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1. Introduction
Alopecia is featured by shorter anagen together with 

longer telogen phases in the hair cycle and is a psycho-
logical challenge affecting social communication of the 
patients. Suitable seed cells, enough seed cells with biolo-
gical functions when cultured in vitro, and a suitable mi-
croenvironment are essential for hair follicle reconstruc-
tion [1]. Dermal papilla cells (DPCs) belong to specialized 
mesenchymal stem cells in hair follicles and have poten-
tial to differentiate into many types of cells, which makes 
them beneficial for the repair of hair formation or growth. 
DPCs are deemed to have the capacity to treat alopecia be-
cause of their hair inductivity [2, 3]. Some studies revealed 
DPCs as a therapeutic target of alopecia [4-6]. However, 
the replicative senescence of DPCs causes changes in cel-
lular phenotypes and reduces the hair-inducing ability. 
Therefore, keeping the hair inductivity of DPCs is essen-
tial for the therapy of alopecia.

Platelet concentrate can release various growth fac-
tors like platelet-derived growth factor (PDGF), fibro-
blast growth factor (FGF) along with vascular endothelial 
growth factor (VEGF), playing a very crucial role in en-

hancing cell recruitment, proliferation, as well as differen-
tiation of tissue regeneration [7]. It has been validated that 
platelet-rich plasma (PRP), the first generation of plate-
let concentrate, can effectively promote hair regeneration 
[8, 9]. However, PRP needs to be activated by exogenous 
activators before application, is rapidly degraded in vivo, 
and rapidly releases growth factor, which restricts the cli-
nical use of PRP. Platelet-rich fibrin (PRF) belongs to a se-
cond-generation platelet concentrate that does not contain 
anticoagulants. However, due to the fibrous gel shape of 
PRF: PRF is not easy to combine with other biomaterials, 
which limits its clinical application [10]. Injectable pla-
telet-rich fibrin (i-PRF) is the third generation of platelet 
concentrates [11]. It has the advantages combined with 
the first and second-generation platelet concentrate. i-PRF 
not only releases abundant cytokines and growth factors 
stably and continuously, but also promotes tissue regene-
ration and improves the survival rate of tissue transplanta-
tion. Moreover, freshly prepared i-PRF can combine with 
various biological materials and will exist in the form of 
fibrin gel about 15 minutes after preparation. Moreover, 
compared with PRP and PRF, i-PRF has a simpler prepara-
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tion process and does not need to add any exogenous acti-
vator, thus avoiding related ethical problems. As an ideal 
three-dimensional scaffold in tissue engineering, i-PRF 
has been extensively used in clinical practice [12, 13].

In this study, influences of i-PRF on the proliferative, 
migrative, and hair-inducing abilities of human and mouse 
DPCs were explored, which is beneficial for the efficient 
preparation of tissue-engineered hair follicles in vitro and 
is meaningful for future clinical study on alopecia.

2. Materials and methods
2.1. Participants

Human intact scalp skin was obtained from patients 
with benign skin tumors or scalp injury. Whole venous 
blood samples were donated by healthy volunteers wit-
hout smoking history or abnormality of biochemical tests. 
Assays using human samples were used with the approval 
of the Ethical Committee of the Affiliated Taizhou Second 
People's Hospital of Yangzhou University after obtaining 
the written informed consent from all patients.

2.2. Animals
C57BL/6J mice aged at 4-6 weeks of both sexes were 

acquired from the Vital River company (Beijing, China). 
Under the approval of the Institutional Animal Care and 
Use Committee of the Affiliated Taizhou Second People's 
Hospital of Yangzhou University, animal experiments 
were conducted.

