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1. Introduction
Receptor Tyrosine Kinases (RTKs), which are cell sur-

face receptors, play crucial roles in regulating fundamen-
tal cellular processes, embryonic development, and pro-
gression of several types of cancer [1]. Upon binding of 
signaling molecules, RTKs initiate the formation of cross-
linked dimers by associating with neighboring RTKs. The 
Ephrin Receptor (Eph) is one of the most important classes 
of RTKs and is characterized by its transmembrane struc-
ture, which includes an extracellular domain for ligand 
binding and an intracellular domain. When an Eph recep-
tor binds to a ligand, it activates kinase activity, leading to 
autophosphorylation and activation of cellular reactions, 
such as differentiation, migration, and proliferation. Eph 
signaling affects various biological processes, including 
cell proliferation, migration, invasion, cell-cell adhesion, 
and cell repulsion [2-9].

The Eph receptor family is divided into two subfami-

lies, EphA and EphB. In humans, nine EphAs (EphA1-8 
and EphA10) and five EphBs (EphB1-4 and EphB6) in-
teract with the ligands Ephrin-A and Ephrin-B, respec-
tively. Because the ligands are membrane-bound, the Eph 
receptor can initiate both forward and reverse signaling. In 
several types of cancer, including liver, melanoma, lung, 
colon, prostate, gastric, and breast cancers, both EphA and 
EphB classes are overexpressed [10].

EphA2, which is mapped to chromosome 1p36 in hu-
mans, is predominant in proliferating epithelial cells in 
adults. Although EphA2 and most Eph kinases have been 
primarily investigated in developing embryos, EphA2 
remains prevalent in adult epithelial tissues. Its exact 
role is still being elucidated, but it is believed to regulate 
processes, such as proliferation, differentiation, and inva-
sion. Recent studies indicate EphA2's presence in multiple 
cancers, including lung, colorectal, cervical, ovarian, and 
breast cancer. When interacting with its preferred ligand 
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Ephrin-A1, EphA2 appears to inhibit tumor growth; howe-
ver, its overexpression has been implicated in the progres-
sion of malignancy [11].

EphA2's binding to its ligand inhibits pathways like 
JAK/STAT3, integrin signaling, ERK, and PI3K [12-15] 
(Figure 1). Notably, the overexpression of EphA2 predicts 
poor prognosis and reduced survival rates in patients with 
cancer. Moreover, EphA2 targets the p53 protein family, 
prompting apoptosis when overexpressed [13,14]. Driven 
by an improved understanding of cancer biology and si-
gnificant research breakthroughs, efforts are underway to 
identify precisely designed target-focused anticancer the-
rapeutics. This pursuit involves identifying small mole-
cules that can curb the oncogenic properties of EphA2, 
including reducing its expression, promoting degrada-
tion, and obstructing endogenous activation. This study 
highlights EphA2 as a therapeutic target specific to cancer 
cells, with implications for various cancer types. During 
cancer progression, EphA2 overexpression can trigger 
ligand-independent pro-oncogenic activation; however, 
ligand stimulation can counteract these effects [16].

The pursuit of stabilizing novel biomarkers with spe-
cific functionality holds great promise for precise inter-
ventions in the treatment and prevention of breast cancer. 
From this perspective, the identification of novel targets 
that govern cell proliferation and apoptosis in cancerous 
cells has emerged as a potent strategy for addressing breast 
cancer. By establishing novel biomarkers and discerning 
therapeutic compounds against these targets, the impact of 
such research could be made global in scale. 

This study highlights EphA2's increasing potential 
as a favorable regulator of cell cycle components and a 
prospective focal point for the selective elimination of 
malignant cells. However, a comprehensive understanding 
of EphA2's underlying mechanism is crucial. Towards 
this direction, the study focused on the identification of 
investigational EphA2 inhibitors employing a synergistic 
approach that integrates ADME target-driven screening, 
multifaceted scoring docking, molecular interactions, dy-
namics simulations, and principal component analysis.

