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Molecularly imprinted polymers (MIPs) are pivotal in medicine, mimicking biological receptors with 
enhanced specificity and affinity. Comprising templates, functional monomers, and cross-linkers, MIPs form 
stable three-dimensional polymer networks. Synthetic templates like glycan and aptamers improve efficiency, 
guiding the molecular imprinting process. Cross-linking determines MIPs' morphology and mechanical 
stability, with printable hydrogels offering biocompatibility and customizable properties, mimicking native 
extracellular matrix (ECM) microenvironments. Their versatility finds applications in tissue engineering, soft 
robotics, regenerative medicine, and wastewater treatment. In cancer research, MIPs excel in both detection 
and therapy. MIP-based detection systems exhibit superior sensitivity and selectivity for cancer biomarkers. 
They target nucleic acids, proteins, and exosomes, providing stability, sensitivity, and adaptability. In therapy, 
MIPs offer solutions to challenges like multidrug resistance, excelling in drug delivery, photodynamic therapy, 
photothermal therapy, and biological activity regulation. In microbiology, MIPs serve as adsorbents in solid-
phase extraction (SPE), efficiently separating and enriching antibiotics during sample preparation. They 
contribute to bacterial identification, selectively capturing specific strains or species. MIPs aid in detecting 
antibiotic residues using fluorescent nanostructures and developing sensors for sulfadiazine detection in food 
samples. In summary, MIPs play a pivotal role in advancing medical technologies with enhanced sensitivity, 
selectivity, and versatility. Applications range from biomarker detection to innovative cancer therapies, making 
MIPs indispensable for the accurate determination and monitoring of diverse biological and environmental 
samples.
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1. Introduction 
1.1. Formation

The development of molecularly imprinted polymers 
(MIPs) is a crucial step in the fabrication of materials desi-
gned to emulate the capabilities of biological receptors, 
placing significant importance on enhancing specificity 
and affinity. This complex procedure relies on three essen-
tial elements including functional monomers, templates, 
and cross-linkers. Templates play a central role in guiding 
the molecular imprinting process. They are instrumental 
in directing how functional groups within functional mo-
nomers are organized during polymerization. Ideal tem-
plates possess remarkable chemical stability and house 
functional groups that form effective bonds with func-
tional monomers [1]. These bonds should endure throu-
ghout the polymerization process. Traditionally, templates 
were often derived from biological macromolecules like 
proteins or cells. However, the intricate nature of biolo-
gical templates, their non-specific recognition sites, and 
limitations associated with polymerization methods have 
prompted the application of synthetic receptors involving 
aptamer, monosaccharide, oligosaccharide, and glycan. 
Synthetic templates play a critical function in enhancing 
the efficiency and accuracy of imprinting. Another crucial 
consideration in the formulation of MIP is the choice of 
functional monomers. The choice of these monomers is 
guided by the characteristics of the template, taking into 
account factors such as charge, size, and chemical identity. 
The monomers are carefully crafted with recognition units 
that engage with the template, establishing either covalent 
or non-covalent bonds. These interactions predominantly 
take place during the pre-polymerization phase, ultimately 
influencing the quality and quantity of recognition units 
present in the final MIP [2-4].

Following the effective engagement between functio-
nal monomers and the template, cross-linking agents are 
introduced. Their main function is to firmly bind the func-
tional groups of the monomers to the template, leading 
to the formation of a sturdy three-dimensional polymeric 
network. This network serves to preserve the integrity of 
the binding sites, ensuring their stability even after the 
template molecule has been removed [5, 6] (Figure 1).

1.2. Crosslinking
Cross-linking assumes a crucial role in the imprinting 

process by aiding in the exact organization of functional 
monomers surrounding the template molecules. This leads 
to the formation of a highly cross-linked polymeric matrix, 
and upon template removal, it contributes significantly to 
refining the morphology and enhancing the mechanical 
stability of MIPs [7]. The selection and quantity of cross-
linker monomers can affect the properties of MIPs during 
the polymerization process [8]. The amount of cross-lin-
ker monomers employed during polymerization can deter-
mine two main properties of MIPs including the number of 
recognition sites within MIPs and the mechanical stability. 
In this way, lower cross-linker monomers result in undesi-
rable mechanical properties. In addition, a higher amount 
of cross-linker monomers can diminish the number of re-
cognition sites per unit mass of MIPs [9, 10]. Therefore, 
optimization of the cross-linker-to-monomer ratio is a cri-
tical factor in obtaining optimal polymerization outcomes. 
Moreover, the choice of the crosslinking agent significant-
ly influences the quality and yield of the final MIP post-po-
lymerization. In addition to the selectivity and affinity for 
the target template, the porosity and mechanical properties 
can be affected by the meticulous pairing and arrangement 
of monomers [11].