2.3. Isolation and culture of DPCs from mouse (mDPCs) 
and human (hDPCs)

Anagen vibrissae follicles of mice were dissected with 
fine forceps. Excessive hair shafts outside the skin and the 
subcutaneous fat tissue were removed with microscissors. 
Samples were rinsed with Phosphate Buffer Saline that 
contains 1% penicillin-streptomycin three times, and 2.5 
mg/ml collagenase IV was used to digest the surrounding 
collagen capsules in the follicles at 37°C for 2 h. A large 
proportion of DPCs were exposed at the bulbs of follicle. 
Next, isolation of DPCs was taken under a microscope. 
Isolated DPCs were taken to culture in Dulbecco's modi-
fied Eagle's medium (DMEM) which included 10% fetal 
bovine serum together with 1% penicillin-streptomycin 
at 37°C in a humidified atmosphere with 5% CO2. Every 
three days, the cell culture medium was taken to replace. 
When DPCs reached 80% confluence, cells were added 
with 0.25% trypsin-ethylene Diamine Tetraacetic Acid 
and shifted to new culture flasks with a split ratio of 1:2. 
hDPCs were prepared the same as mDPCs. DPCs in pas-
sage 2 were adopted for the subsequent experiments. For 
each assay, there were three primary cell cultures with 
three independent technical replicates. DPCs were charac-
terized according to a previous study [14].

2.4. Preparation of i-PRF and PRP
Whole venous blood (10 mL) was drawn from the right 

median cubital vein. After transfer into a coagulant-free 
plastic test tube, the samples were centrifuged with a Sor-
vall ST1 Plus desk centrifuge (75009740; ThermoFisher 
Scientific) [15]. The upper liquid layer was taken to collect 
as i-PRF and placed in a 6-well plate for 1.5 h to form a 
complete clot followed by cultivation with 5 mL DMEM 
(Gibco) with no other supplements in an incubator with 
90% humidity and 5% CO2 for 3 d. Next, the medium was 

aspirated and served as 100% i-PRF conditioned medium, 
which was diluted with standard culture medium with se-
rum and antibiotics to create 20% (v/v) i-PRF conditioned 
medium since 20% concentration is the best for regenera-
ting hair follicle [16].

PRP was produced using a Pro health care system Pro-
sys PRP Kit (KMedicins, Korea) and a concentration kit 
according to a previous study [17]. 10% PRF-conditioned 
medium was used to culture DPCs [18].

2.5. Evaluation of cell proliferation
DPCs (4 × 103 cells/well) were planted in 96-well plates. 

After 12, 24, 72, as well as 120 h, each well was taken to 
treat with 10 μL CCK-8 reagent, and cells were taken to 
incubate at 37°C for 2 h. A Microplate Absorbance Rea-
der (HBS-1096A; Beyotime, Shanghai, China) was used 
to assess optical density (OD) by testing cell absorbance at 
a wavelength of 450 nm. For clone formation assay, DPCs 
were treated with i-PRF: PRP, or i-PRF + Galunisertib and 
planted into 6-well plates at the concentration of 1000 cells 
per wall. Every 3 days, cell culture medium was replaced. 
Fourteen days later, cells were taken to fix and dye with 
crystal violet, and the colonies were counted.

2.6. Cell migration assay
Using a Boyden chamber, hDPCs (6 × 104 cells/well) 

were cultured in the serum-free medium in the upper cham-
ber of the polyethylene terephthalate cell culture inserts 
(pore size: 8 μm; Corning). The PRP or i-PRF-conditioned 
mediums were added into the lower chamber. Followed by 
24 h, cells were taken to fix with 4% paraformaldehyde 
(P1110, Solarbio) for 20 min and stain with crystal violet 
dye (E607309-0100, Sangon Biotech, Shanghai, China) 
for 15 min. Cells remaining on the upper chamber were 
considered as non-migrated cells and were removed. Mi-
grated cells were photographed from five random fields 
via an inverted microscope (Zeiss, Germany). The ImageJ 
software was used for cell counting quantification.