2. Materials and methods
2.1. Retrieval and optimization of protein 3D structure

The three-dimensional crystal structure (2.85 Å) of 
human EphA2 was acquired from the RCSB Protein Data 
Bank (PDB) [17]. To prepare the structure for docking 
simulations, heteroatoms, ions, and water molecules were 

removed, leaving only the apoprotein component. This 
refined three-dimensional dataset was utilized for molecu-
lar interaction studies with ligand molecules. Optimization 
and energy minimization of the EphA2 three-dimensional 
structure were accomplished using the CHARMm force 
field, facilitated by appropriate algorithms [18–20].

2.2. Structure-Based Virtual Screening
The high-throughput structure-based virtual screening 

of small molecules was carried out using the MCULE on-
line platform. The SBVS workflow incorporated the RO5 
criteria, with parameters such as sample size, diversity 
selection, and similarity threshold carefully defined. The 
execution of SBVS was facilitated by employing the Open 
Babel linear fingerprint search algorithm.

2.3. Retrieval and optimization of EphA2 inhibitors
The SDF (Standard Data Format) structures of li-

gands, including Doxazosin (CID-3157), Dasatinib (CID-
3062316), Wortmannin (CID-312145), Sorafenib (CID-
216239), and Vemurafenib (CID-42611257), were down-
loaded from the PubChem database [21–23]. The BIOVIA 
Discovery Studio Visualizer was used to convert the SDF 
structures into PDB-3D formats. Optimization and mini-
mization of the energy of each ligand followed a process 
similar to that applied to the EphA2 protein.

2.4. Toxicity Filtration
To expedite the ligand selection process, the MCULE 

platform's "toxicity checker" feature of the MCULE plat-
form was employed to conduct toxicity filtration. This 
step was aimed at reducing the number of ligands in the 
roster. It is worth mentioning that the specific structural 
characteristics of molecules can contribute to their toxici-
ty. Therefore, the elimination of intricate compounds was 
performed to minimize potential issues related to toxicity, 
selectivity, and pharmacokinetics. This selection process 
was based on the principles of SMILES Arbitrary Target 
Specification (SMARTS), which utilizes a framework 
based on a Simplified Molecular Input Line Entry System 
(SMILES). SMILES expresses the computer-compatible 
chemical configurations of molecules and is an extension 
of the SMARTS concept [24–26].

2.5. ADME Prediction
The Absorption, Distribution, Metabolism, and Excre-

tion (ADME) process is essential for reducing attrition in 
the drug discovery process by refining potential chemical 
candidates. Therefore, it is critical to conduct ADME fil-
tration before initiating clinical studies. During this pro-
cess, ligand hits that meet the toxicity criteria are carefully 
examined across a range of ADME attributes, including 
physicochemical characteristics, lipophilicity, pharma-
cokinetic traits, drug-likeness, and medicinal chemistry 
descriptors. The SwissADME tool was used to evaluate 
attributes [27].

2.6. Computational Docking
The integration of AutoDock Vina into the MCULE 

drug discovery platform (https://mcule.com/), utilization 
of the DockThor tool from the DockThor-virtual screening 
web server (https://dockthor.lncc.br/v2/), and engagement 
of SwissDock, a resource provided by the Swiss Institute 
of Bioinformatics (SIB) (http://www.swissdock.ch/), col-

Fig. 1. Dynamic interplay of EphA2 overexpression and ligand stimu-
lation in cancer cells.
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energetically favorable binding modes obtained from the 
docking process, where ligand molecules are placed wit-
hin the binding pocket of the target protein, were selected 
for a more in-depth investigation of the molecular interac-
tions. This approach aims to identify the most promising 
binding configurations for further studies [39, 40].

2.7. Molecular Dynamics simulation
A 50-nanosecond molecular dynamics (MD) simula-

tion was performed to evaluate the structural stability of 
the docked complexes. The GROMACS 5.1.2 software 
was utilized for the simulation, focusing on EphA2 
complexes docked with Dasatinib, Mcule-3981378344, 
Mcule-1579910267, Mcule-1893218381, and 
Mcule-8617639093. The simulation was conducted at 300 
Kelvin using the molecular mechanics (MM) method. Li-
gand extraction from the docked complexes was performed 
using the gmx grep module, and the topology and force 
field parameters for the ligands were obtained using the 
CGENFF server. The pdb2gmx modules in GROMACS 
were employed to create EphA2 topologies, incorporating 
ligands with data from the CGenFF server [42–44]. Sub-
sequently, the protein-ligand systems were subjected to a 
50 ns MD simulation, maintaining uniform conditions at 1 
bar and 300 K. To analyze the simulation results, various 
parameters such as Root Mean Square Deviation (RMSD), 
Root Mean Square Fluctuation (RMSF), Solvent Acces-
sible Surface Area (SASA), Free energy, Radius of Gyra-
tion, and Hydrogen bonds of the docked molecules were 
calculated using the respective GROMACS modules: gmx 
rmsd, gmx rmsf, gmx sasa, gmx energy, gmx gyrate, and 
gmx hydrogen bond [41, 45-46].