1.3. Printable Hydrogels
Printable hydrogels are 3D cross-linked polymer 

networks known for their remarkable water-absorbing and 
retaining capabilities, often exceeding 90%. These hydro-
gels are held together by a combination of interactions, in-
cluding hydrogen bonds, electrostatic attractions, van der 
Waals interactions, hydrophobic forces, water-mediated 
hydrogen bonds, covalent cross-links, and various combi-
nations thereof [12]. One of the key attributes of hydrogels 
is their suitability as soft material systems for emulating 
native extracellular matrix (ECM) microenvironments. 
Their biocompatibility, adjustable mechanical properties, 
and degradability make them ideal candidates [13, 14]. 
Moreover, hydrogels can easily integrate bioactive pep-
tides including Ile-Lys-Val-Ala-Val (IKVAV), Arg-Gly-
Asp (RGD), and Asp-Gly-Glu-Ala (DGEA), along with 
other biomolecular structures such as nucleic acids, gly-
cans, fatty acids, and growth factors (brain-derived neuro-
trophic factor (BDNF), transforming growth factor-beta-1 
(TGF-β1), vascular endothelial growth factor (VEGF), 
insulin-like growth factor-1 (IGF-1), and fibroblast growth 
factor-2 (FGF-2) [15, 16]. This enables the development 
of biomimetic supramolecular scaffolds [17]. Certain hy-
drogels demonstrate valuable shear-thinning and thixotro-
pic properties, which enhance their suitability as materials 
for bioprinting [18]. Due to their adaptable characteristics 
and versatile manufacturing techniques, the application of 
printable hydrogels spans a broad spectrum in biomedical 
and engineering fields. These hydrogels find applications 
in various fields, such as tissue engineering, regenerative 
medicine, wastewater treatment, and soft robotics [19, 20]. 

Hydrogels frequently employed for 3D bioprinting ori-
ginate from either natural or synthetic proteins involving 
collagen, fibrin, gelatin, spider silk, gelatin methacryla-
mide (produced by the reaction of methacrylic anhydride 
with gelatin), and ECM-derived proteins such as Matrigel 
matrix [11]. Additionally, self-assembling peptides and po-
lysaccharides such as alginate, chitosan, gellan gum, aga-
rose, κ-carrageenan, and methylcellulose are commonly 
employed in 3D bioprinting [11, 21]. The gelation process 

Fig. 1. Commonly applied functional monomers (a) and crosslinking 
monomers (b) in molecular imprinting process (Adopted with modi-
fication from [6]).
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invasive, method for cancer diagnosis, constrained to 
specific sample regions [36]. Liquid biopsies, detecting 
circulating cancer biomarkers, offer a non-invasive and 
cost-effective alternative [37]. An alternative approach 
involves the in vivo imaging of cancer biomarkers [38]. 
Sensors and imaging probes based on MIPs have proven 
effective in detecting a range of cancer biomarkers, 
encompassing cancer cells, exosomes, proteins, and 
nucleic acids [39]. These technologies combine stability, 
sensitivity, and adaptability to overcome the distinct 
detection challenges posed by different biomarkers [40]. 
For cancer diagnosis, nucleic acids, specifically ribonucleic 
acid (RNA) and deoxyribonucleic acid (DNA), have 
conventionally functioned as important indicators. These 
molecules are commonly released into the bloodstream 
following cell apoptosis [41]. 

Arslan and colleagues have introduced a fluorescent 
sensor designed for the detection of double-stranded DNA 
(dsDNA), a common component in tumor exosomes with 
diagnostic significance. The sensor utilizes mercapto-
propyl-trimethoxy-silane-capped Mn-doped ZnS quantum 
dots (QDs) that undergo imprinting through sol-gel 
polymerization. In this process, a polymeric network 
forms around the template, the cationic dye malachite 
green. The sensor operates in two modes including a 
'turning off' mode and a 'turned on' mode. Under optimized 
conditions, the approach attains a limit of detection (LOD) 
of 19.48 ng/mL. Moreover, the sensor's performance in 
spiked urine samples validates its applicability to real-
world samples [42]. Protein detection probes stand out 
as one of the extensively explored applications for MIPs 
[43]. It should be noted that there are five steps for the 
discovery and application of new biomarkers (Figure 
3). In the case of cancer biomarkers, their remarkable 
bioavailability makes these highly dynamic molecules 
successful. Multiple studies underscore their potential in 
the diagnosis, prognosis, and monitoring of tumours [44]. 

