
48

                                                                                                                                                                                 Cell. Mol. Biol. (ISSN: 1165-158X)

1. Introduction 
The human consumption of animal protein has in-

creased quickly that is largely dependent on terrestrial and 
aquatic farm animals. However, aquaculture is becoming 
a more significant source for producing animal protein. 
Fisheries and aquaculture in Tunisia play an important 
role in socio-economic terms and as a source of food. the 
gilthead seabream (Sparus aurata) and the European sea-
bass (Dicentrarchus labrax) are the most important spe-
cies in terms of farming value. Aquaculture production has 
increased gradually in recent years, from 2600 tonnes in 
2005 to about 21900 tonnes in 2017 [1]. 

As the aquaculture sector has grown, a wide range of 
disease-causing pathogens (bacterial, viral, and fungal 
illnesses) have also emerged. Disease control is a multi-
disciplinary approach because of interactions among pa-
thogens, the hosts, and their environment [2,3]. For this 
reason, aquaculture activity requires several alternative 
strategies to control aquatic disease and promote favorable 
growth. Some of the most used approaches include che-
mical additives and microbial drugs, especially antibiotics 
[4,5]. The massive use of antibiotics for disease control 
and growth promotion in animals could result in the emer-
gence of resistance among pathogenic bacteria and should 
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be avoided in the prevention of disease among fish [6,7]. 
Therefore, there is a pressing need to develop microbial 
control strategies. The use of probiotic bacteria as micro-
bial control agents is the main strategy that has emerged 
in response to disease control issues. Using probiotics is 
one solution that can reduce the reliance of the aquaculture 
industry on antibiotics and is used as a crucial component 
of aquaculture techniques to enhance growth and disease 
resistance [3,8,9]. 

Probiotics are living microorganisms that provide the 
host with health benefits when consumed or applied lo-
cally in sufficient quantity. Specifically, they reduce the 
incidence of disease and improve the host animal’s nutri-
tional and intestinal microbial balance [10,11]. Gram-po-
sitive and Gram-negative bacteria, bacteriophages, yeasts, 
and unicellular algae are among the probiotics that have 
been investigated [12–17]. Several species of the Bacil-
lus genus produce spores that are incredibly resistant to 
a variety of environmental factors. According to reports, 
the genus Bacillus is helpful for aquaculture and has not 
been linked to any infectious fish diseases [5,18,19]. This 
bacterium produces several products of industrial interest, 
including enzymes, antibiotics, amino acids, insecticides, 
bio-surfactants, and bacteriocins [20,21]. Furthermore, 
due to their improved tolerance and survival in the harsh 
environment of the gastrointestinal tract, Bacillus strains 
are attracting attention in dietary studies related to human 
health. Among the dominant species of the genus Bacillus 
used as a probiotic in feed additives and disease control 
are B. subtilis, B. licheniformis and B. cereus [22–27]. Pro-
biotic bacteria used in larval cultures of aquatic organisms 
can be delivered either directly in water or by live carriers 
such as Artemia nauplii used as vectors [28]. Artemia is 
the most common live food used in the larviculture of eco-
nomically important crustaceans and fish, due to its ease 
of production and favorable biochemical composition. It 
contributes significantly to the energy flow of the food 
chain. This crustacean has a high nutritional value thanks 
to which it has become the essential trophic link in aqua-
culture [29].

Thus, the objective of this work is to identify and des-
cribe Bacillus strains from fish digestive systems for po-
tential use as probiotics. Morphological, biochemical tests 
and the MALDI-TOF-MS technique were used to identify 
the Bacillus strains. Probiotic effectiveness was evaluated 
using a number of methods, including tests for antagonis-
tic action against pathogenic microorganisms, hemolysis, 
enzymatic production, adhesion and effect on Artemia 
culture. 

2. Materials and Methods
2.1. Fish sampling and bacterial isolation

Ten Samples of healthy wild sea bream (Sparus aura-
ta) (about 50 g) were obtained from a fisherman’s catch 
around Monastir coastal waters, Tunisia. The collected 
samples were placed into a sterile sampling bag and di-
rectly transferred to the laboratory for bacterial isolation. 
For the isolation of bacteria, each fish surface was washed 
with ethanol solution (75%) in order to prevent bacterial 
contamination and was dissected aseptically to remove 
the digestive tracts. The intestine samples were inocula-
ted in Brain Heart Infusion Broth supplemented with 1% 
NaCl (BHI 1% NaCl) and incubated at 37 °C for 24 h. 
Then, each sample was streaked onto Tryptone Soya Agar 

prepared with 1% NaCl (TSA 1% NaCl). The plates were 
incubated for 24h at 37 °C [30].  Then each isolated colo-
ny from TSA 1% NaCl was inoculated in BHI 1% NaCl 
and incubated at 37 °C. Finally, an antibacterial activity 
was carried out for the research of probiotic capacity on 
pathogenic bacteria.     