3. Results
The primary objective of this study was to iden-

tify novel inhibitors of EphA2 using the SBVS process, 
drawing from the extensive MCULE database library of 
over 5 million ligand molecules. Of these, 1,023,219 were 
selected for their promising features in relation to EphA2. 
Following the initial SBVS, the top-ranked hits were sub-
jected to a series of rigorous analyses, including toxicity 
screening using the toxicity checker, Swiss-ADME fil-
tration, and a multi-scoring docking approach employing 
AutoDock Vina, DockThor, and Swiss ADME. ΔG values 
were assessed to ensure comparability with known target 
protein inhibition. Additionally, a 50 ns molecular dyna-
mics simulation was performed to evaluate the stability 
of the chosen compounds. The comprehensive workflow 
encompassing these steps, as shown in Figure 2, aimed to 
identify potent EphA2 inhibitors with potential for further 
exploration and development.

3.1. Toxicity Risk Evaluation
The issues of molecular toxicity and poor pharma-

cokinetics in clinical drug candidates pose a significant 
challenge, resulting in significant attrition during the 
later stages of the drug development process, which can 
be costly. In the early stages of small-molecule drug dis-
covery, it is essential to effectively filter out compounds 
that contain carcinogenic, mutagenic, and toxic moieties 
as well as detrimental scaffolds and toxicophores.

In light of Mcule's toxicity risk assessment, only 37 
compounds were found to be suitable as potential drug 
candidates, while the remaining ligands were deemed un-

lectively facilitated molecular interaction investigations 
between EphA2 and hits from structure-based virtual 
screening (SBVS). The goal was to obtain comprehensive 
insights into binding interactions. By employing these 
tools, the average Gibbs free energy (ΔG) terms yielded 
by the selected docking methodologies were harnessed to 
identify consensus docking hits. This approach aimed to 
consolidate the findings from the multiple docking tools, 
thereby enhancing the reliability of the obtained results.

2.6.1.  AutoDock Vina
The AutoDock Vina (ADV) interface was used to im-

port the dock-prepared PDB structure of EphA2. To en-
sure comprehensive coverage of the protein's binding site 
region, an AutoGrid setup was configured with a grid size 
of 40 Å along each of the x-, y-, and z-axes. A specific grid 
box was defined to encompass the protein's binding center, 
with variable grid points set for the x-(-78.001 Å), y-(-
8.336 Å), and z-axes (88.329 Å). Default parameters were 
applied for ADV, including a maximum of two binding 
modes per ligand and exhaustiveness setting of 1. To iden-
tify the optimal binding affinities and positions for each 
ligand docked within EphA2's active site, the minimum 
free energy of binding (ΔG) was selected as the discrimi-
nating parameter. This approach aims to identify the most 
favorable binding interactions [28-32].

2.6.2.  DockThor
DockThor is a non-covalent molecular docking tool de-

veloped by the Molecular Modeling of Biological Systems 
Group (Brazil). It operates using a ligand topology file and 
specific input data for the protein, including the atom types 
and partial charges from the MMFF94S49 force field. The 
ligand input was generated using the MMFFLigand tool, 
which incorporates partial charges and atom types using 
the MMFF94S force field, identifies rotatable bonds and 
terminal hydroxyl groups, and calculates the necessary 
properties to assess intramolecular interactions. The grid 
box's central point and size along the x-, y-, and z-axes 
were maintained similar to those in ADV, with default set-
tings applied for the spacing between consecutive grids 
and attributes of the genetic algorithm, including the num-
ber of evaluations, population size, number of runs, and 
run seed. Similar to ΔG, the DockThor scoring mechanism 
represents the binding affinity and ranking of various li-
gand molecules, allowing for the comparison and assess-
ment of ligand-binding interactions [33-38].

