorescence. **P<0.05; ***P<0.001; ****P<0.0001.
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chemotherapy resistance is mitochondrial outer membrane 
proteins [40]. According to experimental data, PGC1α can 
inhibit apoptosis via the HSP70/HK2/VDAC1 signaling 
pathway, which leads to ovarian cancer developing cispla-
tin resistance [41]. Our in vivo and in vitro data demons-
trated that overexpressing TMCO1 increased the expres-
sion of CALR and VDAC1 in non-cisplatin-resistant and 
cisplatin-resistant ovarian cancer cells as well as xenograft 
tumor tissues, whereas silencing TMCO1 produced the 
opposite results. These findings clearly demonstrated the 
role of TMCO1 in the progression of ovarian cancer as 
well as the mechanism of ovarian cancer resistance. Most 
critically, we knocked down CALR and VDAC1 expres-
sion and discovered that both could prevent the expres-
sion of malignant phenotypic markers. According to the 
experimental findings, reducing CALR could regulate the 
expression of VDAC1 while could not regulate the expres-
sion of CALR and TMCO1. In light of the aforementioned 
findings, TMCO1 may regulate the expression of CALR 
and VDAC1. We hypothesize that TMCO1 may regulate 
VDAC1 via CALR to alter the development of ovarian 
cancer and the mechanism underlying cisplatin resistance.

Early on in cancer development, the tumor may infect 
nearby organs or spread to the peritoneal cavity [42]. Ac-
cording to the ovarian cancer staging system, stage II me-
tastases to extraovarian/fallopian tube and pelvic organs, 
stage III metastases to retroperitoneal lymph nodes, and 
stage IV metastases to distant organs are all diagnosed 
[43]. EMT plays a significant role in tumor growth and 
drug resistance mechanisms, however, EMT is a rever-
sible process in which epithelial cells lose polarity and 
intercellular adhesion to a spindle shape, split from the 
basal layer, and gain mobility [44]. This process is a pre-
cursor to tumor invasion and metastasis, which suggests 
that focusing on certain genes can slow tumor growth and 
overcome medication resistance [45]. Breast cancer-re-
lated carcinogenesis is greatly aided by dysregulated ion 
channels, which are linked to EMT-related marker genes 
[46]. In this work, TMCO1 up-regulation encouraged the 
expression of EMT-related markers and improved the abi-
lity of non-cisplatin-resistant and cisplatin-resistant ova-
rian cancer cells to metastasize. We detected the migration 
of Cisplatin-resistant ovarian cancer cells in cytoskeleton 
and immune cell fluorescence assays, and the marginal 
protrusions lengthened and expanded. We could see small 
clusters of CALR fluorescence expression, particularly 
in the TMCO1 overexpression group of SK-OV-3-CDDP 
cells, and TMCO1 silencing may prevent the development 
of this phenomena. We hypothesize that this is most li-
kely connected to endoplasmic reticulum oxidative stress, 
and we will look into the mechanism in more detail in 
the future. The distinction is that a prior study discove-
red that bladder urothelial carcinoma exhibits low levels 
of TMCO1 expression, which inhibits the growth of can-
cer [25]. This is probably related to where the tumor tis-
sue came from because varied tissue sources and growing 
settings will impact how different ionic proteins perform 
their various activities. Using animal studies, we further 
confirmed the involvement of TMCO1 in the evolution of 
non-cisplatin-resistant and cisplatin-resistant ovarian can-
cer cells. We showed in vivo that inhibiting TMCO1 can 
greatly decrease tumor growth and angiogenesis.

On the basis of silencing TMCO1, we created and ap-
plied CALR and VDAC1 siRNA to elaborate the regulato-

ry link between the three. Surprisingly, TMCO1 silencing 
can drastically lower CALR and VDAC1 expression. We 
think that CALR and VDAC1 may be the TMCO1 effect 
factors. 

As the experiment progressed and it was shown that 
CALR regulates VDAC1 and that VDAC1 cannot reverse-
regulate CALR. We hypothesized that TMCO1 and CALR, 
as regulatory proteins of calcium homeostasis in endoplas-
mic reticulum, might affect the expression of VDAC1 by 
maintaining calcium homeostasis through the release of 
ions (primarily calcium ions; other incidental ions could 
not be excluded). We did not perform the detection of mar-
kers for mitochondrial dysfunction due to the constraints 
of the investigation.

5. Conclusion
In summary, clinical profiling, in vitro cell models, 

and in vivo xenograft models provide conclusive evidence 
that TMCO1 is a novel oncogene in ovarian cancer pro-
gression and ovarian cancer resistance mechanisms. In 
this study, TMCO1 regulates the expression of VDAC1 
through CALR, affecting the proliferation, metastasis, cal-
cium ion levels, cytoskeleton and EMT-related markers of 
non-cisplatin-resistant and cisplatin-resistant ovarian can-
cer cells. In addition, targeting TMCO1 significantly inhi-
bits tumor growth, proliferation, and angiogenesis in vivo. 
Therefore, TMCO1 is a promising target for the treatment 
of ovarian cancer.
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