                                                                                                                                  
2.2. Screening of antibacterial activity of isolated stra
ins                                                                                     

Antibacterial activity was performed for research on 
the probiotic capacity of isolated strains against seven 
pathogenic bacteria Vibrio alginolyticus (ATCC 177449), 
Vibrio parahaemolyticus (ATCC 17802), Escherichia coli 
(ATCC 35218), Aeromonas hydrophila (ATCC 7966), Sal-
monella typhimurium (ATCC 1408), Staphylococcus au-
reus (ATCC 25923), and Listeria monocytogenes (ATCC 
1915) using the well diffusion agar assay [31]. Briefly, one 
mL of each pathogen solution (OD600 = 0.1) was plated 
into Muller Hinton agar (MH) and incubated for 30 min 
at 37 °C. Then, 6 mm-diameter wells were punched into 
the agar surface and 100 µL of an antagonistic bacterial 
culture was added to each well. The inhibition zones were 
detected after 24-48 h of incubation at 37 °C. The pres-
ence of clear zones around tested bacteria was considered 
to indicate antagonistic activity against the pathogen [32]. 
Sterile BHI 1% NaCl broth was a control. The experiment 
was performed in triplicate and the ±SD was calculated. 
Strains with antibacterial activity were considered probio-
tics and selected for further characterization. Antagonistic 
strains were kept in Lysogene Broth (LB) with 30% gly-
cerol at -20 °C. 

2.3. In vitro antibacterial activity of extracellular pro-
ducts (ECPs)

The extracellular product activities of potential probio-
tics were investigated. After centrifugation at 4500 rpm for 
15 min of the bacterial cultures, the extracellular products 
(ECPs) from antagonistic bacteria were collected and fil-
tered through a 0.22 µm membrane filter for screening of 
antibiotic or bacteriocin production by Bacillus strains. 
The antibacterial activity of ECPs was determined using 
the solid MH agar spot assay described by Le Lay et al. 
[33] with slight modifications. Briefly, one mL sample of 
ECPs from each probiotic strain was then mixed with 15 
mL MH agar medium at 45 °C and kept at room tempe-
rature for 15-20 min. Ten µL of a suspension containing  
106 CFU/mL of each pathogen were then dropped (as 
a spot) onto the solidified MH agar, and the plates were 
incubated for 24 to 72 h at 37 °C to detect colonies. The 
absence of colonies was interpreted as antagonistic activi-
ty against the pathogen. A plate containing MH without an 
extracellular product is a positive control. All experiments 
were performed in triplicate.

2.4. Conventional identification of isolates with anti-
bacterial activity

To identify antagonistic strains, morphological and bio-
chemical identification was performed. After the Gram-
staining, spore staining, and morphological characteris-
tics, strains were subjected to phenotypic identification 
using selective media for Bacillus cereus: Bacillus cereus 
agar (BCA). Bacterial strains were grown in BHI 1% NaCl 
at 37 °C for 24 h. Then each tube was plated onto BCA 
and incubated at 37 °C. Biochemical identification was 
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culture
2.8.1. Preparation of Bacillus strains 

Potential probiotic strains were cultured in Nutrient 
broth prepared with seawater (NBSW) for 24 h at 37 °C. 
The culture was then centrifuged at 800 rpm for 15 min. 
The supernatant was poured into a sterile flask and kept at 
4 °C, while the bacterial pellet was washed twice by cen-
trifugation to eliminate residues from the culture medium 
and resuspended in sterile seawater [37].

2.8.2. Artemia gnotobiotic culture 
Bacteria-free cysts and nauplii of Artemia salina were 

obtained via decapsulation, as described by Sorgeloos et 
al. [38]. Decapsulated cysts were washed with filtered and 
autoclaved sea water (FASW) over a net 50 µm sterile filter. 
This procedure was repeated eight to twelve times, using 
a new FASW each time. After this step, washed decapsu-
lated cysts were transferred to a sterile Falcon containing 
30 mL of FASW. The capped Falcons were placed and 
exposed to constant incandescent light in a shaking incu-
bator (25 °C / 100 rpm). Artemia culture containing newly 
hatched nauplii was obtained after 15-24 h of incubation. 

2.8.3. Pathogenicity/toxicity towards Artemia 
The assay was exhibited in a 96-well polystyrene 

plate according to Jann-Para et al. [39]. From an Artemia 
culture, 100 µL containing 10 newly hatched nauplii were 
added to each well. Then, 100 µL of each bacterial sus-
pension from each probiotic was added to all the wells. 
The well-containing FASW served as the negative control. 
After incubation at 25 °C for 24 h, the number of live Ar-
temia was counted in each well. All manipulations were 
carried out in triplicate under sterile conditions.
 
2.8.4. In vivo tests with Artemia nauplii 

To assess the impact of bacterial strains on Artemia 
culture, different challenge tests were performed as repor-
ted earlier [40] in triplicate under sterile conditions over 
six days. As described, 10 axenic nauplii instars I obtai-
ned from Artemia gnotobiotic culture were transferred to 
sterile falcons containing 30 mL of FASW with the feed 
scheduled for the first day. All manipulations were perfor-
med in a laminar flow hood and all necessary tools were 
pre-sterilized at 120 °C for 20 min. 