2.6.3. SwissDock
SwissDock is a web-based docking service and user 

interface developed by the Swiss Institute of Bioinforma-
tics (SIB) to showcase the molecular interactions between 
ligands and target proteins of biological relevance. It uti-
lizes a hybrid evolutionary EADock dihedral space sam-
pling (DSS) algorithm that is seamlessly integrated with 
the CHARMm force field to calculate the energy and 
supervision coordinates. SwissDock conducts both local 
docking, where binding poses are confined within a desi-
gnated area, and blind docking, which narrows down bin-
ding modes around neighboring regions of the target-bin-
ding pockets. The calculations were further facilitated by 
SwissDock's employment of a fast analytical continuum 
treatment of solvation (FACTS) model for precise binding 
pose calculations and subsequent clustering. The most 
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suitable and eliminated. Mcule's toxicity checker uses a 
robust SMARTS algorithm to examine specific chemical 
patterns within a virtual library of small molecules. This 
strategic approach prevents potentially toxic compounds 
from being included in the hit identification list, thereby 
conserving resources, minimizing costs, and saving va-
luable time that might otherwise be spent on unsuitable 
chemical entities [47].

3.2. ADME prediction
3.2.1. Brain Or IntestinaL EstimateD (BOILED)-Egg 
model

The efficacy of the Brain Or Intestinal Estimated Per-
meation technique (BOILED-egg) in translating molecu-
lar designs for drug discovery has been established [31]. 
BOILED-egg, originally used in CADD to predict Human 
Gastrointestinal Absorption (HIA) and blood-brain barrier 
(BBB) permeability, offers a comprehensible graphical 
approach. The BBB serves as a robust defence mecha-
nism in the brain. The model consists of two components: 
the yellow yolk represents the physicochemical space for 
probable BBB permeability, and the white yolk represents 
the most likely absorption site in the gastrointestinal tract. 
Successful nontoxic chemical hits were exclusively loca-
ted within these physicochemical regions for BBB per-
meability and HIA absorption. These hits outperformed 
those of the selected inhibitors.

Molecules within the yellow yolk demonstrated a pro-
nounced inclination for BBB penetration, whereas those 
in the white region displayed a heightened propensity 
for HIA. Figure 3 illustrates the P-gp-positive and P-gp-
negative molecules as blue and red dots, respectively. In 
contrast, the gray area indicates limited absorption and 
restricted brain access. The BOILED-egg model employs 
WLOGP and TPSA parameters to define lipophilicity and 
apparent polarity [48-50].

For instance, the inhibitor dasatinib, positioned outside 
the egg, indicated modest absorption yet managed BBB 
penetration, although it was effluxed by P-gp. Analysis of 
BOILED-Egg plots revealed 14 compounds as P-gp-po-
sitive, while the remaining 37 compounds adhered to the 
ADME filtration criteria 

of BOILED-Egg. Notably, ligand hits originating from 
the brain (depicted as blue dots) were excluded from the 
molecular interaction investigation.

3.2.2. Physiochemical Properties
Pharmacokinetics and toxicity of a drug are signifi-

cantly influenced by its physicochemical attributes. Key 
molecular and physicochemical descriptors, such as mole-
cular weight (MW), rotatable bonds (RB), hydrogen bond 
acceptors (HBA), hydrogen bond donors (HBD), molar 
refractivity (MR), and polar surface area (PSA), play cru-
cial roles in predicting the ADME characteristics of poten-
tial ligand molecules. SwissADME employs OpenBabel 
v2.3.0 to calculate these ADME properties. All 37 ligand 
hits that successfully passed the BOILED-Egg model ex-
hibited physicochemical properties within the acceptable 
ranges. The molecular weights of these compounds, listed 
in the table, vary from 280.32 g/mol to 526.51 g/mol. 
These selected compounds conform to distinct criteria for 
oral bioavailability; for instance, dasatinib, a reference 
compound, possesses more than five rotatable bonds, whe-
reas the evaluated compounds possess fewer than 5.

