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1. Introduction 
Assisted reproductive technologies (ARTs) have revo-

lutionized the field of reproductive medicine and have 
successfully helped millions of women worldwide to 
conceive. In the United States alone, 330,773 ART cycles 
were performed in 2019, resulting in 77,998 live births 
[1]. While ART has undoubtedly brought hope to many 
couples struggling with infertility, it is essential to study 
the cellular and molecular changes associated with these 
procedures to ensure their safety and efficacy. Cryopreser-
vation and oocyte vitrification are integral parts of ART, 
and they effectively preserve the fertility of women under-
going cancer treatments or those who wish to delay pre-
gnancy [2]. Epigenetic modifications, such as DNA methy-
lation, histone modifications, and microRNA expression, 
play a crucial role in determining gene expression and 
cellular differentiation. Histones are structural and func-

tional proteins located in the core of the nucleosome, and 
they regulate chromatin structure and function. Histone 
modifications, including phosphorylation, ubiquitination, 
acetylation, and methylation, play a critical role in chro-
matin remodeling and gene expression [3].  In this study, 
we will review the current literature on epigenetic changes 
in vitrified oocytes and the early embryos derived from 
them. Understanding these changes is crucial to improving 
the safety and efficacy of ART and ensuring the long-term 
health of the offspring. 

2. DNA methylation
Recently, the role of epigenetics in the field of repro-

duction medicine has increased and includes different 
aspects including DNA modification. (Figure 1) DNA 
methylation is regarded as one of the modification methods 
and most commonly occurs as the methylation of the 
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cytosine base at the 5-Carbon position by DNA methyl-
transferases (DNMTs). The methylated cytosine is called 
5mc(5-methylcytosine).  5mc is mostly present at CpG 
sites, where a cytosine base is followed by a guanine. CpG 
islands or CGIs are regions of genomes in which CpG sites 
are most frequently located. DNA methylation could have 
various effects on cells; the methylation of the promotor 
region with high CpG level is associated with gene silen-
cing. DNA methylation is critical for normal development, 
genomic imprinting, X-chromosome inactivation, repres-
sion of transposable elements, aging, and carcinogenesis. 
Methylation can change the activity of a DNA segment 
without altering the sequence. Cytosine methylation can 
repress gene transcription and is the most extensively stu-
died form of DNA methylation, while adenine methylation 
has received less attention. DNA methylation is required to 
establish and maintain cell identity and regulates gene ex-
pression through various mechanisms [4, 5]. Methylations 
are present in both intra-genic and extra-genic regions. 

2.1 Global methylation
Global methylation is defined as the level of 5mc rela-

tive to the total cytosine level. The method used for this 
measurement is immunofluorescence staining which is 
done by visualization of antibodies against 5 mM. Oocytes 
were vitrified at either the MII or GV stage, and global 
methylation was measured at different developmen-
tal stages, including GV oocytes, MII oocytes and early 
embryos. Overall, both human and animal studies did not 
report a significant difference in global methylation at dif-
ferent stages of development. 

Liang et al. [6] reported a significant reduction in glo-
bal methylation among vitrified MII oocytes and early 
embryos derived from them (2-cell, 4-cell, 8-cell), this dif-
ference was resolved at the morula and blastocyst stages. 
In another study, Moulavi et al. [7] vitrified oocytes at 
the GV stage and measured global methylation in 2-cell 
embryos and blastocyst; they observed a significant reduc-
tion in general methylation among 2-cell embryos, but the 
difference was not significant in case of blastocysts. Ma 
et al. [8] study is the latest published paper on this matter, 

they reported a significant reduction in the level of global 
methylation among vitrified mouse oocytes compared to 
fresh oocytes. They also reported that there was no signi-
ficant difference in methylation levels of exons,   UTR 
and  UTR, but methylation was significantly reduced in 
introns and promotors of vitrified oocytes compared to 
fresh ones.

In vitro maturation (IVM) after vitrification is sug-
gested to be a culprit for changes in global methylation. In 
a relatively large mice study by Yodrug et al. [9] and ano-
ther study by Yan et al. [10], global methylation of vitrified 
MII oocytes and MII oocytes derived from vitrified GV 
oocytes, which underwent IVM,  was compared and no 
significant difference was reported by them. A meta-ana-
lysis is needed to make a certain statement about the effect 
of IVM after vitrification on global methylation, but in a 
general overview of included studies, it does not seem to 
be significantly associated with changes in global methy-
lation. 

These studies also suggest that the stage of vitrification 
either at the MII or the GV stage does not seem to affect 
global methylation. Nevertheless, more studies, especially 
human studies, must make a concrete conclusion. 