The challenge tests were: Artemia in anoxic conditions 
(A); Artemia with pathogenic bacteria V. alginolyticus 
VA (A + VA); Artemia with beneficial bacterial strains 
(A+S1; A+S2; A+S3; A+S4; A+S5; A+S6) and Artemia 
with beneficial and pathogenic bacteria V. alginolyti-
cus VA (A+S1+VA; A+S2+VA; A+S3+VA; A+S4+VA; 
A+S5+VA; A+S6+VA).‘‘A’’ was chosen as a control treat-
ment for experiments when the tested strains were added 
to the culture medium (A+S1; A+S2; A+S3; A+S4; A+S5; 
A+S6). Treatment ‘‘A+VA’’ was used as a control when 
Artemia nauplii were challenged by the tested and pathoge-
nic strains (A+S1+VA; A+S2+VA; A+S3+VA; A+S4+VA; 
A+S5+VA; A+S6+VA). Potential probiotic and pathoge-
nic bacterial suspensions were added at a density of 106 
CFU/mL. The concentration of each bacterial strain was 
estimated through a regression analysis of the optical den-
sity of the pure culture. The number of CFU/mL was deter-
mined using Petri plates with marine agar. The number of 
swimming larvae was determined daily and the survival 
percentage was calculated. 

done using the Api 50 CHB (BioMerieux, Marcy-l’Étoile, 
France) according to the manufacturer’s recommenda-
tions.

2.5. MALDI-TOF-MS identification of isolates with 
antibacterial activity

The identification of bacterial strains at the species le-
vel was performed using the MALDI-TOF-MS technique 
(matrix-assisted laser desorption/ionization-time of flight 
mass spectrometry) as described [34]. After incubation of 
bacterial strains for 24h–48h at 37°C on TSA, sample pre-
paration was performed on 4 to 5 bacterial colonies which 
were analyzed using a microflex LT MALDI-TOF MS 
instrument (Bruker Daltonik GmbH, Bremen, Germany) 
with Flex Control (version 3.0) software (Bruker Dalto-
nics). Briefly, 1.5 μl of the protein extracts was placed into 
steel target plates and allowed to dry on air. After drying, 
each sample was overlaid with 1.5 μl of matrix solution (a 
saturated solution of α-Cyano-4 Hydroxy Cinnamic Acid: 
CHCA, in 50 % acetonitrile and 2.5% trifluoracetic acid, 
Bruker Daltonik) and air dried at room temperature. For 
identification, all the samples were run in duplicates. A 
characterization score_cut-off value was attributed to each 
sample and was interpreted according to the online Bruker 
database. 

2.6. Characterization of extracellular enzymes
The API-ZYM System (Bio-Mérieux, Marcy-l’Étoile, 

France) composed of 19 enzymatic substrates was used, 
according to the manufacturer’s instructions, to determine 
the presence of exoenzymes. Additional enzymatic activi-
ties were determined following the inoculation of cultures 
on TSA medium to which these substrates had been added: 
0.2% [wt/vol] starch for amylase, 1% [wt/vol] skim milk 
for caseinase, 1% Tween 80 for lipase, 5% [vol/vol] egg 
yolk for phospholipase (lecithinase) and 5% [vol/vol]) 
sheep red blood cells for hemolysin [35]. All experiments 
were carried out in triplicate. 

2.7. Adhesion assay on polystyrene
Biofilm production by bacterial strains was determined 

using a semi-quantitative adherence assay on U-Bottomed 
96-well polystyrene plates (Nunc, Roskilde, Denmark) 
according to Chaieb et al. [36]. All strains were grown in 
TSB supplemented with 1% NaCl at 37 °C for 24 h. Bacte-
rial cultures were diluted to 1:100 in the same medium and 
supplemented with 2% glucose. Then, 200 µl of bacterial 
suspension was added into each well, and the plates were 
incubated at 37 °C for 24 h. Wells with sterile TSB 1% 
NaCl alone served as controls. The wells were subsequent-
ly rinsed twice with Phosphate Buffered Saline solution 
(pH 7.4) to remove non-adherent cells and were dried in an 
inverted position. Adherent bacteria were fixed with 95% 
ethanol and stained with 100 μL of 1% crystal violet for 5 
min. The excess stain was poured off, and the wells were 
washed three times with 300 μL of sterile distilled water. 
The water was then cleared, and the microplates were air-
dried. The bound dye was solubilized with 100 µL of 95% 
ethanol and the optical density of each well at 570 nm was 
measured using an automated Multiskan reader (Gio. De 
Vita EC, Rome, Italy). Adhesion ability was interpreted as 
strong (OD570 ≥ 1), fair (0.1 ≤   OD570 < 1), or slight (OD570 
< 0.1). All experiments were done in triplicate.
2.8. Effect of candidate probiotic bacteria on Artemia 
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2.9. Statistical analysis
All the experiments were performed in triplicate. Sta-

tistical analysis of variance was performed using the SPSS 
10.05 statistical program (SPSS for Windows; SPSS, Inc., 
Chicago, IL, USA). Standard deviations (SD) show the 
variability between samples. Differences in the survival of 
Artemia nauplii cultured under different conditions were 
presented as mean separated by the least significant dif-
ference according to the Student–Newman–Keuls test (at 
p ≤ 0.05).