Among the 37 compounds, the range of TPSA values 
spans from 34.62 to 148.24Å², with Mcule-7595714167 
demonstrating the lowest value of 34.62Å² TPSA. The 
prediction of TPSA parameters aids in understanding the 
passive molecular transport of lead compounds. The molar 
refractivity (MR) was calculated using the Lorenz-Lorentz 
formula, which represents a constitutive-additive feature 
influencing both drug-receptor interactions and molecular 
volume [51-55]. As outlined in Table 1, MR values vary 
from 144.83 to 70.70, with Mcule-1991062471 displaying 
the highest MR (144.83) and Mcule-2449737562 having 
the lowest MR (70.70). The specific physicochemical 
characteristics of the small molecules and inhibitors that 
passed the BOILED-Egg criteria are summarized in Table 
1.

3.2.3. Lipophilicity
The most critical molecular property in pharmacology 

is lipophilicity, which significantly influences several key 
aspects such as solubility, absorption, plasma protein bin-
ding, metabolic clearance, distribution volume, interac-
tions with enzymes and receptors, clearance through bilia-

Fig. 2. An overview of the structure-based virtual screening approach 
to identify potential inhibitor molecules targeting EphA2.

Fig. 3. Evaluation of ligand hits and selected inhibitors concerning 
passive gastrointestinal absorption (HIA) and blood-brain barrier 
(BBB) penetration using the BOILED-Egg model. The yellow area 
indicates HIA, while the white area represents BBB permeation. 
Ligand hits are shown as blue dots if they are P-glycoprotein (Pgp) 
positive and red dots if they are Pgp negative.
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ry and renal pathways, brain permeability, tissue accumu-
lation, bioavailability, and toxicity. This characteristic can 
be quantified using the partition coefficient (Log Po/w), 
which is mathematically defined as follows: Log Po/w = 
log [ligand molecule] octanol / [ligand molecule] water. 
Log P is often used to determine blood-brain partitioning 
and is a useful indicator of the hydrophilic or hydrophobic 
nature of a molecule. The range of Log P values is quite 
extensive, spanning from +0.71 to +7.27 [50, 56]. Doxa-
zosin exhibited the lowest Log P value of +0.71, while 
vemurafenib displayed the highest Log P value of +7.27 
(Table 2). Fortunately, most of the selected compounds 
have favorable cell penetration and oral absorption pro-
perties. 

3.2.4. Solubility
Solubility refers to the maximum concentration of a 

substance that can be dissolved in a specific solvent un-
der specific conditions. It plays a critical role in determin-
ing the intestinal absorption and oral bioavailability. Low 
solubility can hinder absorption and lead to reduced oral 
bioavailability. Solubility and permeability exhibit distinct 
molecular properties. Improving solubility can enhance 
absorption and oral bioavailability, making this a vital as-
pect of drug development. This is because solubility influ-
ences the rate of drug absorption into the bloodstream and 
the amount of drug available for bodily use.

Increasing solubility facilitates faster and more con-
centrated drug absorption, resulting in increased bioavail-
ability and improved drug efficacy. SwissADME predicts 
the water solubility of small molecules using the log S 
scale, which employs three descriptors derived from the 
ESOL model by Ali et al. (2012) and SILICOS-IT filter 
[57]. The optimal water solubility ranges were classified 