Two of the studies that reported a reduction in global 
methylation shared an interesting result; significance and 
amount of difference decrease further through the deve-
lopment at the blastocyst stage [6, 7]. In contrast, in a 
study by Yodrug et al. although no significant differences 
between fresh and vitrified oocytes global methylation was 
significantly reduced in blastocysts derived from vitrified 
oocytes compared to controls.

The systematic review conducted by Barberet et al. 
[1] has shown that the differences in DNA methylation 
observed after ART conceptions are not significant, and 
their functional relevance in adult tissues is still unclear. 
There is a high controversy among studies reporting glo-
bal methylation, which indicates the complex nature of 
epigenetic studies, overall, it could be concluded that vitri-
fication either has no effect or decreases the level of global 
methylation among vitrified oocytes and early embryos 
derived from them. 

2.2. Methylation of specific regions
2.2.1. Dnmt1o, Hat1, and Hdac1

In a study by Zhao et al. [11] methylation patterns of 
the CPG Islands in the DNA methyltransferase 1o (Dnm-
t1o), histone acetyltransferase 1, and histone deacetylase 
1 (Hat1, and Hdac1) promotors were compared between 
2495 vitrified and 2218 fresh mouse MII oocytes. They re-
ported no significant difference in the methylation pattern 
of Dnmt1o, Hat1, and Hdac1 promotors between vitrified 
and fresh MII oocytes. 

2.2.2. Oct4 and Sox2 
Milory et al. [12] compared the methylation pattern of 

the Oct4 gene promotor between in vivo matured oocytes 
and vitrified in vitro matured mouse oocytes. All oocytes 
were vitrified at the MII stage in their study. Overall 
methylation of Oc4 was significantly lower among vitri-
fied oocytes compared with in vivo mature oocytes. 25% 
to 62.5% respectively(P<0.05). They also reported the 
methylation status of three CPGs in Oct; their findings are 
summarized in Table 1. They also reported the methyla-
tion status of the Sox2 promotor, and again a significant 

Fig. 1. Epigenetic modifications including different DNA, RNA and 
Histone modification or non-coding RNAs such as microRNAs.
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bolism [22, 23]. It acts as a negative regulator of the insulin 
and IGF-1 signaling pathways, making it a vital compo-
nent of the insulin signaling cascade [24] In mice, overex-
pression of Grb10 leads to postnatal insulin resistance by 
negatively modulating the IGF1R and IR cascades, linking 
growth and glucose metabolism in postnatal life. Grb10 
negatively regulates insulin/IGF-1 and Erk/MAPK signa-
ling pathways, inhibiting IGF-1/IGF-1R signaling and 
affecting insulin-regulated glucose transport. Its overex-
pression can reduce DNA synthesis, inhibit cell division 
and proliferation, and is associated with insulin resistance, 
type 2 diabetes mellitus, and individual growth and deve-
lopment [23, 25]. The study conducted by Zhou et al. [26] 
on cryopreserved ovary transplantation and fresh group 
revealed that the overexpression of Grb10 in mice causes 
postnatal insulin resistance via negative modulation of the 
IGF1R and IR cascades, suppressing IGF1R, IRS2, and 
AKT phosphorylation. 

2.2.6. MEST
The presence of differentially methylated regions 

(DMRs) in CpG islands and exons of imprinted genes like 
MEST and GNAS in early-postpartum oocytes indicates 
that metabolic stress during early lactation could impact 
the acquisition of imprinting, which may contribute to 
embryo loss. MEST is a gene that is expressed from the 
paternal alleles in the mesoderm and its differentiated 
lineages, and it undergoes dynamic methylation in mice 
in the upstream promoter region of a CpG island, similar 

reduction in promotor methylation was reported. Overall 
Sox2 promotor methylation was 8.5% for in vivo matu-
red oocytes and 4.5% for vitrified in vitro matured oocytes 
(P<0.05). 

2.2.3. Nanog and Foxd3
Milory et al. [12] also worked on Nanog and Foxd3 

promotor methylation, despite two previous sequences, 
they reported no significant difference in the overall 
methylation of Nanog and Foxd3 promotors between in 
vivo matured oocytes and vitrified in vitro matured mouse 
oocytes. [12]