3. Results 
3.1. Screening of antibacterial activity of isolated 
strains 

In selecting a potential probiotic strain for beneficial 
health effects on the host, many criteria must be conside-
red. The ability to inhibit pathogenic bacteria is used to 
select potentially probiotic bacteria. In this experiment, 
the indicator strains contained Gram-positive bacteria  
(S. aureus ATCC 25923 and L. monocytogenes 
ATCC 1915) and Gram-negative bacteria  
(V. alginolyticus ATCC 17802, V. parahae-
molyticus ATCC 17802, E. coli ATCC 35218,  
S. typhimurium ATCC 1408, and A. hydrophila ATCC 
7966). 

Six strains were isolated from the fish intestine samples 
and showed antagonistic activity against the bacterial pa-
thogens tested. Potential probiotic strains have an inhi-
bitory effect against pathogenic strains, as mentioned in 
Table 1. The inhibitory zones were about 9.16 to 24.5 mm 
in diameter.

The strains S2, S3, and S5, gave the best re-
sults. Specifically, they are effective against 
 V. parahemolyticus (23.5 ± 0.5 mm), E. coli (24 ± 0.57 
mm), and S. aureus (23 ± 0.2 mm) respectively (Table 1). 

The strains S1 produced significant inhibition zones for  V. 
parahemolyticus and S. aureus (20.83 ± 0.28 and 22.36± 
0.15 mm, respectively). L. monocytogenes was strongly 
inactivated by S3 and S4 with an inhibition zone of 21.5 
and 21 mm, respectively. In addition, S. typhimurium was 
strongly inactivated by S5 and S6 with an inhibition zone 
of 21 and 20 mm, respectively. Our results showed that A. 
hydrophila was weakly inactivated by all strains.

3.2. In vitro antibacterial activity of extracellular prod-
ucts (ECPs) 

After 24 h of incubation of the MH agar plates mixed 
with the ECPs seeded by the pathogenic bacteria, we ob-
served no colony on the surface of the agar for the strains S1, 
S3, S4, S5, and S6 (Table 2). For strain S2 we observed that 
the number of colonies of the pathogens (V. alginolyticus,  
V. parahemolyticus and S. aureus) are fewer than 
that of the positive control. While for E. coli and  
A. hydrophila, we observed no colonies on the MH me-
dium (Table 2).

3.3. Conventional identification of isolates with anti-
bacterial activity

The isolated strains showed cellular morphology typi-
cal of spore-forming Gram-positive rods and tested posi-
tive for catalase and negative for oxidase. The metabolism 
was facultatively anaerobic.

The results of API-50-CHB indicated that the isolates 
were similar to Bacillus spp. S1 and S2 strains were pla-
ted on a selective medium (BCA agar), and results showed 
reddish colonies with a clear white halo. We also observed 
a change in the colour of the agar to dark pink. In contrast, 
S3, S4, S5, and S6 colonies were yellow with a clear halo 
and a change in the colour of the agar to yellow. According 
to our results, strains S1 and S2 produced reddish colonies 

Indicator bacteria Isolated strains
S1 S2 S3 S4 S5 S6

V. alginolyticus 17.33 ± 0.57 14.83 ± 0.28 24.5 ± 0.5 17.83 ± 0.28 20.5 ± 0.5 18 ± 0.00
V. parahémolyticus 20.83 ± 0.28 23.5 ± 0.5  18.33 ± 0.57  12.16 ± 0.28 20.33 ± 0.28 18.83 ± 0.15 
L. moncytogenes
S. aureus

15 ± 0.57
22.36 ± 0.15

14.66 ± 0.57
17.26 ± 0.2 

21.5 ± 0.70
15 ± 0.00 

21 ± 0.88
14.5 ± 0.5

19.5 ± 0.70
23 ± 0.2

18 ± 0.00
9.16 ± 0.28

S. typhimurium
E. coli

18.66 ± 0.57
1 6.23 ± 0.25

17.33 ± 0.57
23 ± 0.57

17.50 ± 0.70
24 ± 0.57

19 ± 0.41
20.43 ± 0.4 

21 ± 0.41
16.76 ± 0.25

20 ± 0.00
16.16 ± 0.28

A. hydrophila 15 ± 0.00 13.5 ± 0.5 14.9 ± 0.1 11.5 ± 0.5 11.66 ± 0.28 18.56 ± 0.1
± : Standard Deviation

Table 1. Antibacterial activities of the isolated strains towards indicator bacteria.

Table 2. Effect of extracellular products of six probiotics against pathogenic bacteria.

