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1. Introduction
Hypoxic pulmonary hypertension (HPH) is a complex, 

multidisciplinary disorder, characterized by pulmonary 
artery constriction at early phase and profound pulmo-
nary vascular remodeling. The restricted flow through the 
pulmonary arterial circulation results in increased pulmo-
nary vascular resistance, ultimately in right heart failure, 
and premature death [1]. The histopathological hallmark 
of pulmonary hypertension (PH) is pulmonary vascular 
remodeling as well as the complex vascular plexiform le-
sion formation [2]. Hypoxia-induced pulmonary vascular 
remodeling is marked by structural alterations in small ar-
teries due to excessive proliferation, migration and apop-
totic resistance of pulmonary artery smooth muscle cells 
(PASMCs) [3, 4]. Despite many years of researches about 
the effect of hypoxia on the development of PH, the under-
lying molecular mechanisms of HPH are not completely 
understood.

Nur77, one of the members of the nuclear receptor 4A 
(NR4A) family, is an immediately-early gene that could be 

activated by many physiological stimuli [5, 6]. Accumula-
ting evidences have shown that Nur77 plays critical roles 
in regulating cell proliferation, differentiation, migration, 
and apoptosis [7-10]. It has been verified that Nur77 is 
expressed aberrantly in lung cancer cell lines, and ARDS 
[11-13]. Moreover, in vascular smooth muscle cells, the 
expression of Nur77 was significantly induced by mitoge-
nic stimuli [8, 14]. From two monocrotaline-induced pul-
monary arterial hypertension (PAH) experimental models, 
the expression of Nur77 was inconformity [15, 16]. The-
refore, the functional role of Nur77 in the development of 
HPH needs further exploration.

Hypoxia-induced factor-1α (HIF-1α), a master regula-
tor of transcriptional responses to hypoxia, plays a smooth-
specific and cell-autonomous role in the pathogenesis of 
HPH [17]. The direct downstream regulation of Nur77 by 
HIF-1α has been confirmed in renal carcinoma cell lines 
[18], and in turn, Nur77 has been reported to stabilize HIF-
1α [19, 20]. Hence, we hypothesized that Nur77 mediates 
vascular remodeling in hypoxic pulmonary hypertension, 
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which is induced by HIF-1α, and expect to explore a novel 
potential therapeutic target in the treatment of HPH.

2. Materials and Methods
2.1. Animals

This study was approved by the Institutional Review 
Board of the Third Military Medical University. Seven-
ty-eight SPF male Sprague-Dawley (SD) rats (250-300g) 
were purchased from the Laboratory Animal Center, Third 
Military Medical University. Care and use of the animals 
complied with the Chinese Association for Laboratory 
Animal Science Policy. All rats were evenly randomized 
into six groups: normoxia group and hypoxia groups 
maintained at an altitude of 5000 m for 3 days, 7 days, 14 
days, 21 days and 28 days.

2.2. Hemodynamic Measurement 
SD rats were anesthetized with an intraperitoneal in-

jection of chloral hydrate (300 mg/kg). A PE-50 pressure 
catheter (OD 0.9 mm, ID 0.5 mm, length 15 cm) was in-
serted via the right jugular vein, adjusted through the right 
atrium and the right ventricle and ultimately positioned at 
the pulmonary artery. The pulmonary artery pressure and 
right ventricular pressure were measured with a presso-
transducer connected to the catheter by a NO.7 syringe 
needle.

2.3. Histology Analysis and Immunostaining
After hemodynamic assessment, the lungs of all rats 

were harvested for histology analysis and immunostaining. 
The paraffin-embedded lung section was stained with anti-
Nur77 antibody (1:100; #sc-365113; Santa Cruz, Santa 
Cruz, CA, USA), anti-HIF-1α antibody (1:200; #ab2185; 
Abcam, Cambridge, MA, USA), anti-proliferating cell nu-
clear antigen (PCNA) (1:200; #2586; CST, Danvers, MA, 
USA), and anti-smooth muscle actin (SMA). The stain 
sections were visualized with light microscopy (Nikon, 
Tokyo, Japan).

2.4. Right Ventricular Hypertrophy Index
To assess the degree of right ventricular hypertrophy, 

the right ventricle (RV) was dissected from the left ven-
tricle (LV) and the septum (S), and weighed separately. 
The right ventricular hypertrophy index (RVHI) was cal-
culated by the ratio of RV/(LV+S).