Metal and metal oxide NPs have illustrated desirable 
properties for various applications in biomedicine [45, 
46]. MIP-based electrochemical biosensors have obtained 
more attention owing to several benefits including 
simplicity, high sensitivity, and cost-effective properties 
[47-49]. In pursuit of these advantages, the application of 
a surface-enhanced Raman spectroscopy substrate with 
a surface-molecularly imprinted polymer (SMIP) is a 
useful method. This can be possible by the incorporation 
of ethynyl benzene into dopamine on the surface of 
gold nanoparticles (NPs), combined with an imprinted 
core-molecule-shell-molecule NP-coated surface. The 
biosensor's internal standard was fine-tuned, exhibiting a 
silent zone at 2024 cm−1. Zhou et al. (2019) approached 
carcinoembryonic antigen detection differently by 
employing two types of MIPs in an immuno-sandwich 
assay. In their method, they utilized one MIP to cover 
the gold NP layer with glycan and used it for targeting 

of hydrogels significantly influences both cell viability and 
printing precision, and it can be broadly categorized into 
five common techniques: ionic, thermal, enzymatic, pho-
to-crosslinking, and chemical crosslinking [22]. 

2. Anticancer applications 
Cancer is a devastating disease originating from 

malignant cells that spreads within the body, causing damage 
to healthy tissues and, in many cases, resulting in fatal 
outcomes [23-26]. Early diagnosis and effective therapy 
by novel technology such as functionalized biomaterials 
and nanomaterials are crucial factors for increasing 
patient survival [27, 28]. Traditionally, cancer diagnosis 
relies on laborious and time-consuming histological tissue 
evaluation, often making early detection challenging [29-
31]. MIPs are emerging as versatile biomaterials with 
multifaceted applications in the detection and treatment 
of cancer. MIP-based detection systems offer enhanced 
sensitivity and selectivity in identifying cancer biomarkers 
[32, 33]. In contrast to traditional methods relying on 
antibodies or aptamers, MIPs can be synthesized more 
efficiently and cost-effectively, with high specificity. These 
methods are performed by a molding process applying a 
template molecule, allowing customization and affinity 
enhancement through post-imprinting modifications. Due 
to their ability to identify specific molecules with a strong 
attraction and precise discrimination, hydrogels have been 
extensively studied as highly exceptionally promising 
biomaterials for theragnostic applications in cancer 
research [34, 35].

While numerous reviews primarily have focused on 
strategies for the diagnosis and therapy of cancer, the po-
tential role of MIPs in the progress of these therapeutic 
issues has not been reviewed comprehensively. Therefore, 
this review conducts a thorough analysis of the recent de-
velopments in this field (Figure 2)[6].

2.1. MIPs-based cancer diagnosis
Tissue biopsies serve as the conventional, albeit 

Fig. 2. Schematics show that MIPs are promising polymeric materials 
with versatile applications in cancer theragnostics and therapy 
(Extracted from [6]). 

Fig. 3. The main steps for the discovery and application of new 
biomarkers (Adapted from [44]). 
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the peptide epitope. In another strategy, glycan-imprinted 
Raman-active silver NPs were applied to recognise and 
capture the peptide epitope. The dual recognition strategy, 
operating orthogonally, appeared to heighten the specific 
sensing mechanism. The efficacy of this approach was 
validated through testing with various proteins, including 
β-casein, bovine serum albumin, human apo-transferrin, 
horseradish peroxidase, and ribonuclease B [50].

Silica NPs in the dimer, trimer, and tetramer forms can 
be applied due to their high porosity properties for loading 
therapeutic agents [51]. Exosomes present a challenge in 
molecularly imprinted polymer MIP applications due to 
their irregular size and shape, often requiring the use of 
surrogate templates [52]. Zhu et al. (2020) tackled this by 
constructing an electrochemical detection platform for the 
analysis of exosome particle size distribution. They coated 
glassy carbon electrodes altered with gold NP-graphene 
oxide by 4-mercaptophenylboronic acid in a layer and 
employed silica NPs coated with horseradish peroxidase 
in various sizes (50, 100, and 150 nm) as templates. This 
approach enabled a successful and consistent analysis of 
simulated exosome size ratios. It's worth noting that the 
application of this method to biological samples was still 
pending [53].