2.7. Reverse transcription-quantitative PCR
Total RNAs were taken to isolate from hDPCs and 

mDPCs after culture with the PRP or i-PRF conditio-
ned medium for 14 days via a Total RNA Extraction Kit 
(R1200, Solarbio, China). cDNA was immediately synthe-
sized from a total of 1 μg RNA via a Universal RT-PCR Kit 
(M-MLV) (RP1100, Solarbio). Relevant primer sequences 
were listed as follows (orientation: 5’→3’): ALP (human), 
F: CATCCTGTATGGCAATGGG and R: TGTTGTGAG-
CATAGTCCAC; β-catenin (human), F: CCAAGTCCTG-
TATGAGTGGG and R: GCATACTGTCCATCAATAT-
CAGC; Versican (human), F: AGTGGATAGGCCTCAA-
TGAC and R: TCCAATTCTCGTATTGCAGTG; TGF-
BR1 (human), F: AGCTGTGAAGCCTTGAGAG and R: 
CAATGCTGTAAGCCTAGCTG; TGFBR2 (human), F: 
AATCCTGCATGAGCAACTG and R: CATTCTTTCTC-
CATACAGCCA; GAPDH (human), F: TCATTTCCTG-
GTATGACAACGA and R: GTCTTACTCCTTGGAG-
GCC;   ALP (mouse), F: TTCCTGGGAGATGGTATGG 
and R: AATTTGTCCATCTCCAGCC; β-catenin (mouse), 
F: CGCCTTCATTATGGACTGC and R: TCCAACAGT-
TGCCTTTATCAG; Versican (mouse), F: ACTGTCAGA-
TATCCCATACGG and R: AATCCATAGGTCCGAA-
CCC; TGFBR1 (mouse), F: GCTGACATCTATGCAA-
TGGG and R: CTGATAGTCTTCATGGATTCCAC; 
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proteins (Figure 2A-C).

3.3. The TGF-β/Smad pathway is activated by i-PRF
Expression of TGFBR1 together with TGFBR2 was 

increased by PRP and i-PRF in DPCs, as revealed by 
PCR analysis (Figure 3A). Western blotting was conduc-

TGFBR2 (mouse), F: CAAGTCGGTTAACAGTGA-
TGTC and R: AGTGGACAGTCTCACATCG; GAPDH 
(mouse), F: ACTCTTCCACCTTCGATGC and R: CCG-
TATTCATTGTCATACCAGG. PCR was implemented 
using BeyoFusion™ PCR Master Mix (2X) (D7250-
5ml, Beyotime) on an ABI 7500 real-time PCR system 
(4351106, Applied Biosystems). Relative RNA expression 
was calculated on the grounds of the 2−ΔΔCt method [19] 
and was normalized to GAPDH.

2.8. Western blotting
The proteins were taken to extract from DPCs using 

RIPA Lysis Buffer, separated using a 12% SDS-PAGE gel, 
and shifted to a nitrocellulose membrane. After sealing in 
5% skimmed milk and washing with a TBST buffer three 
times, samples were incubated with primary antibodies 
including ALP, β-catenin, Versican, TGFBR1, TGFBR2, 
SMAD2, SMAD3, p-SMAD2, p-SMAD3, and β-actin at 
4ºC overnight. Subsequently, the blots were detected by 
chemiluminescence using the corresponding secondary 
antibodies. All the antibodies were purchased from Abcam 
(Shanghai, China). A ChemiDoc MP Imaging System 
(17001402, BIO-RAD) was adopted for band detection.

2.9. Immunofluorescence staining
DPCs (6 × 104 cells/well) were plated on glass slides, 

fixed with 4% paraformaldehyde, washed with PBS, as 
well as permeabilized with 1% Triton X-100 (Beyotime, 
China). Next, cells were taken to block with 5% BSA for 1 
h and incubated with primary antibodies against ALP, Ver-
sican, and β-catenin overnight at 4ºC. On the second day, 
cells were taken to incubate with relevant secondary anti-
bodies for 2 h at room temperature. All the antibodies were 
purchased from Abcam. DAPI (C1002, Beyotime, China) 
was used for staining the nuclei. An inverted fluorescence 
microscope (Zeiss, Germany) was used to observe the 
fluorescence signals.