2.5. Cell Culture and Experiments
The primary rat pulmonary artery smooth muscle 

cells (RPASMCs) were purchased from the Beijing Bena 
Culture Collection Biotechnology Research Institute. All 
cells were cultured in smooth muscle cell medium contai-
ning smooth muscle cell growth supplement. Cells were 
maintained under normoxic conditions (5% CO2-95% 
ambient air) or hypoxic conditions (5% O2 for 24 h). The 
small interfering RNAs (siRNAs) against Nur77 (human 
5'-GGGCATGGTGAAGGAAGTT-3') or HIF-1α (human 
5'-GCUGAUUUGUGAACCCAUUTT-3') and the non-
target control siRNA were designed and synthesized by 
GenePharma (China).

2.6. Cell Proliferation Experiment
Cell proliferation was assessed by a Counting Kit 

(CCK-8) assay (Dojindo Laboratories, Kumamoto, Japan), 
and the RPASMCs were exposed to normoxia or hypoxia 

for 6 h, 12 h, 24 h and 48 h according to the manufacturer’s 
instruction.

2.7. RNA Isolation and RT-qPCR Analysis
For RT-qPCR analysis, total RNA was extracted 

from the separated pulmonary artery tissues and cultured 
RPASMCs using TRIzol reagent (TaKaRa, Dalian, China) 
following the manufacturer’s instruction. mRNA levels 
were measured using an SYBR Green real-time quantita-
tive PCR kit (TaKaRa, Dalian, China) and analyzed by an 
ABI Prism Fast 7500 system (Applied Biosystems, Foster 
City, CA, USA). 18s rRNA mRNA served as an internal 
control. For pulmonary arteries tissues, the sequences of 
the primers are as follows: Rat Nur77 forward 5'-GCT-
CATCTTCTGCTCAGGCCT-3' and reverse 5'-CAGACG-
TGACAGGCAGCTGGC-3'; HIF-1α forward 5'-GGA-
CAAGTCACCACAGGACA-3' and reverse 5'-GGGA-
GAAAATCAAGTCGTGC-3'; PCNA forward 5'-ATCC-
TGAAGAAGGTGCTGGA-3' and reverse 5'-GCTG-
CACTAAGGAGACGTGA-3'; 18s rRNA forward 
5'-TGAGAAACGGCTACCACATCC-3' and reverse 
5'-GCACCAGACTTGCCCTCCA-3'. And for RPASM-
Cs, the sequences of the primers are as follows: human 
Nur77 forward 5'-AACCCAAGCAGCCTCCAGAT-3' 
and reverse 5'-CTGCCCACTTTCGGATAACG-3'; HIF-
1α forward 5'-GGACAAGTCACCACAGGACA-3' and 
reverse 5'-GGGAGAAAATCAAGTCGTGC-3'; PCNA 
forward 5'-ACACTAAGGGCCGAAGATAACG-3' and 
reverse 5'-ACAGCATCTCCAATATGGCTGA-3'; 18s 
rRNA forward 5'-CGGCTACCACATCCAAGGAA-3' 
and reverse 5'-CTGGAATTACCGCGGCT-3'.

2.8. Western Blot Assay and Coimmunoprecipitate
For protein expression analysis, the frozen separated 

pulmonary arteries tissues [21] and cultured RPASMCs 
were lysed in ice-cold RIPA lysis buffer (1% Triton X-100, 
1% deoxycholate, 0.1%SDS). For coimmunoprecipitate 
analysis, the RPASMCs were isolated by 1% NP-40 lysis 
buffer. The primary antibodies were used as follows: anti-
Nur77 antibody (1:500; #sc-365113; Santa Cruz, Santa 
Cruz, CA, USA), anti-HIF-1α antibody (1:1000; #04-
1006; Millipore, Billerica, MA, USA), anti-PCNA antibo-
dy (1:1500; #2586; CST, Danvers, MA, USA) and anti-β-
actin antibody (1:500; Santa Cruz, Santa Cruz, CA, USA). 

2.9. Statistical Analysis
Quantitative data are presented as mean ± SD (stan-

dard deviation). Statistical analysis was carried out using 
Statistic Package for Social Science (SPSS) 22.0 (IBM, 
Armonk, NY, USA) and GraphPad Prism 5.0 (La Jolla, 
CA, USA). Comparisons between 2 groups were analyzed 
with Student’s t-test, and one-way analysis of variance 
with Dunnett’s was used to analyse multiple groups. Dif-
ferences were considered to be significant at P<0.05.