2.2.4. H19, Peg3, IGF2 and C
Cheng et al. [13] analyzed the methylation pattern of 

CPGs located in differentially methylated regions (DMR) 
of H19, Peg3, and Snrpn, including 15 CPGs in the H19 
DMR, 18 CPGs in the Peg3 DMR, and 16 CPGs in the 
Snrpn DMR. They reported no significant difference 
between fresh and vitrified mouse oocytes and interestin-
gly, reported that methylation level of these three genes 
was reduced among blastocysts derived from vitrified oo-
cytes compared to fresh oocytes. This difference could be 
due to reduced expression of Dnmt3b among blastocysts 
derived from vitrified oocytes. (Figure 2) [8] The manipu-
lation and culture of preimplantation embryos can result 
in abnormal methylation of histones in the H19/Igf2 pro-
moter region, leading to changes in gene expression pat-
terns. This alteration of H3K4me3 and H3K9me3 methy-
lation has been observed to affect H19/Igf2 expression 
in chimeric blastocysts. In mice embryos, H19/Igf2 im-
printing genes are more sensitive to culture supplements 
and micromanipulations than other imprinted genes and 
play an essential role in embryo development, placental 
organization, and fetal growth [14-16]. Previous studies 
have linked abnormal imprinting of the H19/Igf2 genes 
to atypical DNA methylation and histone modifications at 
the imprinting control region [17-19]. H19 and Igf2 are 
critical regulatory genes involved in various aspects of 
embryo development, fetoplacental growth, and postnatal 
behavior [20]. In vitro manipulations such as in-vitro fer-
tilization (IVF) and SCNT have been shown to influence 
H19 expression [21].

According to a recent investigation, the fresh embryo 
transfer group exhibited an abnormal reduction in the 
methylation levels of the imprinted gene H19/IGF2 and 
transposon element LINE-1 in the placenta, in comparison 
with the natural pregnancy group. However, no significant 
abnormality was observed in the FET group. Following 
the vitrification and warming of mouse follicles, there was 
no impact on the DMR methylation of imprinted genes 
H19 and Igf2r in mature oocytes, but Snrpn underwent a 
slight alteration [13].

2.2.5. GRB10
The Grb10 is an important gene that is parentally im-

printed and plays a role in development and glucose meta-
Fig. 2. Changes in the level of vitrification of certain sequences after 
vitrification at the MII stage.

CPG In-vivo matured oocyte Vitrified in-vitro matured oocytes P-value
CPG1 50% 25% 0.206
CPG2 100% 33.3% 0.001
CPG3 100% 33.3% 0.001

Table 1. Methylation percentage of three CPGs of Oct4 promotor
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to what was observed in the overlapping DMRs. While 
MEST is typically fully methylated in the maternal ger-
mline, it was differentially methylated in fully grown and 
freshly ovulated oocytes, but hypermethylated in oocytes 
cultured in vitro, demonstrating the dynamic nature of im-
print acquisition and its susceptibility to varying growth 
conditions [27].

2.2.7. KCNQ1
The formation of the IKs channel complex involves the 

co-assembly of Kv7.1 (KCNQ1), a voltage-gated potas-
sium channel, with its β-subunit, KCNE1, as well as the 
interaction with various accessory regulatory molecules, 
such as PIP2, calmodulin, and yotiao [28]. The inacti-
vation of this complex is more evident when KCNQ1 
is expressed in mammalian cells [29, 30], as opposed to 
oocytes, where it is less apparent [31]. This current has 
a low conductance and a fast activation and deactivation 
rate, but its association with endogenous currents in the 
body has not been positively identified [32]. The stoichio-
metry of KCNE1 forming complexes with KCNQ1 varies 
among different mammals, including humans, and remains 
unclear [28].

2.2.8. SNRPN and PLAGL1
Although the methylation pattern in SNRPN remai-

ned unchanged, changes were observed in Igf2r, H19, and 
PLAGL1 in the brain and liver tissue of the offspring com-
pared to the natural controls. These changes were accom-
panied by varying levels of gene expression for Igf2r, H19, 
and PLAGL1, but did not result in any significant physi-
cal or functional differences (such as birth defects, weight 
gain, exercise capacity, or anti-fatigue ability) between the 
offspring from the cryopreserved and non-cryopreserved 
groups [33].

2.2.9. GTL2 and DLK-1
The study of Wilkinson et al. [34] indicated that the 

expression of lncRNA Gtl2 and its corresponding imprin-
ted gene, Dlk1, in mouse blastocysts are crucial for the 
proper development of various tissues in the embryo, in-
cluding the brain and bones, as well as regulating genes 
in the TGF-b signaling pathway. Gtl2 also has anti-tumor 
properties in humans through different pathways [35, 36]. 
Dlk1 codes for a transmembrane protein that plays a role 
in cellular differentiation and carcinogenesis. The mater-
nal allele of Dlk1/Gtl2 has an unmethylated IG-DMR and 
expresses Gtl2, while the paternal allele has a methyla-
ted IG-DMR and expresses Dlk1 [37]. It was found that 
IVF and vitrification led to decreased Gtl2 expression and 
increased Dlk1 expression in mouse blastocysts [38]. 

