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1. Introduction 
Dental stem cells (DSCs) have emerged as promising 

tools for cell-based therapy given their accessibility, self-
renewal potential, low immunogenicity, and multilineage 
differentiation ability [1]. Among DSCs, the periodontal 
ligament (PDL) stands out, a red fibrous membrane that 
connects the tooth root to the alveolar bone cement. It 
has been widely demonstrated that PDL perivascular wall 
contains an interesting cell population denominated perio-
dontal ligament stem cells (PDLSCs), which display simi-
lar features to other mesenchymal stem cells (MSCs). 

Since PDLSCs can express stemness-related genes, 
which facilitate their multilineage capacity, these cells 
can give rise to muscle, bone, nerve, cartilage, and fat 
cells [2–4]. Researchers have focused on unraveling the 
underlying molecular mechanisms in order to understand 
adipogenic differentiation of PDLCs. This process is regu-

lated by several signaling pathways and transcription fac-
tors that control gene expression and cellular fate [5]. For 
instance, the peroxisome proliferator-activated receptor 
gamma (PPARγ) pathway is a key regulator of adipocyte 
differentiation and is expressed in PDLSCs.

Other transcriptional factors, such as CCAAT/enhan-
cer-binding proteins (C/EBPs) and adiponectin (ADIPOQ), 
also play crucial roles in adipogenesis within PDLSCs [6]. 
It has been reported that both changes in transcriptional 
activity and cell differentiation involve chromatin reconfi-
guration mediated by epigenetic mechanisms, including 
DNA methylation, microRNAs, and post-translational 
modifications (PTMs) of histones [7–10]. 

PTMs of histones are associated with chromatin struc-
tures related to gene expression. For example, histone 
methylation can target genes for turn-on or off, while his-
tone acetylation relaxes chromatin structure and thus faci-
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litates transcriptional factors to bind to DNA to regulate 
it positively [11]. In this context, histone acetylation is 
dynamically regulated by the concerted activities of his-
tone acetyltransferases (HATs) and histone deacetylases 
(HDACs)  [7, 12]. These enzymes perform acetylation 
and deacetylation at the N-terminal lysine residues [13]. 
Specifically, in nucleosomal histone H3 there are epigene-
tic signatures indicative of transcriptional activation such 
as histone H3 lysine 9 (H3K9ac), histone H3 lysine 14 
(H3K14ac), and histone H3 lysine 27 (H3K27ac) [14, 15]. 

HAT and HDACs are essential for maintaining stem 
cell proliferation and self-renewal, genome integrity, 
and transcriptional regulation, among other process [16]. 
Acetylation of histones has been correlated to PDLSCs 
osteogenic ability [17, 18], but its contribution to adipoge-
nesis in DSCs has been little explored. On the other hand, 
histone deacetylase inhibitors (HDACis) have emerged as 
influential modulators of chromatin acetylation. For ins-
tance, HDACis are chemical compounds that selectively 
impede HDACs enzymatic activities, leading to main-
taining higher histone acetylation levels and thus, esta-
blishing a permissive chromatin state for gene expression 
[19]. HDACis, such as trichostatin A (TSA) and valproic 
acid (VPA), have been known to influence cellular com-
mitment to alternative cell lineages, including neural, he-
patic, myogenic, and osteogenic ones [20–23]. 

However, the specific impact of TSA and VPA on 
adipogenic differentiation of PDLCs remains to be fully 
understood. Additionally, the contribution of H3K9ac, an 
epigenetic modification that is intricately associated with 
the adipogenic response, in orchestrating a more permis-
sive chromatin state merits investigation. Such modifi-
cations facilitate the recruitment of transcription factors 
and coactivators, thereby potentiating gene expression 
pertinent to adipogenesis, including the master regula-
tor peroxisome proliferator-activated receptor gamma 
(PPARγ). Consequently, a comprehensive exploration of 
these aspects holds substantial promise in advancing our 
understanding of adipogenic differentiation in PDLCs. 
This study aimed to investigate the effect of inhibitors of 
HDACs class I on adipogenic induction and to examine 
the role of acetylated H3K9 in the adipogenic response of 
PDLCs.