3. Results
3.1. Hypobaric hypoxia increases the pulmonary artery 
pressure and induces pulmonary vascular remodeling

To verify that the hypoxic pulmonary hypertension rat 
model was established and get the degree of pulmonary 
hypertension, we used a catheter to measure the pulmonary 
artery pressure. Mean pulmonary artery pressure (mPAP) 
and pulmonary artery systolic pressure (PASP) were ele-
vated significantly after 7 days of exposure to hypoxia 

D:\Dict\6.3.69.8341\resultui\app:ds:pressotransducer
D:\Dict\6.3.69.8341\resultui\app:ds:pressotransducer
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in hypoxic pulmonary hypertension rats (Figure 2A, B, C).

3.3. Hypoxia-induced Nur77 expression was relevant 
to pulmonary vascular remodeling and hypoxia pul-
monary hypertension

The protein levels of Nur77 were related to mPAP in 7, 
14, and 21 days after exposed in hypobaric chamber, but 
not in 0 and 28 days (Figure 3).

3.4. Hypoxia-induced Nur77 expression was synchro-
nized with PCNA in RPASMCs

Cultured RPASMCs expressed Nur77, and which was 
increased after culturing in 5%O2 chamber for 6 hours (Fi-
gure 4A, B), so were HIF-1α and PCNA (Figure 4A, B). 
The change of Nur77 was synchronized with PCNA and 
HIF-1α (Figure 4B).

3.5. Nur77 played a downstream regulator of HIF-1α 
in hypoxic pulmonary hypertension

Coimmunoprecipitation analysis showed that Nur77 
and HIF-1α did not directly combine in vivo (Figure 5A). 
Further, under hypoxic conditions, the expression of Nur77 
was decreased when silencing HIF-1α by siRNA, and the 
expression of PCNA was decreased as well in RPASMCs 
(Figure 5B). On the contrary, the expression of HIF-1α 
was changed little when silencing Nur77 by siRNA, while 
the expression of PCNA was decreased going with the 
deregulation of Nur77 (Figure 5C).

4. Discussion
This study determined that Nur77 mediates vascular 

remodeling in hypoxic pulmonary hypertension, which is 
induced by HIF-1α. In our experiment, we demonstrated 
that hypoxia could induce pulmonary artery hypertension. 
We successfully established the pulmonary hypertension 

(Figure 1A). Pathological staining showed that pulmonary 
artery walls were thickened after 7 days of exposure to 
hypoxia (Figure 1B).

Hypoxia-induced pulmonary artery hypertension was 
indirectly verified by right ventricular remodeling. The 
mean right ventricular pressure (mRVP) also was elevated 
significantly after 7 days (Figure 1C), and right ventricular 
systolic pressure was elevated after 14 days exposed to 
hypoxia. Right ventricle weight was increased remarkably 
after 14 days of exposure to hypoxia. Right ventricular hy-
pertrophy index (RVHI) was increased significantly after 
14 days of exposure to hypoxia (Figure 1C).

3.2. Hypobaric hypoxia upregulated Nur77 expression 
in pulmonary

The protein and mRNA levels of Nur77 were increased 
in pulmonary after 3 days of exposure to hypoxia (Figure 
2A, B). However, the mRNA levels of Nur77 were de-
creased after 28 days in hypoxic pulmonary hypertension 
rats (Figure 2C). The protein and mRNA levels of PCNA 
were increased after 3 days and 7 days exposed to hypoxia. 
The same with Nur77, the protein and mRNA expressions 
of HIF-1α increased after 3 days of exposure to hypoxia. 
However, the mRNA expression decreased after 28 days 

Fig. 1. Effect of hypoxia on pulmonary artery pressure and pulmonary 
vascular wall. (A) Mean pulmonary artery pressure (mPAP) and pul-
monary artery systolic pressure (PASP) elevate as hypoxia time pro-
longs. (B) Pathological change of pulmonary artery walls thickens as 
hypoxia time prolongs (stained for hematoxylin-eosin, magnification, 
×40). (C) Mean right ventricular pressure (mRVP) and right ventri-
cular hypertrophy index (RVHI) elevate as hypoxia time prolongs. 
Data are expressed as mean ± SD; n = 13. *P < 0.05. mPAP, mean 
pulmonary artery pressure; PASP, pulmonary artery systolic pressure; 
mRVP, mean right ventricular pressure; RVHI, right ventricular hy-
pertrophy index.

Fig. 2. Effect of hypoxia on HIF-1α, Nur77 and PCNA expression. 
(A) and (B) The protein expressions of HIF-1α, Nur77 and PCNA as 
hypoxia time prolongs. (C) The mRNA expressions of HIF-1α, Nur77 
and PCNA as hypoxia time prolongs. Data are expressed as mean ± 
SD; n = 13. *P < 0.05. HIF-1α, hypoxia-induced factor-1α; PCNA, 
proliferating cell nuclear antigen.