An alternative strategy for addressing exosome surface 
irregularities involves combining MIPs integrated with 
specific antibodies and aptamers [54]. Mori et al. (2019) 
engineered a molecularly imprinted sensing platform 
designed for the detection of exosomes derived from 
prostate cancer. They utilized a histamine-tagged protein 
G-tagged protein G to anchor a CD9-targeting antibody to 
the gold sensor surface, as CD9 is abundant on exosome 
surfaces. After the immobilization of template exosomes 
from the PC3 prostate cancer cell line on the surface, 
methacryloyl disulfide groups were attached for post-
imprinting modifications [55].

In the study carried out by Ma et al. (2021), a sialic acid 
(SA)-imprinted, temperature-responsive hydrogel layer 
has been developed for the discriminatory capture and 
release of cancer cells. The process involves imprinting 
the hydrogel with SA at 37°C, establishing switchable SA-
recognition sites that strongly bind to SA at 37°C and weakly 
bind at a reduced temperature (e.g., 25°C). Due to the 
frequent overexpression of SA on cell membrane proteins 
or lipids, this hydrogel can selectively recognize cancer 
cells. The research confirmed the hydrogel's efficiency 
in capturing cancer cells from culture mediums and real 
blood samples. Furthermore, these captured cells can be 
non-invasively liberated by reducing the temperature. This 
method provided non-invasive processing, high capture 
efficiency, exceptional cell selectivity, and more stable 
and durable SA-imprinted sites when compared to natural 
antibodies or receptors [56].

2.2. MIPs-based cancer therapy
Cancer continues to pose a substantial global health 

challenge, characterized by limited treatment options and 
challenges such as multidrug resistance, tumor complexity, 
and non-specific drug targeting. Traditional therapies have 
drawbacks, including permanent genetic changes and off-
target effects [57]. MIPs provide a solution by selectively 
targeting specific cancer-related proteins like saccharides 
and glycans, which are often overexpressed with cancer 
cells [58]. This unique characteristic of MIPs can be 

harnessed for drug delivery, photothermal therapy (PTT), 
photodynamic therapy (PDT) and biological activity 
regulation as standalone therapeutic agents, addressing 
the limitations of conventional treatments [58]. PTT is 
an emerging cancer treatment method that harnesses 
photothermal agents capable of absorbing specific light 
wavelengths. Upon exposure to this light, these agents 
generate heat, leading to localized cancer cell death. 
Photothermal nanoparticles have been verified to trigger an 
antitumor immune response and transform a "cold tumor" 
into a "hot tumor". PTT has garnered attention due to its 
advantages, including precision, non-invasiveness, and 
low toxicity, setting it apart from conventional treatment 
approaches [59]. In particular, near-infrared (NIR) light-
mediated PTT has gained popularity for its ability to 
induce necrosis or apoptosis in cancer cells by producing 
localized hyperthermia [60].

In a study conducted by Ma et al., a novel approach 
was presented, utilizing human serum albumin (HSA)-
imprinted polymer-coated Fe3O4 NPs (Fe3O4@MIPs) to 
enhance the delivery of photothermal nanoparticles for 
cancer therapy. Fe3O4@MIPs are engineered to tackle the 
issue of rapid elimination from the reticuloendothelial 
system. These nanoparticles are enveloped in a polymer 
imprinted with HSA and then stripped of the HSA 
template. The resultant Fe3O4@MIPs exhibited specific 
reabsorption of HSA, forming an albumin-rich protein 
corona in the bloodstream. This leads to reduced removal 
from the reticuloendothelial system in comparison to 
non-imprinted particles (Fe3O4@NIPs). Furthermore, 
the polydopamine-based molecularly imprinted polymer 
enhances the photothermal effect of Fe3O4 NPs. In vivo 
experiments showcase a significant increase in tumor 
accumulation with Fe3O4@MIPs, producing more heat 
upon laser irradiation and facilitating efficiently induced 
immunogenic cell death. The conjunction of Fe3O4@MIPs 
with a programmed cell death-ligand 1 (PD-L1) antibody 
curbs primary tumor growth and eliminates lung metastasis 
through immunological mechanisms [61].

In contrast to PTT, PDT emerges as another robust 
phototherapeutic strategy for cancer treatment by using 
light, a photosensitizer (PS), and oxygen to activate the 
PS, which then generates highly toxic reactive oxygen 
species (ROS) upon exposure to light. Two reaction 
mechanisms, known as type I and type II, produce ROS 
through electron/hydrogen transfer or energy transfer to 
molecular oxygen. PDT is highly regarded for its non-
invasive nature, selective localized treatment, and minimal 
side effects, making it an attractive choice for anticancer 
therapy [62].