2. Materials and methods
2.1. Isolation and culture of primary human PDL cells

Human third molars were collected from healthy vo-
lunteers (n=3; aged 13–27 years old) at the Pediatric Den-
tistry and Oral Surgery Clinics of the Universidad Autó-
noma de Yucatán, following a protocol approved by the 
Ethics Research Committee of Dr. Hideyo Noguchi Regio-
nal Research Center, Universidad Autónoma de Yucatán 
(CIE-06-2017). All isolation and cell culture procedures 
have been detailed in a previous report [4]. PDL tissue was 
separated from the root surface, minced into small pieces 
(1–2 mm), and placed in 35-mm culture dishes containing 
alpha-modified Eagle’s medium (α-MEM, Gibco, Grand 
Island, NY, USA) supplemented with 15% fetal bovine 
serum (FBS, Gibco, USA) and 1% antibiotic (penicillin/
streptomycin, Gibco, USA). Primary cells from PDL tis-
sue were incubated at 37 °C in 5% CO2 under saturated 
humidity and medium changes twice a week. At 80-90% 
confluence, primary cells were seeded into subcultures. 
Morphological characterization of PDLCs was performed 

using an inverted phase contrast microscope (LABOMED, 
TCM 400 Model). Primary cells from passages 4-6 were 
used in this study.

2.2. Trilineage differentiation of the isolated cells in 
vitro

In order to investigate the osteogenic, adipogenic, and 
chondrogenic differentiation, PDLCs at passage 6 were 
seeded at a density of 3×104 cells/well in 12-well plates 
and incubated in osteogenic medium (a-MEM, Gibco, 
Grand Island, NY, USA) with 10% FBS (Gibco; Thermo 
Fisher Scientific, Inc.), 100 U/ml penicillin and 100 µg/
ml streptomycin) containing 10 nM dexamethasone (Sig-
ma-Aldrich; Merck KGaA), 5 mM β-glycerophosphate 
(Sigma-Aldrich; Merck KGaA,) and 500 µM ascorbic 
acid (Sigma-Aldrich; Merck KGaA) for 14 days to induce 
mineralization. The cells were then stained with 1% Aliza-
rin Red (Sigma-Aldrich; Merck KGaA) for 1 h at 37°C. In 
order to determine their adipogenic ability, PDLCs at pas-
sage 6 were seeded at a density of 3×104 cells/well in 12-
well plates and incubated in basal medium (Gibco; Ther-
mo Fisher Scientific, Inc.) [α-MEM containing insulin 
(1.7µM), dexamethasone (1µM), 3-isobutyl-1methylxan-
thine (500 µM), and indomethacin (60 µM)]  for  21 days 
and then stained with Oil Red O (5 mg/ml; Sigma-Aldrich; 
Merck KGaA) for 30 min. For chondrogenesis induction, 
PDLCs at passage 6 were seeded at a density of 3×104 
cells/well in 12-well plates and incubated in chondroge-
nic medium StemPro® (Gibco; Thermo Fisher Scientific, 
Inc.) and stained with Alcian blue (Sigma). All cell images 
were observed using an inverted contrast-phase light mi-
croscope (Nikon Corporation). 

2.3. MTT assay of cell viability
The effect of different concentrations of TSA (0, 100, 

250, nM) or VPA (0, 4 y 8 mM) on PDLCs viability 
was examined using a 3-(4,5- dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (n=6) (MTT; #M6494, 
Invitrogen, USA) at 0 and 72 h after treatment. Briefly, 
PDLCs were seeded at 2 × 104 cells/cm2 in 12-well plates 
containing a growth medium for 24 h at 37°C before being 
exposed to increasing concentrations of TSA or VPA 
(Sigma-Aldrich, USA). Control groups were treated with 
growth medium inhibitors. The optical density of forma-
zan crystals dissolved in dimethyl sulfoxide solution was 
determined at 570 nm. Viability percentage was calculated 
by dividing the optical density of the cells under treatment 
by the optical density of the cells under normal growth 
without treatment. The morphological changes in TSA or 
VPA-treated cells were observed with an inverted phase 
contrast microscope (LABOMED).  The experimental 
scheme is illustrated in Fig. 1.