3. Gene interaction analysis 
The Gene Ontology enrichment and pathway analy-

sis of the related genes described in this article show the 
importance of IRS activation R-HSA-74713 pathways in 
embryo modification. (Figure 3) The IRS molecule plays a 
role in insulin signaling pathways and is activated through 
phosphorylation. This leads to a series of cascades that 
involve PI3K, SOS, RAF, and MAP kinases. Through stu-
dies on mutated receptors, it has been determined that IRS1 
binds to the insulin receptor at tyrosine 972 in the juxta-
membrane region through its PTB domain. The interaction 
is stabilized by the PH domain of IRS1, which interacts 

with phospholipids on the plasma membrane. This allows 
for up to 13 tyrosine residues on IRS1 to be phosphoryla-
ted by the receptor. Once phosphorylated, IRS1 separates 
from the receptor and becomes activated, allowing other 
proteins to interact with it [39]. 

The Gene-Gene interaction of important genes was 
found in the article and was performed using GeneMANIA 
tool [40]. The report of predicted analysis is presented in 
Supplementary Figure 1 (Figure S1.).  

4. RNA methylation
The involvement of N6-methyladenosine (m6A) in 

oogenesis, embryonic growth and reproduction has been 
increasingly supported by growing evidence [41]. This 
modification, which is the most prevalent, and conserved 
internal modification in eukaryotic RNAs, particularly in 
higher eukaryotic cells, is subject to dynamic and reversible 
regulation by specific enzymes. These enzymes include 
methyltransferases (writers), such as METTL3/14/16, 
RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and 
KIAA1429, which modify m6A modification, and de-
methylases (erasers), including FTO and ALKBH5, which 
remove it. The modification is recognized by m6A-binding 
proteins (readers), including YTHDF1/2/3, YTHDC1/2, 
IGF2BP1/2/3, and HNRNPA2B1 [42]. The study of Zhang 
et al. [43] revealed that the maturation process of oocytes 
was delayed due to the disruption of spindle organization 
and chromosome alignment by the use of cycloleucine as 
an inhibitor of RNA m6A methylation. It is also shown 
that m6A mRNA methylation can play a crucial role du-
ring meiotic maturation and maternal-to-zygotic transition 
in the mouse model [44]. Despite this, there is requirement 
for future study, helping to understand the role of RNA 
m6A methylation in human oocytes. 

5. Histon modifications 
5.1. Histone acetylation

Changing the chromatin architecture and regulating 
gene expression by opening and closing the chromatin 
structure following the epigenetic modification of nuclear 
histone acetylation plays an essential role in various cellu-
lar functions [45, 46]. The involvement of histone acety-
lation in cell functions other than gene expression has re-
cently been noticed. There are very limited sources regar-
ding the role of histone acetylation in meiosis, but its role 
in mitosis is very prominent [46]. 

In a study on mouse oocytes by Kim et al. [46], changes 
in acetylation patterns of different histone lysine residues 
were investigated in meiotic oocytes and compared with 
post-fertilization embryos during mitosis. Because of this 
research, the reduction in acetylation levels of different ly-

Fig. 3. Gene Ontology enrichment and pathway analysis of vitrified 
oocyte-related genes.
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sine residues on histones H3 and H4 was observed both in 
oocytes during meiosis and in somatic nuclei transferred 
to nucleated oocytes. In a study by Moulvi et al. [7], in line 
with the possible effects of oocyte cryopreservation on the 
epigenetic status of the resulting embryos, the effects of 
oocyte cryopreservation in the 2-cell and blastocyst stages 
on epigenetic re-transcripts were investigated in Dro-
medary camels. Because of this study, the possibility of 
interfering with the vital steps of epigenetic reprogram-
ming during embryo development before implantation due 
to oocyte cryopreservation was suggested, they reported 
a significant reduction in the acetylation level of H3K9 
among 2-cell embryos derived from vitrified oocytes. In 
another study by Suo et al. [47], it was observed that cryo-
preservation affected the distribution of chromatin and 
AcH4K12, which is the result of changing the patterns of 
AcH4K12 in oocytes.

5.2. Histone acetylation and methylation
Among the important epigenetic changes that usually 

occur on lysine residues located in core histones are his-
tone acetylation and methylation. Acetylation and methy-
lation are related to activation of gene transcription and 
silencing of euchromatin along with the formation of hete-
rochromatin, respectively, and they influence each other's 
effects [48].