Strains V. alginolyticus V. parahémolyticus S. aureus E. coli A. hydrophila
S1 - - - - -
S2 +/- +/- +/- - -
S3 - - - - -
S4 - - - - -
S5 - - - - -
S6 - - - - -

posititive control + + + + +

(-) : absence of colonies ; (+) : presence of colonies; (+/-) : colonies of pathogenic bacteria are less numerous than those of the positive 
control.
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are B. cereus. The strains S3, S4, S5, and S6 showing up 
as yellowish colonies are B. subtilis.

3.4. MALDI-TOF MS identification of isolates with 
antibacterial activity

The bacterial isolates were confirmed as be-
longing to the Bacillus genus using the MAL-
DI-TOF-MS technique. Two distinct Bacillus spe-
cies were identified: B. cereus (S1 et S2) and  
B. subtilis (S3, S4, S5 et S6). These results confirm those 
obtained with the API test and BCA selective medium.

3.5. Characterization of extracellular enzymes
Tested strains produced exoenzymes such as amylase, 

lipase, caseinase, and lecithinase. In addition, all strains 
were non-hemolytic. Analysis of the enzyme activity API-
ZYM assays revealed that all strains produced biotechno-
logical enzymes (Table 3). Results showed that all inves-
tigated bacteria except S2 can assimilate naphthol-AS-
BI-phosphohydrolase. The strains S1 and S3 can produce 
α-glucosidase and acid phosphatase. Esterase lipase (C8) 
and N-acetyl-β-glucosaminidase were produced by S1, S2, 
S3, and S6 strains. Esterase (C4) was produced by S2, S4 
and S6 strains. While alkaline phosphatase was produced 
by S5 and S6, α-galactosidase produced by S1 and S3, and 
α-glucosidase produced by S2 and S3. Lipase (C14) was 
only produced by strain S3. Likewise, β-galactosidase and 
α-mannosidase were only produced by strain S2.

According to Table 3, we can observe that 
strain S3 could produce most enzymes, and strain 
S4 produced only two enzymes. Undesirable ac-
tivities, such as trypsin, α-chymotrypsin, and  
β-glucuronidase activities, were not detected in the selec-
ted strains. 

3.6. Adhesion assay on polystyrene
All isolated Bacillus strains were screened for their 

adherence to polystyrene microplates. The results of the 
OD570 presented in Table 4 show that all Bacillus strains 
were fairly adhesive to polystyrene with values ranging 
from 0.11 to 0.39.

3.7. Effect of candidate probiotic bacteria on Artemia 
culture
3.7.1. Pathogenicity/toxicity of candidate probiotics 

After incubation of the plate at 25°C for 24h, we 
counted the number of live nauplii in each well and calcu-
lated their survival rate. The results reveal that the tested 
strains were not pathogenic or toxic to Artemia nauplii 
(Fig. 1). No significant difference occurred in the survi-
val rate of Artemia between the treatments. The survival 
rate of Artemia in the control treatment was 89.5% and 
the survival rate of Artemia nauplii treated with probiotic 
bacterial suspension ranged from 90% (A+S1, A+S2, and 
A+S5) to 96.67% (A+S4 and A+S6). 

3.7.2. Effect of candidate probiotics on Artemia survival
During the follow-up of the survival of Artemia nau-

(-) : absence of enzyme; (+) : enzyme production 

Enzyme S1 S2 S3 S4 S5 S6
Alcaline phosphatase - - - - + +
Esterase (C4) - + - + - +
Esterase Lipase (C8) + + + - - +
Lipase (C14) - - + - - -
Leucine arylamidase - - - - - -
Valine arylamidase - - - - - -
Cystine arylamidase - - - - - -
Trypsin - - - - - -
α-Chymotripsin - - - - - -
Acid phophatase + - + - + -
Naphtol-AS-BI-phosphohydrolase + - + + + +
α-galactosidase + - + - - -
β-galactosidase - + - - - -
β-glucoronidase - - - - - -
α-glucosidase - + + - - -
β-glucosidase + - + - - -
N-acetyl-β-glucosaminidase - + + - - +
α-mannosidase - + - - - -
α-fucisidase + - + - - +       

Table 3. Extracellular enzymatic activity of the tested strains using API-ZYM galerie.

Strain Adhesion to polystyrene (OD at 570 nm) ± SD
S1 0.205 ± 0.01
S2 0.11 ± 0.05
S3 0.26 ± 0.02
S4 0.29 ± 0.16
S5 0.39 ± 0.09
S6 0.17 ± 0.25

Table 4. Measurement of the adhesion of the six probiotic strains.
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plii, we found that they could not withstand the anoxic 
conditions, as we noticed a low survival rate that reached 
death on the fifth day of treatment (Fig. 2).

Thus, adding Bacillus strains to the Artemia culture 
showed an improved survival rate. The strains S1, S2, S3, 
and S5 exerted similar effects on the survival of Artemia 
with a rate ranging from 90 % to 10 % at the end of the 
treatment (Fig. 2a and 2b). However, the strains S4 and 
S6 exerted significantly greater effects on the survival of 
Artemia with 63.33 % and 70 %, respectively, at the end of 
the treatment (Fig. 2b). If compared these last results with 
the control ones, we could notice a significant difference 
(P < 0.05) with a net survival improvement in the presence 
of Bacillus strains, especially in the presence of strain S4 
or strain S6.