S.No Ligands
#Physiochemical Properties

MW (g/mol) RB HBA HBD TPSA (Å²) MR
1 Mcule-2973506626 380.44 0 2 2 50.16 121.28
2 Mcule-5816723133 377.82 3 4 4 54.96 106.84
3 Mcule-9233397999 298.30 0 4 4 74.63 83.47
4 Mcule-1579910267 344.19 2 3 3 46.5 91.78
5 Mcule-8114411145 322.38 1 3 3 78.68 95.26
6 Mcule-1991062471 462.01 6 3 3 79.12 144.83
7 Mcule-8617639093 408.39 3 6 6 66.07 103.13
8 Mcule-9536445798 491.38 9 3 3 78.51 131.12
9 Mcule-4933708772 431.47 3 5 5 151.47 127.26
10 Mcule-9992566928 361.37 4 5 5 60.92 100.1
11 Mcule-3223214310 388.48 4 6 6 94.49 103.7
12 Mcule-2097380359 424.43 6 5 5 94.35 122.23
13 Mcule-1024981469 474.43 6 8 8 86.43 120.21
14 Mcule-1893218381 342.28 3 8 8 69.38 82.69
15 Mcule-2449737562 311.23 0 6 6 34.62 70.7
16 Mcule-2991653790 441.57 4 2 2 114.45 130.59
17 Mcule-4537745040 476.58 5 7 7 82.18 136.44
18 Mcule-2225687401 347.44 2 3 3 71.62 105.96
19 Mcule-6893679909 416.92 7 3 3 92.73 113.37
20 Mcule-7244896358 478.58 7 4 4 135.11 131.54
21 Mcule-4185234246 383.47 3 3 3 74.22 126.96
22 Mcule-7907634139 393.82 2 4 4 88.92 115.24
23 Mcule-7791872451 292.29 1 4 4 68.26 83.22
24 Mcule-3981378344 331.37 3 4 4 65.6 96.6
25 Mcule-5486633936 397.45 7 6 6 109.15 105.22
26 Mcule-1058769814 357.47 4 5 5 61.03 107
27 Mcule-4562900743 320.41 2 2 2 72.86 102.88
28 Mcule-7790094729 280.32 2 2 2 68.26 86.36
29 Mcule-2525256456 426.88 5 5 5 100.11 116.91
30 Mcule-2363150472 432.93 3 4 4 110.23 122.11
31 Mcule-7595714167 498.55 5 7 7 148.24 132.13
32 Mcule-3430403539 356.37 4 5 5 118.58 90.8
33 Mcule-3445614275 465.72 7 6 6 89.61 117.24
34 Mcule-3838220036 440.56 7 6 6 92.6 127.02
35 Mcule-7046491392 460.57 6 5 5 70.84 141.06
36 Mcule-3034040298 354.40 5 5 5 80.55 94.02
37 Mcule-1656232882 386.44 4 4 4 99.63 108.21
38 Doxazosin 451.48 5 7 1 112.27 128.58
39 Dasatinib 488.01 8 6 3 134.75 138.63
40 Vemurafenib 489.92 7 6 2 100.3 124.21
41 Wortmannin 428.43 4 8 0 109.11 105.71
42 Sorafenib 464.82 9 7 3 92.35 112.48

Table 1. Physicochemical attributes of ligand hits filtered via the BOILED-Egg model and established inhibitors.

#.MW stands for molecular weight, RB for rotational bonds, TPSA for topological polar surface area, MR for molecular refractivity, 
HBA for hydrogen bond acceptor, and HBD for hydrogen bond donor.
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as insoluble (10), weakly (6), moderately (4), soluble (2), 
extremely (0), and highly (0) soluble. Based on the com-
puted water solubility values, ligands and inhibitors can 
be classified as soluble, moderately soluble, or poorly sol-
uble, as shown in Table 3.

3.2.5. Pharmacokinetics Properties
Compounds that target the central nervous system 

must effectively traverse the blood-brain barrier (BBB) 
to achieve their intended effects. The permeability of the 
BBB serves as a gauge of a drug's preference for blood 
or brain tissue, and successful BBB passage is crucial for 
these drugs to avoid adverse effects on the central nervous 
system. The majority of the compounds demonstrated high 
gastrointestinal absorption (GIA), suggesting their poten-
tial for easy traversal through the gut lining. The logarith-
mic Kp (Log Kp) values for all compounds range between 
-8.08 and -4.36 cm/s (Table 4). A more negative Log Kp 
indicates reduced skin permeability for molecules [58,59]. 
Consequently, these compounds have the potential to pass 

through the intestinal barrier effectively.

3.2.6. Drug-likeness prediction and evaluating medicinal 
chemistry attributes

Often, the term "drug-likeness" refers to a qualita-
tive assessment of a molecule's likelihood of possessing 
specific molecular and structural attributes that are simi-
lar to those of established medications. The prediction 
of drug-likeness was facilitated using online tools from 
SwissADME, which employs a diverse set of filters and 
five distinct criteria rooted in pharmaceutical and biotech-
nological principles to qualitatively anticipate the poten-
tial of a molecule as an oral drug candidate concerning 
bioavailability. These criteria encompass Lipinski, Veber, 
Egan, and Muegge rules. The majority of compounds ex-
hibited drug-like characteristics with no violations, whe-
reas a portion displayed one or two violations, as indicated 
in Table 5. The identification of potentially problematic 
fragments typically employs two complementary pattern 
recognition methods: Pan Assay Interference Compounds 