2.4. Western blotting
Cells treated with or without TSA or VPA were lysed by 

the addition of RIPA® buffer (Invitrogen) supplemented 
with a protease inhibitor cocktail (Sigma-Aldrich) to the 
cultures. Cells were detached with a cell scraper, and pro-
tein content was quantified by BCA assay (Bioscience). 
Samples containing 25–50 µg of total protein lysates were 
used in each experiment. Western blot analysis was per-
formed with primary antibodies against H3 (1:10000; Mil-
lipore, cat. No. 07-690) and H3K9ac (1:2000; Millipore, 
cat. No. 07-352). Proteins were visualized using the ECL 
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USA) and analyzed using EcoStudy software (Illumina, 
San Diego, CA, USA). Changes in gene expression were 
calculated relative to 18s RNA using the 2−ΔΔCT method 
(22) to measure the expression of pluripotency markers 
(NANOG, OCT4, SOX2, KFL4, cMYC) and adipogenic 
markers (PPARγ and ADIPOQ) using the primers listed in 
Table 1.

2.6. Statistical analysis
All experiments were repeated three times. Data were 

analyzed and expressed as the mean ± standard deviation 
for each set. For statistical analysis, independent samples 
comparison Student’s t-test, one-way ANOVA were used 
between groups using SIGMA Statistics software. Statisti-
cal significance was set at *P <0.05. 

3. Results
3.1. In vitro multipotent abilities of PDLCs and expres-
sion of pluripotent mesenchymal markers

The multipotency ability of PDLCs was verified by 
induction in the osteogenic, adipogenic, and chondroge-
nic media in vitro. Alizarin Red staining (Fig. S1) revea-
led several calcified nodules in the cultures after 14 days 
of osteogenic induction. After 4 weeks of culture in the 
adipogenic medium, intracellular lipid vacuoles appeared 
in PDLCs, whose presence was confirmed by Oil Red O 
staining (Fig. S1). Alcian blue-stained cells indicated the 
presence of acidic proteoglycan in chondrogenic differen-
tiation (Fig. S1).

3.2. Effects of TSA and VPA on morphology and viabi-
lity of PDLCs 

In order to determine the effect of HDACs class I 
inhibitors on human PDLCs, different concentrations of 
TSA (100, 200, and 250 nM) or VPA (1, 4, and 8 mM) 
were tested by analyzing their morphology and viability. 
Untreated cells exhibited a spindle-like shape as normal 

system, according to the manufacturer’s instructions, and 
exposed to X-ray films (Amersham Hyperfilm™ ECL). 
ImageJ software was used for the quantitative analyses.

2.5. Total RNA Extraction and Quantitative RT-PCR 
RT-PCR was performed to measure the levels of plu-

ripotency-associated gene expression (NANOG, OCT4, 
KLF4, c-MYC, and SOX2), HDACs (HDAC1-3), HAT 
(p300 and GCN5) and adipogenic markers (PPARγ and 
ADIPOQ). Total RNA was isolated from PDLCs (passages 
4 and 6) using a Direct-zol RNA kit (Zymo Research), 
according to the manufacturer’s instructions. For cDNA 
synthesis, reverse transcription reactions were performed 
with 1 µg of total RNA using the PrimeScript RT–PCR 
Kit (Takara Biotechnology, Dalian, China) following the 
manufacturer’s instructions. Platinum™ Taq DNA Poly-
merase (Invitrogen™), 1 µM of each primer, and 150 ng/
µL of cDNA in a 25 µL volume were used during PCR in 
C1000 Touch Thermal cycler (BIO-RAD, Foster City, CA, 
USA). PCR products were separated through electrophore-
sis in 1.2 % agarose gels, stained with ethidium bromide 
(Sigma-Aldrich, USA), and visualized under UV light. 
Images were acquired using Gel Doc Xr+ System (BIO-
RAD). 18S RNA was used as an internal control.  Quanti-
tative RT-PCR was performed in triplicate using iTaq Uni-
versal SYBR Green Supermix (BIO-RAD, CA, USA) in 
an Eco Realtime PCR System (Illumina, San Diego, CA, 

Fig. 1. Timeline of the experimental scheme.