3.7.3. In vivo interaction between pro-
biotic bacteria and the pathogenic strain  
V. alginolyticus

According to the results reported in Figure 
3, we could notice that Artemia nauplii reached  
94% of mortality on the third day of treatment with the 
presence of V. alginolyticus (A+VA). However, the survi-
val rate of Artemia nauplii showed a significant improve-
ment (P < 0.05) an improvement after adding the different 
tested Bacillus strains. In particular, strain S1 raised the 
Artemia survival to 50% around the third day and 20% 
around the sixth day (Fig. 3a). Likewise, strain S6 main-
tained a growth rate of 40% on the third day and 16.66 % 
on the sixth day (Fig. 3b). Still, no significant difference in 
comparison with control treatment was noted (P > 0.05).

4. Discussion
4.1. Identification of isolates with antibacterial activity

Among the probiotic properties of a bacterium is its 
antagonistic effect against pathogens. The culture and 
the extracellular products of the six Bacillus strains were 
investigated against seven pathogens (five Gram-negative 
and two Gram-positive bacteria). We found that the iso-
lated strains inactivated all the pathogenic strains tested. 
The diameters of the inhibition zones varied from 11.5 to 
24.5 mm (Table 1). Our results showed that the extracellu-
lar products of all Bacillus strains inhibited the growth of 
pathogenic bacteria (Table 2). 

Gram-positive bacteria isolated from the intestines of 
fish and having an antagonistic effect were identified as 
Bacillus spp., by biochemical identification. In addition, 
the MALDI-TOF-MS technique showed that the strains 

Fig. 1. Survival rate of Artemia nauplii after 24 h exposure to Bacillus 
strains. Controls were incubated in sterile seawater (A). A+S1 : Arte-
mia + strain S1 ; A+S2 : Artemia + strain S2 ; A+S3: Artemia + strain 
S3 ; A+S4 : Artemia + strain S4 ; A+S5 : Artemia + strain S5 ; A+S6 : 
Artemia + strain S6. Means (n = 3) followed by the same lower-case 
letter are not significantly different according to the Student–New-
man–Keuls test (p ≤ 0.05).

Fig. 2. Survival rate (mean + SD) of Artemia nauplii in the presence of 
Bacillus strains for 6 days. (a) :  A : Artemia ; A+S1 : Artemia + strain 
S1 ; A+S2 : Artemia + strain S2 ; A+S3: Artemia + strain S3 ; ( b) : A 
: Artemia  ; A+S4 : Artemia + strain S4 ; A+S5 : Artemia + strain S5 ; 
A+S6 : Artemia + strain S6.

Fig. 3. Survival rate of Artemia nauplii in the presence of V. algino-
lyticus and Bacillus strains for 6 days. Means (n = 3). (a)  A : Artemia ; 
A+VA : Artemia + V. alginolyticus ; A+VA+S1 : Artemia + V. algino-
lyticus + strain S1 ; A+VA+S2 : Artemia + V. alginolyticus + strain S2 
; A+ VA+S3: Artemia + V. alginolyticus + strain S3 ;  (b) A : Artemia  
; A+VA+S4 : Artemia + V. alginolyticus + strain S4 ; A+VA+S5 : 
Artemia +V. alginolyticus + strain S5 ; A+VA+S6 : Artemia + V. algi-
nolyticus + strain S6.
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S1 and S2 are B. cereus and the strains S3, S4, S5, and S6 
are B. subtilis. 

Bacillus strains are suitable as probiotics for aqua-
culture because they are frequently found as part of the 
microorganisms in fresh and seawater as well as in the 
gastrointestinal tract of animals [41]. Already, several stu-
dies have shown that Bacillus probiotic have been isolated 
from a healthy fish gastrointestinal tract [42–47]. Thus, it 
is believed that they are well-adapted and are more coloni-
zing than transient in the gastrointestinal tract. Moreover, 
several studies have shown the antibacterial effect of Ba-
cillus strains against several pathogens [48–52]. We have 
suggested the inhibitory effects of Bacillus spp. maybe 
because of the alteration in the pH of the growth medium 
or the production of antimicrobial proteins and chemical 
compounds synthesized by secondary metabolic pathways 
[53]. Similarly, genes encoding pre-subtilisin (sboA), su-
blichenin (spaS), malonyl CoA transacylase (ituD), and 
the putative transcriptional terminator of surfactin (sfp) 
were detected in Bacillus spp. suggesting the production 
of the bacteriocin subtilisin A and the lipopeptides iturin A 
and surfactin by this strain [54,55]. In addition, Yahav et 
al. [56] have shown that B. subtilis produces an extracel-
lular matrix that protects it from stressful environments. 
They suggest that the extracellular matrix produced by B. 
subtilis could protect other probiotic bacteria and therefore 
could be a vehicle for delivering viable probiotic cells to 
humans. Piewngam et al. [57] have shown that a wides-
pread class of Bacillus lipopeptides, the fengycins, elimi-
nates S. aureus by inhibiting S. aureus quorum sensing, 
which is a process used by bacteria to respond to their po-
pulation density by altering gene regulation. Likewise, the 
mechanisms (production of bacteriocins, suppression of 
virulence gene expression, competition for adhesion sites, 
production of lytic enzymes, production of antibiotics, 
immunostimulation, competition for nutrients and energy, 
and production of organic acids) used by Bacillus probio-
tics in mitigating fish pathogens ranging from Aeromo-
nas, Vibrio, Sreptococcus, Yersinia, Pseudomonas, Clos-
tridium, Acinetobacter, Edwardsiella, Flavobacterium, 
white spot syndrome virus, and infectious hypodermal and 
hematopoietic necrosis virus have been proven to be miti-
gated by Bacillus as shown by Kuebutornye et al. [58].