Fig. 3. The correlation between Nur77 protein level and mPAP in 0, 3, 
7, 14, 21, 28 days after exposure in hypobaric chamber. mPAP, mean 
pulmonary artery pressure. R2, coefficient of determination.

Fig. 4. HIF-1α, Nur77 and PCNA expression in RPASMCs as hypoxia 
time prolongs. Data are expressed as mean ± SD; n = 13. *P < 0.05. 
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rats model by hypoxic conditions, since mean pulmonary 
artery pressure elevated and right ventricular thickened as 
hypoxia time prolonged.

4.1. Nur77 and proliferation
Then, we found that Nur77 mediated vascular remo-

deling in hypoxic pulmonary hypertension, which was 
characterized by excessive proliferation of RPASMCs. 
Hypoxia-induced the high expression of Nur77 in the 
hypoxic pulmonary hypertension rats and RPASMCs. The 
silence of Nur77 decreased the proliferation of RPASMCs. 
At the same time, pathological changes showed that pul-
monary artery wall thickened and remodeled, along with 
increased PCNA expression as hypoxia time prolongs. 

4.2. Hypoxia and Nur77
Nur77 is highly expressed in multiple cancer cell lines 

and tumors, including lung, colon, bladder, and pancrea-
tic tumors [11, 22]. Conversely, investigations of hema-
tologic neoplasms have indicated that Nur77 promotes 
cell apoptosis [23], implying that Nur77 has cell-specific 
bidirectional functions. Although the expression of Nur77 
was inconformity as reported above [15, 16], in our study, 
hypoxia increased Nur77 protein and mRNA levels in both 
isolated pulmonary arteries and cultured RPASMCs. As 
was shown in the present study, hypoxia-induced excessive 
proliferation of RPASMCs, which was consistent with the 
significantly increased expressions of PCNA in the pul-
monary arteries and cultured RPASMCs. In turn, siRNAs 
against Nur77 attenuated the increased protein and mRNA 
levels and decreased the proliferation of RPASMCs. These 
findings suggest that Nur77 is involved in the development 
of HPH by promoting pulmonary vascular proliferation.

4.3. HIF-1 and proliferation
In consistency with Nur77 expression, we demonstra-

ted that HIF-1α was upregulated in the hypoxic pulmo-
nary hypertension rats and RPASMCs. And the silence of 
HIF-1α decreased the proliferation of RPASMCs. HIF-1α, 
a master transcription factor in hypoxia, regulates multiple 
genes responsible for energy metabolism, proliferation, 
migration and apoptosis [24, 25]. In HPH, HIF-1α acted as 
a regulator of vascular remodeling [18]. 

4.4. Nur77 and HIF-1
Interestingly, protein and mRNA levels of Nur77, 

HIF-1α and PCNA decreased in the 28th day rather than 
increased. High-altitude adaptation to hypoxia might be 

responsible for the phenomenon. A high-frequency mis-
sense mutation in the EGLN1 gene, which encodes pro-
lyl hydroxylase 2 (PHD2) contributes to high-altitude 
adaptation. PHD2 triggers the degradation of HIFs, which 
mediate many physiological responses to hypoxia [26-28]. 
Certain mechanism still needs further investigation. 

At the end of the experiment, we verified that Nur77 
played a downstream regulator of HIF-1α in hypoxia-
induced RPASMCs by gene silencing. HIF-1α did not 
directly interact with Nur77 as was shown in coimmu-
noprecipitate, demonstrating a possibly third substance 
between the HIF-1α and Nur77. And HIF-1α upregulated 
the expression of Nur77 in RPASMCs. The knockdown of 
Nur77 with siRNA did not affect the expression of HIF-1α, 
while siRNA against HIF-1α decreased the expression of 
Nur77 in the RPASMCs. Deregulation of Nur77 or HIF-
1α decreased the expression of PNCA. Therefore, Nur77 
plays a critical role in hypoxia-induced vascular remo-
deling, which was regulated by HIF-1α. The interaction 
between Nur77 and HIF-1α has been investigated firstly 
in renal carcinoma cell lines [18], indicating that Nur77 
acted as a transcription target of HIF-1α. Recently, a study 
involving non-small cell lung cell lines revealed that hy-
poxia-induced down-regulation of Nur77 was mediated by 
HIF-1α [11]. 

5. Conclusion
Our findings provide experimental evidence for the role 

of Nur77 in hypoxia-induced vascular remodeling. In the 
future, Nur77 may become a novel target of HPH therapy.
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