Gene Sequence TM (°C)

KFL4 F: 5´-TAC CAA GAG CTC ATG CCA CC-3’
R: 5´-CGC CTA ATC ACA AGT GTG GG-3’ 60

c-MYC F: 5´-GGA CCC GCT TCT CTG AAA GG-3’
R: 5´-TAA CGT TGA GGG GCA TCG TC-3’ 60

NANOG F: 5’-TGC TGA GAT GCC TCA CAC GGA-3’
R: 5’-TGA CCG GGA CCT TGT CTT CCT T-3’ 60

SOX2 F: 5’-GAA AGG GAC CGA GGA GTA-3’
R: 5’-CCG AGT GTG GTT CTG TAA C -3’ 62

OCT4 F: 5’-GAA AGG GAC CGA GGA GTA-3’
R: 5’-CCG AGT GTG GTT CTG TAA C -3’ 62

HDAC 1 F: 5’-TCG ATC TGC TCC TCT GAC AA-3’
R: 5’-GCT TCT GGC TTC TCC TCC TT-3’ 60

HDAC 2 F: 5’-TGT GCC TCA GTT GCT TCA TC-3’
R: 5’-GAT GCA GTG AGC CAA GAT CA-3’ 60

HDAC 3 F: 5’-GGA GCT GGA CAC CCT ATG AA-3’
R: 5’-GAC TCT TGG TGA AGC CTT GC-3’ 60

PPARγ F: 5′-CAG TGG GGATGC TCATAA-3′
R: 5′-CTT TTG GCA TAC TCT GTG AT-3′ 58

ADIPOQ F: 5′-ATG GTC CTG TGA TGC TTT GA-3′
R: 5′-GTT GAG TGC GTA TGT TAT TTT T-3′ 50

18S F: 5’-GGA CAG GAT TGA CAG ATT GAT-3’
R: 5’-AGT CTC GTT CGT TAT CGG AAT-3’ 60

Table 1. The primer sequences of genes employes in this study.
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mesenchymal cells. None of the tested concentrations of 
TSA or VPA induced detectable changes in cell morpho-
logy (Fig. 2A). Interestingly, it should be noted that cell 
viability remained unaffected when using the different 
concentrations of TSA or VPA (Fig. 2B). Results suggest 
that PDLCs did not show a concentration-dependent cel-
lular sensitivity to HDACis. Since 100 nM TSA and 8 mM 
VPA treatments did not lower PDLCs viability compared 
to the control, these concentrations were used in sub-
sequent experiments.

3.3. Effect of TSA and VPA on HDACs class I gene ex-
pression

A comparison of HDACs 1-3 gene expression in cells 
treated with TSA or VPA inhibitors was performed to ana-
lyze the involvement of HDACs class I in the modulation 
towards adipogenic commitment of PDLCs. Screening of 
HDAC family showed changes in mRNA levels induced 
by HDAC inhibitors (Fig. 2C).  For instance, HDAC1 was 
downregulated by 40%, while HDAC2 was lowered by 
20% with 100 nM TSA. Contrastingly, with 250 nM TSA, 
there was an increase in mRNA levels of 2 and 8 times for 
HDAC1 and HDAC2, respectively. These results suggest 
a differential response in regulating HDAC gene expres-
sion by TSA, depending on the specific HDAC isoform. 
Based on these data, the 100 nM concentration was selec-
ted for adipogenic differentiation assays. Regarding the 
expression of HDACs in VPA-treated cells, results point 
to a dose-dependent response. For HDAC2 and HDAC3, 
8 mM VPA reduced their expression by 50% and 80%, 
respectively, while for HDAC1, it increased by 60%. 
These findings highlight the importance of considering the 
inhibitor´s dose in the transcriptional activity of HDACs 
and its implication for cellular responses. On the other 
hand, we cannot discard an effect at the enzymatic level.

3.4. Effect of HDACs inhibitors on adipogenic differen-
tiation of PDL stem cells

Given that no reduction in cell viability mediated by 
HDACis was observed, a pre-treatment strategy invol-
ving 100 nM TSA or 8 mM VPA for 72 h prior to initia-
ting adipogenic induction was included (Fig. 1A). Based 
on our previously published adipogenic protocol [4], the 