Lin and colleagues conducted a study centered 
on precision medicine applications in PDT utilizing 
luminescent nanocomposites known as MC540/MNPs@
MIPs/UCNPs. In this study, green-emitting UCNPs 
(LiYF4:Yb3+/Ho3+@LiYF4:Yb3+) were synthesized and 
loaded the photosensitizer MC540 on magnetic NPs 
(MNPs) were encapsulated within MIPs for targeting 
cancer cells. These nanocomposites enable cytotoxic 
PDT for precise tumour cell destruction by utilizing 
luminescence resonance energy transfer (LRET) from 
upconversion nanoparticles (UCNPs) to excite MC540. 
This catalyzes the generation of ROS, leading to cell 
toxicity. The research also exhibited the hindering of the 
PD-L1 which can further augment treatment by averting 
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PD-1/PD-L1 immune blockade during immunotherapy. 
Although the nanocomposites illustrated slight toxicity 
without illumination, surface modifications could be 
explored to mitigate these effects and enhance their utility 
for in vivo therapy (Figure 4)[63].

MIPs present innovative methods for biological activity 
regulation by precisely inhibiting or activating enzymes 
which can serve as anticancer drugs by modulating 
appropriate biological functions [64]. This strategy, 
distinguished by its high specificity and affinity, addresses 
the limitations of conventional inhibitors and antibodies. 
MIPs are emerging as a promising option for tailored 
enzyme regulation in various biological processes, with 
potential applications in drug development and therapy 
[65]. Trypsin, a well-studied matrix serine protease, plays 
a crucial role in diverse pathological processes, such as 
tumor invasion and metastasis. Suppression of trypsin 
activity is a promising approach for treating trypsin-
dependent cell injuries [66].

Xu et al. (2021) produced highly specific and potent 
trypsin inhibitors using molecular imprinting techniques. 
They immobilized trypsin on the functionalized glass beads 
by IDA-Cu2+ and created trypsin-imprinted NPs (MIP-
trypsin) via solid-phase imprinting. MIP-trypsin featured 
an exposed immobilized active site and oriented binding 
sites on the surface, resulting in high selectivity toward 
trypsin. Quartz crystal microbalance sensors confirmed the 
MIP-trypsin selectivity, while in vitro assays demonstrated 
its inhibitory effect on trypsin (inhibition constant of 3.4 
nM). Notably, MIP-trypsin protected human healthy liver 
cells (L-02) from trypsin-induced damage by inhibiting 
ECM lysis. These findings hold promise for targeted 
therapies against conditions involving abnormal trypsin 
activity, such as cancer metastasis [67].

In the study carried out by Zhou et al. (2021), an 
innovative approach to inhibiting the PD-1/PD-L1 immune 
checkpoint is presented, to augment the reactivation of 
T-cells and thereby enhance their antitumor effects. The 
key component, termed "NanoNiche," is a molecularly 
imprinted nanostructure designed to specifically target 
N-linked glycans on PD-L1, thereby inhibiting the 
interaction between PD-L1 and PD-1, leading to T-cell 
reactivation. Furthermore, NanoNiche is conjugated with 
sialidase (Neuraminidase catalyse), an enzyme that cleaves 
SA from the tumor cell surface. The overexpression 
of sialoglycans on tumor cells can hinder immune cell 
infiltration by binding to Siglec receptors. NanoNiche's 
dual function—PD-L1 blockade and desialylation—works 
in tandem to enhance T-cell activity, ultimately leading to 
improved tumor cell killing. The methodology involves 
using gold NPs functionalized with boronic acid and 
SiO2 imprinting layers to create NanoNiche. In cellular 
experiments, NanoNiche demonstrated specific binding 
to PD-L1, simultaneous SA degradation, and enhanced 
T-cell-mediated tumor-killing activity. This approach 
showed promising strategy for PD-L1 blockade therapy, 
offering a unique method for increasing treatment efficacy 
while reactivating T-cell immunity (Figure 5) [68].

3. Molecularly imprinted polymers in microbiology
The misuse and leftover traces of antibiotics pose a 

significant threat to both the environment and organisms 
[69]. Therefore, it has become crucial to be capable of 
precisely determining and monitoring the presence of an-
tibiotics in various matrices. However, due to their low 
concentrations, diverse types, and complex compositions, 
it is often necessary to employ effective methods for reco-
gnition, separation, and enrichment before determining the 
presence of antibiotics [70]. MIPs have become a valuable 
asset in the field of analytical detection of antibiotics. 
MIPs are highly selective polymers that are prepared using 
molecular imprinting technology (MIT) [71]. 