2.10. Statistical analysis
Data were derived from three replicates in three pri-

mary cultures and expressed as mean ± standard deviation 
(SD). P values ≤ 0.05 were deemed to be significant and 
were calculated by one-way ANOVA followed by Tukey’s 
or Dunnett’s post hoc tests and two-way ANOVA using the 
GraphPad Prism 9.0 software. 

3. Results
3.1. i-PRF promotes the proliferative and migrative 
capacities of DPCs

As shown in Figure 1A-B, i-PRF and PRP increased 
the viability and proliferative ability of DPCs. Figure 1C 
revealed that i-PRF and PRP increased number of migra-
ted DPCs. i-PRF had a more significant effect on promo-
ting the viability, proliferative and migrative capacities of 
DPCs than PRP.

3.2. i-PRF promotes ALP, Versican, along with 
β-catenin expression in DPCs

PCR, western blotting, and immunofluorescence stai-
ning assays were conducted to assess ALP, Versican, along 
with β-catenin expression in DPCs by treating PRP and 
i-PRF. The results revealed that either PRP or i-PRF can 
enhance ALP, Versican, and β-catenin expression, while i-
PRF caused more significantly higher expression of these 

Fig. 2. i-PRF promotes ALP, Versican, and β-catenin expression in 
DPCs. (A) Relative ALP, Versican, and β-catenin expression in DPCs 
after treatment of i-PRF and PRP was assessed by PCR. (B-C) Immu-
nofluorescence staining assays and western blotting were conducted 
to reveal expression of ALP, Versican, and β-catenin proteins in DPCs 
after treatment of i-PRF and PRP. **p < 0.01.

Fig. 1. i-PRF promotes the proliferation and migration of DPCs. 
(A) A CCK-8 assay was done to evaluate cell viability of DPCs by 
treatment of i-PRF and PRP 0 h, 24 h, 72 h, and 120 h. (B) Number 
of colonies formed by DPCs after treatment of i-PRF and PRP was 
counted. (C) A Transwell assay was performed to reveal the number 
of migrated DPCs after treatment of i-PRF and PRP. **p < 0.01.
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ted to further assess the TGF-β/Smad pathway-associated 
proteins. PRP and i-PRF enhanced TGFBR1 and TGF-
BR2 proteins and increased the ratios of p-SMAD2/3 to 
SMAD2/3 (Figure 3B).

3.4. Galunisertib rescues the influences of i-PRF on 
the viability, proliferative and migrative capacities of 
DPCs

A small molecule inhibitor of TGF-beta receptor I, 
Galunisertib, was used to treat DPCs to explore whether 
the influences of i-PRF on DPCs were dependent on the 
TGF-β/Smad pathway. Galunisertib rescues the influences 
of i-PRF on viability (Figure 4A), proliferation (Figure 
4B), and migration of DPCs (Figure 4C).

3.5. Galunisertib rescues the influences of i-PRF on 
ALP, Versican, along with β-catenin expression in 
DPCs

The positive effects of i-PRF on ALP, Versican, as well 
as β-catenin expression at mRNA and protein levels in 
DPCs were rescued by Galunisertib (Figure 5), suggesting 
that i-PRF promotes the trichogenic ability of DPCs by the 
TGF-β/Smad pathway.

4. Discussion
Hair follicles go through complicated epithelial-mesen-

chymal interactions in embryonic and birth stages. DPCs 
facilitate epithelial cell proliferation and induce epithelial 
stem cell differentiation to regulate the cycle of hair fol-
licles [20]. The transplantation of DPCs can induce hair 
follicles in nude mice [21]. However, DPCs lose hair fol-
licle inductivity after several passages during the in vitro 
culture, which is a major problem in its clinical application 
[21, 22]. As a purely autologous 3D living biomaterial, i-
PRF possesses better biological properties compared with 
PRP and PRF, which makes it a more promising tool for 
tissue regeneration [15]. In this research, the functions of 
i-PRF on the viability, proliferation, and migration, toge-
ther with trichogenic ability of DPCs were assessed and 
the influences of i-PRF and PRP were compared. The re-
sults revealed that i-PRF had the better effects than PRP in 
promoting the proliferative, migrative, and hair-inducing 
abilities of DPCs.