possibility of an enhancement of the adipogenic response 
of PDLCs by pre-treating them with these inhibitors was 
explored [24, 25]. PDLCs presented a higher differentia-
tion capacity towards the adipogenic lineage when cells 
were pre-treatment with these HDACis (Fig. 3A, image 
e-f). Cells treated with the inhibitors presented changes in 
their fibroblastoid-like morphology to more rounded cells 
(Fig. 3A, image e-f). This effect is stronger on cells treated 
with 8 mM VPA, showing a round cell morphology and 
an apparent larger size (Fig. 3A, image f).  On the other 
hand, the increased adipogenic response concurred with 
PPARγ and ADIPOQ expression, genes that are important 
markers of adipogenic commitment [26]. This points out 
that TSA and VPA treatments enhanced PPARγ expression, 
compared to control cells (Fig. 3B). Furthermore, ADI-
POQ, which encodes a cytokine that is secreted by adipo-
cytes and accumulates gradually during adipogenesis [27], 
showed higher expression in TSA or VPA-treated cells 
than in uninduced cells (Fig. 3B). Our findings suggest 
that TSA and VPA treatments could promote the synthesis 
and accumulation of adipokines.

There was a reduction in the expression levels of HDACs 
1-3 when the inhibitors were present during adipogenic dif-
ferentiation. Notably, HDAC3 expression exhibited a more 
pronounced decrease, particularly in PDLCs treated with 
TSA, as depicted in Fig. 3C. These findings concur with 
the observations made in the microphotographs, where an 
augmented formation of droplets was evident in the pres-
ence of TSA. Therefore, the effect of HDAC inhibitors on 
the expression levels of histone acetyltransferases (HATs) 
was explored, with a particular focus on p300 and GCN5 
during adipogenic differentiation. A significant upregula-
tion of HAT expression in PDLCs during adipogenic diffe-
rentiation was noted; specifically, p300 expression levels 
showed a two-fold increase in induced PDLCs compared 
to non-induced cells (Fig. 3D). Additionally, GCN5 exhi-

Fig. 2. Effect of TSA and VPA on the viability, and gene expression 
of HDACs 1-3 in PDLCs.  A: Photomicrograph of PDLCs with TSA 
(100, 200, and 250 nM) or VPA (1, 4, and 8 mM. B: Viability with 
different concentrations of TSA or VPA. C: Relative gene expression 
levels HDACS class I (HDAC1-3) of PDLCs treatment with different 
concentrations of HDACis. The expression of each gene was nor-
malized to the average expression of the endogenous reference gene 
18S. Values are means ± ES, n = 3, ANOVA test with Tukey’s post-test 
showed *P< 0.05.

Fig. 3. Effect of TSA and VPA on lipid droplet deposition and 
gene expression levels of adipogenic markers, HAT, HDACs on 
adipogenic differentiation. A: Microphotographs of PDLC cultures 
in adipogenic medium in the presence or not of the inhibitors at 0 
and 21 days of adipogenic induction. B: Relative gene expression 
levels HDACS class I (HDAC1-3) of PDLCs treatment with different 
concentrations of HDACis before and after adipogenic differentiation. 
C: Relative expression levels adipogenic gene markers (PPARγ and 
ADIPOQ) before and after adipogenic induction in PDLCs treatment 
with different concentrations of HDACis. D: Relative expression le-
vels HATs (p300, GCN5) in PDLSCs treatment with different concen-
trations of HDACis before and after adipogenic differentiation. The 
expression of each gene was normalized to the average expression 
of the endogenous reference gene 18S. Values are means ± ES, n = 3, 
ANOVA test with Tukey’s post-test showed *P< 0.05.
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bited a prominent increase in expression when exposed to 
TSA and VPA during adipogenic induction, compared to 
non-induced cells. These findings suggest a potential link 
between increased p300 and GCN5 expression levels and 
the observed upregulation of PPARγ during adipogenesis 
(Fig. 3B).

3.5. Histone acetylation during adipogenesis
Since H3K9ac is an epigenetic mechanism involved 

in SCs differentiation [28, 29], the effect of TSA or VPA 
on acetylation status on the adipogenic differentiation of 
PDLCs was assessed. Western blot assays revealed that 
TSA-treated PDLCs prior to differentiation showed a de-
crease of 70% in H3K9ac, while in VPA-treated PDLCs, 
it was only of 30%, compared to the control (Fig. 4A). 
On the other hand, H3K9ac levels after adipogenesis (Fig. 
4B) increased by approximately 30% in the treatment with 
TSA, while VPA decreased H3K9ac by approximately 
70% compared to the control. Western blot assays showed 
that in cells undergoing differentiation, TSA treatment in-
creased H3K9ac levels (Fig. 4B).