This technology involves creating a template molecule 

Fig. 4. (A) The study involves the synthesis and application of PD-
L1 peptide-imprinted composite nanoparticles. (B) The analysis 
focuses on the relative gene expression. (C) The proposed pathway 
of cellular apoptosis, involving Casp3, Casp8, Casp9, and Bax, Bcl-2, 
Bid, somatic cytochrome c (CYCS), in HepG2 cells treated with MIPs 
under irradiation or without irradiation (Adopted from [63]).

Fig. 5. Schematic images illustrating (A) Comparison of performance 
of molecularly imprinted using PD-L1 N-glycans as templates, with 
traditional PD-L1 blocking antibodies, (B) microscopy images reveal 
the T-cell-mediated eradication of tumor cells in MDA-MB-231 cells 
following incubation with 200 μL of NanoNiche at 0, 1, 2, and 3 hours 
post-treatment, (C) conceptual representation of T-cell reactivation 
facilitated by NanoNiche and its inhibitory effect on tumor cell growth 
(Adopted from [68]). 
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that mimics the structure of the target antibiotic followed 
by mixing the template molecule with functional mono-
mers and cross-linkers to polymerization and form a three-
dimensional network [72]. During this process, the tem-
plate molecule is eliminated, leaving behind cavities or 
imprints that possess particular binding sites for the target 
antibiotic. One of the primary applications of MIPs in anti-
biotic analysis is as adsorbents in solid-phase extraction 
(SPE). SPE is a widely used technique for sample prepa-
ration, where MIPs are packed into a solid-phase cartridge 
or column. When a sample containing antibiotics is passed 
through the cartridge, the target antibiotics selectively bind 
to the imprinted sites on the MIPs, while other interfering 
compounds are washed away. This allows for efficient 
separation and enrichment of the antibiotics, enhancing 
their detection sensitivity [73]. Additionally, MIPs have 
also been utilized as identification elements in sensors for 
antibiotic recognition [71]. These sensors are designed 
to detect and quantify the presence of antibiotics in real 
time. The MIPs are integrated into the sensing platform, 
where they selectively bind to the target antibiotics. This 
binding event leads to a measurable signal change, which 
can be converted into a quantitative measurement of the 
antibiotic concentration [74]. In summary, the use of MIPs 
in antibiotic analysis has proven to be highly beneficial. 
Their ability to selectively recognize and bind to specific 
antibiotics allows for improved separation and enrichment 
techniques, leading to enhanced detection sensitivity. Fur-
thermore, their integration into sensor platforms enables 
real-time monitoring of antibiotic presence. Overall, MIPs 
have an effective role in ensuring the accurate determina-
tion and monitoring of antibiotics in various environmen-
tal and biological samples.

Additionally, MIPs have been explored for bacterial 
identification in various strategies. One approach is to 
employ MIPs as selective recognition elements for speci-
fic bacterial strains or species. By imprinting the polymer 
with the target bacteria, MIPs can be designed to selecti-
vely bind to the target bacteria and differentiate them from 
other microorganisms. This can be useful in bacterial iden-
tification and detection applications. Moreover, MIPs can 
also be used for the extraction and enrichment of bacterial 
cells from complex samples, aiding in their identification 
and analysis [75].

3.1. MIPs for bacterial identification
MIPs have been applied as a tool for bacterial 

identification by imprinting the polymer with specific 
bacterial components, such as cell surface proteins or 
DNA sequences, MIPs can be used to selectively capture 
and identify bacteria in complex samples [76]. For 
instance, in a study conducted in 2020 by Bezdekova 
and colleagues [77], a new technique was developed 
to isolate Staphylococcus aureus from complex food 
samples using a method called molecular imprinting. 
Dopamine, a type of molecule, was used as a building 
block for creating a specific polymer layer that can bind 
to S. aureus. Fluorescence microscopy was used to detect 
the presence of the bacteria. The researchers investigated 
the optimal conditions for creating these polymer layers, 
as well as their ability to bind to S. aureus. The different 
steps of the process were combined into a single extraction 
method, where the polymer layer was attached to magnetic 
particles (referred to as magnetic MIPs). The researchers 