i-PRF contains more cytokines and growth factors than 
PRP and PRF, which may explain its better functions than 
PRP in DPCs in our findings. It contains all components of 
blood except plasma and red blood cells, namely platelets, 
white blood cells, fibrin, growth factors including PDGF, 

basic FGF, epidermal growth factor, VEGF, transforming 
growth factor-β, as well as insulin-like growth factor-1 
[23] with relevant biomolecular activities. For example, it 
has been shown that FGF2 can enhance the proliferation of 
DPCs and maintain its hair induction ability [24]. PDGF 
is necessary for inducing and maintaining hair follicles in 

Fig. 3. The TGF-β/Smad pathway is activated by i-PRF. (A) Rela-
tive ALP, Versican, and β-catenin expression in DPCs after treatment 
of i-PRF and PRP was assessed by PCR. (B-C) Immunofluorescence 
staining assays and western blotting were conducted to reveal expres-
sion of ALP, Versican, and β-catenin proteins in DPCs after treatment 
of i-PRF and PRP. **p < 0.01.

Fig. 4. Galunisertib rescues the effects of i-PRF on the viability, 
proliferation, and migration of DPCs. Cell viability of DPCs by 
treatment of i-PRF or i-PRF + Galunisertib (10 μM) after incubation 
with CCK-8 reagent was evaluated. (B-C) After treatment of i-PRF 
or i-PRF + Galunisertib, colonies formed by DPCs (B) and migrated 
DPCs (C) were photographed and counted. **p < 0.01.

Fig. 5. Galunisertib rescues the effects of i-PRF on ALP, Versican, 
and β-catenin expression in DPCs. (A) Relative mRNA expression 
of ALP, Versican, and β-catenin in DPCs after treatment of i-PRF or 
i-PRF + Galunisertib (10 μM) was detected by PCR. (B-C) Immu-
nofluorescence staining and western blotting of ALP, Versican, and 
β-catenin proteins in DPCs after treatment of i-PRF or i-PRF + Galu-
nisertib. **p < 0.01.
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the growth phase in vivo [25]. PDGF and FGF2 have been 
confirmed to synergistically promote proliferative capa-
city and hair induction activity of DPCs [26].

The TGF-β/Smad as well as Wnt/β-catenin pathways 
can influence the development of hair follicles [27-29]. 
The mechanisms of the TGF-β signaling cascade in hair 
regeneration were associated with BMPs [30, 31]. BMP2 
[32], BMP4 [33], BMP6 [28], and BMP7 [34] were candi-
date genes that regulate hair follicle growth. In this study, 
i-PRF caused a higher expression of TGFBR1, and TGF-
BR2, led to a higher ratio of p-SMAD2/3 to SMAD2/3 
than PRP, suggesting that i-PRF had better effects in sti-
mulating the TGF-β/Smad pathway than PRP, and that the 
better impacts of i-PRF than PRP in promoting the prolife-
rative, migrative, and hair-inducing abilities of DPCs were 
associated with the TGF-β/Smad pathway.

However, our in vitro study based on cell culture only 
mimics a portion of the complex architecture of native 
organs. In vivo hair growth experiments in animals were 
needed to further compare the functions of i-PRF and PRP 
in hair follicle regeneration. Our future study will also 
compare the influences of i-PRF and PRF in hair follicle 
reconstruction to further support the advantages of i-PRF 
in tissue regeneration.

In conclusion, our study suggests that i-PRF, the third 
generation of platelet concentrates, enhances the prolifera-
tive, migrative, and hair-inducing abilities of DPCs by the 
TGF-β/Smad pathway, indicating it as an ideal biocom-
patible material for hair restoration. Moreover, i-PRF had 
a better promotive effect than PRP in trichogenic ability 
of DPCs, confirming the strength of i-PRF as a promising 
platelet concentrate in hair follicle regeneration.
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