In a study by Spinaci et al. [48], the status of H4 acety-
lation and H3K9 methylation were investigated. Because 
of this research, which was done on the changes caused by 
pig oocyte cryopreservation, an important role was sug-
gested for histone H4 acetylation along with H3K9 methy-
lation, because the change in these two items due to oocyte 
cryopreservation probably leads to inappropriate epigene-
tic alternation in the female chromatin present in fertili-
zation, and as a result, the qualification of pig oocytes is 
reduced in cryopreservation. In a study by Yodrug et al. 
[9], taking into account that oocytes that are vitrificated 
by the Cryotop method have less ability to grow than fresh 
oocytes, the effect of vitrification on the epigenetic cha-
racteristics of bovine oocytes at the stage of metaphase II 
and subsequently in developing embryos was investigated. 
A significant decrease in the growth of blastocysts after in 
vitro fertilization due to oocyte vitrification was observed 
in this study, whereas the vitrification in the GV stage had 
a higher blastocyst development than the vitrification in 
the metaphase II stage. Finally, oocyte vitrification had a 
lack of effect on the intensity of H3K9me3, and acH3K9 
immunostaining was determined [9].

5.3. Histone ubiquitination
Histone ubiquitination is a countless modification com-

pared to other histone modifications, and it differs substan-
tially from them. In a study by Ma et al [8], the molecular 
level changes, oocyte cryopreservation, and subsequent 
heating were investigated, and it was concluded that, un-
like down-regulated genes, differentially regulated genes 
are mainly related to histone ubiquitination and in many 
cellular events including transcription initiation and elon-
gation, silencing, and repairing of DNA, they play impor-
tant roles. These roles are mainly related to chromatin and 
cytoskeleton structures such as histone H2A and histone 
mono-ubiquitination.

6. Micro-RNAs

The micro-RNA (miRNA) biogenesis pathway could 
also be influenced by the vitrification of oocytes. miRNA 
is a single-stranded noncoding RNA molecule that has a 
transcriptional/posttranscriptional function in the gene ex-
pression [49]. This molecule can be regulated by genetic 
and environmental conditions, so it is considered a target 
to be affected by vitrification [50]. miRNAs have a vital 
role in the regulation of embryo implantation. 270 miR-
NAs have been identified so far in this pathway [51]. miR‐
15a and miR‐16‐1 are responsible for apoptosis by repres-
sion of Bcl2, and miR‐Let‐7a suppresses the implantation 
by decreasing Itgβ3, Vav3, and Dicer expression [52].

The study's results show the decreased expression of 
miR‐Let‐7a, which leads to the suppression of implantation 
[52]. The development of the study performed by Danesh-
var et al. [50] also assessed the expression of miR-16 and 
miR-let7 and their target gene; the comparison between 
the vitrified group and fresh group showed a significant 
decrease in miR-let7, but miR-16 has not changed signi-
ficantly between these two groups. mmu-miR-199a-5p, 
mmu-miR-329-3p, mmu-miR-136-5p, mmu-miR-16-1-
3p, and mmu-miR-212-3p are five other miRNAs that 
have been determined in the comparison between vitrified 
and fresh mouse blastocysts; the result shows downre-
gulation of mmu-miR-212-3p and upregulation of mmu-
miR-199a-5p, mmu-miR-329-3p, mmu-miR-136-5p, and 
mmu-miR-16-1-3p, which means miRNA transcriptome is 
affected by vitrification in mouse blastocysts [51]. Also, 
22 miRNAs out of 520 were reported to be significantly 
different between the vitrified oocyte and fresh group in 
the Li et al. study [53], downregulation of the expression 
of miR465c-5p and upregulation of the expression of miR-
21-3p, miR-210-5p, and miR-134-5p were reported.

6.1. MicroRNA and embryo quality 
There is increasing evidence that miRNAs found in 

the bloodstream and other biological fluids can act as bio-
markers for various diseases, including cancer. Recent 
research has shown that the miRNA profiles in the culture 
media of human blastocysts can be linked to factors such 
as fertilization method, chromosomal status, and pregnan-
cy outcome. [54, 55] This suggests that miRNAs could be 
used to select embryos non-invasively in IVF cycles. Ac-
cording to research using droplet digital polymerase chain 
reaction (ddPCR), the levels of hsa-miR-26b-5p and hsa-
miR-21-5p in the culture media of cleavage embryos were 
found to be significantly lower in embryos with successful 
pregnancies compared to those with failed pregnancies. 
The study of also revealed that these miRNAs could po-
tentially be used as biomarkers for predicting reproductive 
outcomes [56].
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