then used these magnetic MIPs to extract S. aureus from 
milk and rice samples. They also successfully tested the 
method on raw milk from cows with mastitis. With this 
new method, the researchers were able to detect bacteria 
in milk at a concentration of 1 × 103 colony-forming 
units per milliliter (CFU·ml−1), which is the limit set by 
European Union regulations for controlling microbial 
contamination in food [77, 78]. In a separate study, 
Yasmeen and colleagues (2021) formulated a chemosensor 
employing an electrochemical MIP for quick identification 
and quantification of the E. coli strain. The E. coli E2152 
strain was effectively incorporated into a polymer through 
electrochemical polymerization. The functional monomer 
employed was 2-aminophenyl boronic acid and aniline 
served as the cross-linking monomer. Scanning electron 
microscopy (SEM) images revealed that the bacterial 
template was entirely encapsulated within the resulting 
MIP matrix in a single step, eliminating the need for 
additional complicated procedures. The three-step process 
employed to create MIP cavities proved successful. 
Subsequent SEM imaging verified the effectiveness of the 
template extraction process. Detection of the target E. coli 
E2152 strain was accomplished using an electrode coated 
with an MIP film, with a detection limit of up to 2.9 x 104 
cells/mL [78]. 

In another study performed in 2023, the researchers 
developed a novel electrochemical sensing platform for 
detecting a toxin called vacuolating cytotoxin A (VacA) 
produced by the bacteria Helicobacter pylori. VacA is a vi-
rulence factor that has a prominent role in the pathogenesis 
of H. pylori and helps the bacteria establish it in the gastric 
cells of the host. The researchers developed a sensing plat-
form by decorating silicon dioxide (SiO2) nanoparticles on 
a screen-printed electrode. This platform acts as a receptor 
for the VacA protein. They created a molecularly imprin-
ted polymer by polymerizing it directly on the screen-
printed electrode using VacA antigen as a template. The 
functionality of the electrode was then researched using 
electrochemical techniques. Under carefully calibrated 
experimental parameters, the VacA-MIP/SiO2@ screen-
printed electrode demonstrated high sensitivity (0.304 mA 
ng-1 ml-1) and a very low limit of detection (0.01 ng ml-1) 
within a linear range of 0.01-100 ng ml-1. The researchers 
also investigated the influence of other potential interfe-
rents on the sensor's response and successfully determi-
ned the presence of VacA antigen [79]. In a 2023 study, 
researchers designed an electrochemical sensor for the de-
tection of the specific bacterium Listeria monocytogenes. 
This sensor leverages platinum and screen-printed carbon 
electrodes that are customized with an MIP. The MIP bes-
tows the sensor with the capability for selective detection 
of L. monocytogenes. The electrode modification involved 
a coating process including a layer of non-imprinted po-
lypyrrole (NIP-Ppy) and a layer of L. monocytogenes-im-
printed polypyrrole (MIP-Ppy). To eliminate the bacteria 
from the electrodes, they are subjected to incubation in 
various extraction solutions including trypsin, acetic acid, 
sulfuric acid, and L-lysine. The study seeks to determine 
the most efficient extraction solution, ensuring a sensor 
design that is both sensitive and reproducible. The effi-
cacy of the MIP-Ppy and NIP-Ppy modified electrodes is 
assessed using pulsed amperometric detection (PAD). The 
most effective sensor is identified as the MIP-Ppy modi-
fied electrode with trypsin as the extraction solution. The 
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limit of detection (LOD) and limit of quantification (LOQ) 
for the sensor are established at 70 CFU/mL and 210 CFU/
mL, respectively, with a linear range spanning from 300 to 
6700 CFU/mL [80].