4.2. Characterization of extracellular enzymes
Probiotics can not only inhibit the growth of pathogens 

in aquaculture but can also benefit animal health. In our 
study, the enzymatic characterization showed that all 
Bacillus strains isolated from the intestinal tracts of fish 
did not produce β-glucuronidase, a carcinogenic en-
zyme, and other undesirable activities, such as trypsin, 
α-chymotrypsin (Table 3).  

The Bacillus strains can produce enzymes that play an 
important role in digestion such as the alcaline phospha-
tase, acid phosphatase, Naphthol-AS-BI-phosphohydro-
lase, esterase, esterase lipase, N-acetyl-β-glucosaminidase, 
α-fucisidase amylase, and lipase. These activities are 
necessary for probiotics with digestive effects, as these 
enzymes generate amino acids, sugars, organic acids, and 
diverse small compounds [59,60]. Therefore, application 
of probiotics capable of producing enzymes is gaining 
attention to promote a nutritional benefit in aquaculture 
[52,61,62]. B. subtilis has previously been shown to pro-
duce large levels of extracellular proteases (exoproteases), 

which degrade proteins from the environment and are 
mainly encoded by two genes; aprE (subtilisin) and bpr 
(bacillopeptidase) [63]. Diverse studies have reported the 
ability of Bacillus to produce digestive enzymes, including 
amylase, protease, lipase, cellulose, and xylanase [64,65]. 

The present study confirmed that the isolated Bacil-
lus strains did not show any haemolytic activity on sheep 
blood agar and hence it can be used as probiotic for bet-
ter health. Similarly, B. clausii ATCC and B. subtilis did 
not show hemolysis on sheep blood agar [59]. Likewise,  
B. polyfermenticus CJ6 does not cause hemolysis on horse 
blood agar [66]. The haemolytic activity of the selected 
bacterial strains of Bacillus spp. isolated from the diges-
tive tract of freshwater fish did not show any haemolytic 
activity against human blood [60].

4.3. Adhesion capability in polystyrene surfaces
The adhesive capacity of the isolated strains was then 

tested. Indeed, the semi-quantitative study of adhesion on 
polystyrene plates revealed that all strains are adherent to 
polystyrene micro-plates (Table 4). This property allows 
these microorganisms to persist in the intestine for seve-
ral days and to be active during intestinal transit. Thus, 
they can eliminate potential pathogens and participate in 
the creation of a healthy environment. This agrees with 
the results published by Mahdhi et al. [67], which have 
shown that potential probiotic candidates based on Bacil-
lus with moderate adhesion capacity can improve rearing 
conditions and protection against pathogens often dreaded 
in aquaculture. Selected probiotic bacteria, B. lichenifor-
mis, and Bifidobacterium breve, have adhesive properties 
that enable them to decrease the colonization of pathogens 
[68,69]. Also, following adhesion to a surface, spores may 
germinate, and vegetative cells may multiply. This helps 
this bacterium to compete with pathogens and ensures 
protection for the host [70]. Microbial cell surface hydro-
phobicity is one of the determining factors in microbial 
adhesion to bioremediation surfaces, a phenomenon com-
monly observed in natural and engineered systems [71]. It 
is generally accepted that hydrophobic interactions play an 
important role in bio adhesion.

4.4. Pathogenicity/toxicity of candidate probiotics and 
their effect on Artemia culture

 To complete the screening of the isolated bac-
teria and to attribute the probiotic character, we tested 
their potential for negative effects. Indeed, we found that 
the strains tested did not have pathogenic or toxic effects 
on the Artemia culture. But they improved the survival 
rate (exceeding 90%) (Fig. 1 and 2). Moreover, we noted 
abrupt mortality of Artemia incubated alone (control treat-
ment (a)) (Fig. 2 and 3). This allows us to confirm that our 
strains can be a source of nutrients [72]. Laranja et al. [73] 
have shown that the Bacillus spp., JL47 is an important 
determinant for the increased survival of challenged Arte-
mia. Also, the adhesive capacity of tested Bacillus strains 
helps them to adhere to the intestinal tract, and their effect 
on the digestive process of aquatic animals can improve 
Artemia culture and protect against other pathogenic mi-
croorganisms and significantly increase the survival rate. 