4. Discussion
TSA and VPA can efficiently suppress the activity of 

multiple HDACs class 1, leading to an increase in his-
tone acetylation and other non-histone proteins. These 
inhibitors influence various processes, such as prolifera-
tion, arrest of cell cycle progression, gene expression, and 
induction of cell differentiation. and apoptosis [30, 31]. 
In dental stem cells, TSA and VPA have been reported to 
affect proliferation in a dose-dependent manner [32–35]. 
For example, Jin et al [35] reported that 50 nM increased 
growth, while 100 nM had a cytotoxic effect on DPSCs. 
On the contrary, Sulistyowati et al [36] reported that 200 
nM TSA is an appropriate dose to treat DPCs in vitro wit-
hout affecting their cell viability. Regarding VPA, a wide 

range of concentrations (0.01-100 mM) have been repor-
ted in human dental pulp cells [33, 34, 37] pointing out 
that higher VPA concentrations have an antiproliferative 
effect. In the present study, similar results were recorded. 
The application of a high concentration of HDACis de-
creased the number of cells, which implied an antiproli-
ferative effect in vitro. However, these conflicting results 
may be caused by differences in cell type (primary cells 
vs. transformed cells), their epigenetic state, and their 
microenvironment. Additionally, it has been reported that 
the modulatory mechanism of HDACis in the proliferation 
of MSCs occurs by arresting the cell cycle in the G2/M 
phase [38]. Future studies are required to analyze whether 
the molecular components of the cell cycle are affected by 
HDACs class I inhibition in PDLCs. 

Adipogenesis is the process by which undifferentiated 
precursor cells differentiate into adipocytes. HDACs and 
HATs are components in epigenetic regulation; however, 
there are few reports of HDACs or HAT gene expression 
in adipocyte differentiation [39]. RT-qPCR assays revea-
led that HDAC1 and 3 were dynamically downregulated 
in response to TSA or VPA (Fig. 3B). Inversely, p300 and 
GCN5 transcript levels increased with both inhibitors (Fig. 
3D). Our results demonstrate that inhibition of HDACs 
class 1 during differentiation stimulated adipogenesis. 
This fact suggests that in PDLCs, there is a malleability of 
the epigenome, which allows HDACis to stimulate the for-
mation of droplets compared to untreated cells (Fig. 3A). 
It also reinforced the idea that an increase in acetylation 
levels could be favoring the expression of PPARγ, a master 
adipogenic transcription factor, and ADIPOQ. Hence, an 
increase in PPARγ and ADIPOQ mRNA levels was obser-
ved in both inhibitor treatments. These findings suggest a 
potential link between increased p300 and GCN5 expres-
sion levels and the observed upregulation of PPARγ during 
adipogenesis (Fig. 3C). Previous studies have reported 
on the elevated expression of these histone HATs in the 
context of adipogenesis, wherein they play crucial roles in 
the activation of PPARγ and C/EBPα pathways [40, 41]. 
In brown preadipocytes, the loss of GCN5/PCAF hinders 
adipogenesis by suppressing the expression of PPARγ and 
PRDM16, indicating the probable involvement of H3K9 
acetylation in white adipose tissue browning [42]. Stu-
dies involving ribozyme-mediated depletion of CBP/p300 
have demonstrated repression in the expression of genes 
targeting PPARγ; consequently, attenuating the process of 
adipogenic differentiation in preadipocytes [43]. Further-
more, some investigations into the molecular mechanisms 
underlying p300-mediated histone modifications have 
revealed its binding to the promoter and enhancer regions 
of PPARγ2. Specifically, p300 interacts with H3/H4ac and 
H3K27ac, respectively, at these regulatory regions, sug-
gesting its role in regulating the transcriptional activity of 
PPARγ [44, 45]. It has been reported in PDLSCs that a gra-
dual loss of repressive histone mark, H3K9me3 and DNA 
methylation on the PPARγ promoter occur to facilitate adi-
pocyte differentiation [47]. Although the exact mechanism 
by which the inhibitors decreased the levels of HDAC1 
and 3 in PDLCs has not yet been determined, it seems that 
the decrease in their expression could be generating chro-
matin decondensation and facilitating transcription factors 
to bind in genomic regions of adipogenic genes. In our 
future work, this hypothesis is already being addressed by 
ChIP-seq.