3.2. MIPs for antibiotics identification
This technique is also used against the evolution 

of antimicrobial resistance and to detect antibiotic 
residues. In a study, the researchers designed fluorescent 
nanostructures that can serve as sensing probes for 
detecting a specific antibiotic called ciprofloxacin. In 
detail, they synthesized a fluorescent metal-organic 
framework (MOF) called NH2-MIL-53(Al) using a 
hydrothermal approach. They combined this MOF with 
MIPs to create a composite material that can selectively 
and specifically detect ciprofloxacin in water solutions. 
The use of MIPs is advantageous because it eliminates 
the need for pre-treatment of the sample. The creation of 
the MIP@NH2-MIL-53(Al) nanostructure was verified 
using various characterization techniques, including 
spectroscopy and microscopy. The resulting fluorescent 
composite demonstrates the potential for exceptionally 
sensitive and specific detection of ciprofloxacin in 
practical applications [81]. Furthermore, another study 
presented a new method for measuring the concentration 
of cloxacillin antibiotic in river and drinking water samples 
via a MIP as a selective sorbent for SPE (MISPE). The 
researchers synthesized several polymers using cloxacillin 
as a template and evaluated their binding characteristics 
through batch adsorption assays. They selected the 
most appropriate polymer for the determination of this 
antibiotic and combined it with high-performance liquid 
chromatography (HPLC) to analyse cloxacillin residues 
in water samples. The linearity of cloxacillin, a type of 
antibiotic, was evaluated by the MISPE methodology wit-
hin the range of 0.05-1.5 µg/L. The recovery percentage, 
which measures the accuracy of the analysis, was found 
to be higher than 98% with a relative standard deviation 
(RSD) of less than 4%. The limits of detection and limits 
of quantification were determined to be 0.29 and 0.37 
µg/L, respectively, for drinking water. For river water, the 
limits of detection and limits of quantification were found 
to be 0.8 and 0.98 µg/L, respectively. Thus, the suggested 
MISPE-HPLC methodology was effectively employed 
for the identification of cloxacillin in drinking and river 
water samples [82]. Another study describes a new type 
of sensor for detecting sulfadiazine (SDZ), a compound 
commonly found in food samples. The sensor is made 
using MIP, which involves creating a special membrane on 
an electrode. This membrane contains two templates, SDZ 
and propyl gallate, and is modified with nanocomposites 
called CuInS2/ZnS. The sensor works by measuring the 
existing disparities between the MIP membrane and a non-
imprinted polymer membrane at two different potentials 
(0.18 V and 0.92 V). By comparing these current 
differences, the sensor can determine the concentration 
of SDZ in a sample. This differential ratiometric method 
improves the reproducibility and stability of the sensor and 
reduces interference from other substances in the sample. 
The sensor was successfully used to detect SDZ in food 
samples, with a detection limit of 2.1 nM [83]. 

In a study in 2023, Zhang et al. developed a new fluo-
rescence sensor that is highly sensitive and selective for 
detecting tetracycline antibiotics which pose a threat to 

both human health and the long-term growth of aqua-
culture and animal husbandry. The sensor is made up of 
nitrogen-doped carbon dots embedded in zinc-based me-
tal-organic frameworks and incorporates a molecularly 
imprinted polymer (ZIF-8&N-CDs@MIP). The physical 
and chemical properties of the ZIF-8&N-CDs@MIP were 
analyzed using various techniques such as SEM, transmis-
sion electron microscopy (TEM), Fourier-transform infra-
red spectroscopy (FTIR), X-ray diffraction (XRD), Bru-
nauer-Emmett-Teller (BET) analysis, and thermogravime-
tric analysis (TGA). Under optimal conditions, the sensor 
had a limit of detection of 0.045 μg mL−1 and was able 
to detect TC concentrations in the range of 0.1–4.0 μg/
mL. The imprinted polymers used in the sensor demons-
trated better selectivity for TC compared to non-imprinted 
polymers, and the quenching mechanism of the ZIF-8&N-
CDs@MIP sensor was attributed to the inner filter effect. 
This study provides an effective and reliable method for 
specifically detecting TC and has been successfully ap-
plied to milk and egg samples with satisfactory recovery 
rates (80.67–95.22%) [84].

4. Conclusion
In conclusion, MIPs stand as pivotal tools in various 

scientific domains, showcasing their versatility and im-
pact across different applications. In medicine, MIPs play 
a crucial role by mimicking biological receptors with 
enhanced specificity and affinity. The three components 
of MIPs–templates, functional monomers, and cross-lin-
kers – come together to form stable three-dimensional 
polymer networks. The utilization of synthetic templates, 
such as glycan and aptamers, enhances the efficiency of 
the molecular imprinting process. In the realm of cancer 
research, MIPs shine in both detection and therapy. MIP-
based detection systems demonstrate superior sensitivity 
and selectivity for cancer biomarkers, offering stability, 
sensitivity, and adaptability. In therapy, MIPs provide in-
novative solutions to challenges like multidrug resistance, 
excelling in drug delivery, PTT, photodynamic therapy, 
and the regulation of biological activity. Moving into mi-
crobiology, MIPs prove indispensable in the detection of 
antibiotics and the identification of bacteria. They serve 
as adsorbents in SPE, efficiently separating and enriching 
antibiotics during sample preparation. MIPs are tailored to 
recognize specific bacterial strains or species, contributing 
to bacterial identification. In the fight against antimicro-
bial resistance, MIPs play a vital role in monitoring anti-
biotic residues. In summary, MIPs emerge as versatile and 
indispensable tools, advancing medical technologies with 
enhanced sensitivity, selectivity, and adaptability. Their 
applications span from biomarker detection to innovative 
cancer therapies, making MIPs invaluable for accurate de-
termination and monitoring across diverse biological and 
environmental samples.
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