Our results can also be explained by bacteria being the 
major sources of proteins, fatty acids, and amino acids for 
the development of Artemia larvae. In addition, the attach-
ment surface between the bacteria and the nutrient allows 

https://www.nature.com/articles/s41586-018-0616-y#auth-Pipat-Piewngam
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the formation of particles rich in protein and increases its 
nutritional value for this small crustacean [74]. Likewise, 
a study carried out by Ofelio et al. [75] has shown that 
the bacterial biomass of probiotic Lactobacillus rhamno-
sus can be used by nauplii as a source of nutrients. This 
bacterial biomass also helps improve the nutritional value 
of Artemia nauplii and stimulates their immune system to 
defend against pathogens often feared in aquaculture. The 
work of Arig et al. [76] showed that the administration 
of Bacillus spp. in the food of sea bream Sparus aurata 
influenced growth parameters and improved digestion by 
stimulating acid and alkaline proteases activity in this fish. 
The improvement observed during the addition of these 
potential probiotics may be because of the antitoxic role 
of bacteria which have a positive effect intervening in the 
neutralization of toxic products by causing attenuation of 
intra-digestive catabolism and orientation of the intesti-
nal microflora for reducing the absorption of toxic subs-
tances. It has been shown that the survival and growth rate 
of shrimp (Litopenaeus vannamei) were influenced by B. 
subtilis and B. lichenformis added to the diet as probiotics, 
with better growth performance and survival [77]. 

Bacteria of the genus Vibrio are ubiquitous members of 
marine ecosystems. Vibrio species are reported as oppor-
tunistic pathogens to aquatic animals and are associated 
with high mortality throughout the world [78]. Therefore, 
Among the tested bacteria, V. alginolyticus was evalua-
ted for in vivo tests with Bacillus strains. In vivo tests of 
most Bacillus strains on Artemia nauplii in the presence 
and absence of the pathogen have revealed a high survival 
rate (Fig. 3). Our study focused on the interaction between 
probiotic bacteria and the pathogen V. alginolyticus has 
shown that probiotics confer protection for Artemia nau-
plii against this pathogen. This may be due to competition 
for nutrients or to binding at adhesion sites on the larval 
body and in the intestinal epithelium, thus reducing the 
pathogenicity of V. alginolyticus. Several studies showed 
that Bacillus strain was tested for its protective effects 
against vibriosis in Artemia culture [73]. Similarly, Ahma-
difard et al. [79] showed the beneficial effect of enriched 
Artemia with B. subtilis on growth performance, repro-
ductive factors, proximate composition, intestinal micro-
flora, and resistance to A. hydrophila of ornamental fish 
(Poecilia latipinna). Furthermore, the addition of B. sub-
tilis to the rotifer culture water resulted in an increase in 
rotifer numbers. This fact could be related to the produc-
tion of bacteriocins by the probiotic bacteria that inhibit 
or regulate the growth of harmful bacteria, and enzymes 
that improve the digestion and utilization of nutrients by 
rotifer [80]. The use of a strain of B. subtilis in a culture 
of shrimp improved the survival rate and growth as well 
as protecting against Vibrio spp. stimulating their immune 
system, and enhancing their resistance to disease [48,81]. 
Likewise, the probiotics B. subtilis, L. plantarum, and L. 
lactis protect Artemia against a V. anguillarum challenge 
by enhancing its immune responses thus contributing to 
reduced oxidative damage and increased survival [82]. 
Moreover, fish fed with B. velezensis-supplemented diets 
showed a significantly improved survival rate after A. hy-
drophila infection [83]. B. amyloliquefaciens and B. pumi-
lus could stimulate growth performance, innate immunity, 
and stress tolerance of striped catfish [84]. In this context, 
Olmos et al. [85] considered B. subtilis to be an ideal mul-
tifunctional probiotic bacterium. This bacterium prevented 

pathogens' development, enhanced nutrient assimilation, 
improved environmental parameters, and increased aqua-
culture profitability.

 
5. Conclusion

In this study, we isolated six strains of Bacillus with 
antibacterial activity against several pathogens. The pro-
duction of several extracellular enzymes by the studied 
strains has an important advantage. They can participate in 
the stimulation of the digestive and immune systems and 
reinforce resistance to diseases. Adhesive ability to abio-
tic surfaces has been demonstrated, which may enhance 
antibacterial activity by promising longer residence in the 
digestive tract of the hosts. The bacterial strains isolated 
have exhibited promising results in the ability to improve 
Artemia cultures and protect them against the pathogenic 
strain V. alginolyticus, which can be used for the impro-
vement of crustaceans or fish larvae. However, further 
research is still ongoing to clarify the exact mode of action 
of the observed beneficial and pathogenic effects of pro-
biotic bacteria. 
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