Fig. 4. H3K9ac levels in response to TSA or VPA treatments 
in PDLCs. A, B: Immunodetection of histone H3K9ac and H3 in 
PDLSCs exposed to TSA or VPA for 72h before and after adipoge-
nic differentiation (representative western blot images), Ponceau S 
staining served as loading control. C, D: Quantification of H3K9ac 
levels was calculated from the intensity of each band. H3K9ac levels 
were normalized with H3 levels by using ImageJ. software. +MIA: 
Adipogenic induction medium. -MIA: Without adipogenic induction 
medium.
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Adipogenesis is also controlled by changes that occur 
in the nucleus, including a chromatin reorganization [46]. 
In this context, it has been reported that there are euchro-
matin histone marks (H3K9ac, H3K4me3, H3K27ac, and 
H3K36me3) that increase their expression in MSCs diffe-
rentiated cells[47–49]. This would be the reason to eva-
luate if TSA or VPA could generate changes in the levels 
of H3K9ac in the adipogenesis of PDLCs. An increased le-
vel of H3K9ac on day 21 of adipogenesis with TSA and a 
reduction with VPA-treated cells were observed (Fig. 4B). 
Steger et al [50] reported that there is an increase in H3K9 
acetylation on day one of adipogenesis in the 3T3-L1 line 
[46, 50]. Unfortunately, the participation of H3K9 acetyla-
tion through HAT or HDACs during differentiation of den-
tal stem cells has generally been focused on osteogenesis, 
while adipogenesis has been little explored. For example, 
Li et al [51] reported that histone acetyltransferases GCN5 
participate in the osteogenic differentiation of PDLSCs 
by regulating H3K9 acetylation in the DKK1 promoter 
region [51]. Another research group has shown that ove-
rexpression of p300 increases H3K9 acetylation in specific 
regions of genes associated with the odontogenic potential 
of DPSCs [1]. Additionally, Luo et al [52], observed that 
TSA and VPA increased histone H3 acetylation in DPCs. 
In the case of HDACs, it has been observed that HDACs 
1 and 3 generate the up-regulation of the gene expression 
of odontogenic differentiation-related proteins in DPSCs 
[52]. 

Reports are indicating that VPA generates chromatin 
decondensation, promoting histone acetylation [53]  and 
influencing cell fate choice [54]; however, these also fo-
cused only on osteogenesis. For example, Um et al [55] 
reported that VPA enhanced osteogenic differentiation in 
PDLSCs after constant treatment. Paino et al [34], repor-
ted that pretreatment of DPSCs with VPA improves mi-
neralized matrix formation, and determined that HDAC1 
and HDAC2 are enzymes that contribute to osteoblastic 
differentiation. There is disagreement about the effect of 
HDAC inhibitors on adipogenesis. Some reports have des-
cribed a negative effect on adipogenesis after inhibition 
of HDACs. For example, Lv et al [56] reported that TSA 
suppresses adipogenesis in 3T3-L1 preadipocytes, while 
Ferrari et al [57], reported that MS-275 (class I HDAC 
inhibitor) promotes adipogenesis in C3H/10T1/2. These 
divergent results could be explained in terms of epigeno-
mic differences among MSCs and therefore, in their res-
ponse to cellular commitment. Another factor to consider 
is that HDACs deacetylate non-histone proteins, including 
those with a regulatory function in key transcription fac-
tors of adipogenic differentiation. Therefore, the treatment 
of cells with agents, such as TSA or VPA, could be affec-
ting regulatory elements other than histones, resulting in 
epigenetic and non-epigenetic effects. 

5. Conclusion
Our results suggest that perturbation in H3K9 acety-

lation dynamics contributes to improving the response to 
adipogenesis in PDLCs. These findings highlight the po-
tential of inhibitors of class I HDACs as a tool to modulate 
the acetylation status of H3K9. The challenge for future 
studies is to generate knowledge about the epigenetic 
mechanisms in white to brown adipogenesis, which could 
help generate autologous anti-obesity therapeutic strate-
gies with a scope in oral diseases.
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