S.No. Ligands Lipophilicity
I Log P X Log P W Log P M Log P Consensus Log P

1 Mcule-2973506626 3.18 4.47 3.36 3.88 3.69
2 Mcule-5816723133 3.81 5.26 5.7 3.25 4.78
3 Mcule-9233397999 2.59 3.00 3.7 1.72 2.81
4 Mcule-1579910267 3.10 5.21 4.51 3.36 4.37
5 Mcule-8114411145 3.08 5.50 5.00 3.56 4.66
6 Mcule-1991062471 3.77 6.23 6.24 4.24 5.67
7 Mcule-8617639093 3.02 3.07 5.07 3.54 3.55
8 Mcule-9536445798 3.69 5.94 5.19 3.51 4.78
9 Mcule-4933708772 1.69 2.79 2.29 0.75 2.55
10 Mcule-9992566928 3.56 3.55 4.48 3.46 3.95
11 Mcule-3223214310 2.57 2.63 3.63 1.58 2.37
12 Mcule-2097380359 2.46 4.35 4.05 2.97 3.75
13 Mcule-1024981469 3.84 3.26 3.01 2.67 3.23
14 Mcule-1893218381 3.08 4.31 4.44 3.05 3.54
15 Mcule-2449737562 2.52 4.10 5.16 4.38 4.21
16 Mcule-2991653790 3.89 5.60 6.16 4.57 5.27
17 Mcule-4537745040 3.99 2.80 3.83 3.36 3.75
18 Mcule-2225687401 3.26 3.66 3.12 4.11 3.38
19 Mcule-6893679909 3.77 4.53 4.25 2.73 3.94
20 Mcule-7244896358 3.56 6.71 6.54 2.97 4.97
21 Mcule-4185234246 3.66 5.74 4.53 3.76 4.89
22 Mcule-7907634139 2.66 3.34 3.62 1.63 3.03
23 Mcule-7791872451 2.62 3.19 3.10 2.93 2.96
24 Mcule-3981378344 2.79 2.13 2.41 1.58 2.34
25 Mcule-5486633936 2.63 3.48 3.76 1.37 2.80
26 Mcule-1058769814 2.98 2.31 2.22 2.55 2.30
27 Mcule-4562900743 3.06 4.91 3.88 4.11 4.28
28 Mcule-7790094729 2.7 3.43 3.74 2.65 3.20
29 Mcule-2525256456 2.82 4.31 3.46 2.5 3.18
30 Mcule-2363150472 4.05 4.38 5.44 3.57 4.56
31 Mcule-7595714167 3.09 2.85 3.15 2.61 3.04
32 Mcule-3430403539 2.71 3.68 2.64 2.2 3.02
33 Mcule-3445614275 3.51 4.83 4.17 3.12 4.25
34 Mcule-3838220036 3.22 3.29 2.53 2.79 2.68
35 Mcule-7046491392 4.69 5.01 3.60 2.16 3.92
36 Mcule-3034040298 3.27 4.18 4.07 3.32 3.91
37 Mcule-1656232882 2.75 1.97 2.13 2.38 2.37
38 Doxazosin 3.5 3.30 0.96 0.71 1.97
39 Dasatinib 3.37 3.59 2.36 1.35 2.8
40 Vemurafenib 3.04 4.97 7.27 3.14 4.84
41 Wortmannin 2.7 1.18 2.54 0.94 2.20
42 Sorafenib 3.45 4.07 6.32 2.91 4.11

Table 2. Lipophilicity calculations for established inhibitors and BOILED-Egg model filtered ligand hits.
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(PAINS) and Brenk filter. PAINS, also known as pro-
miscuous compounds, contains substructures that yield 
misleading responses in biologically active assays, irres-
pective of the protein receptor. The Brenk filter serves 
as a structural alarm, warning about chemically reactive, 
metabolically unstable fragments within the structure that 
could lead to unfavorable pharmacokinetics. As outlined 
in Table 5, most compounds triggered no alerts, although 
Mcule-1579910267 raised flags for 01 Brenk and 02 
PAINS. Through the application of the PAINS and Brenk 
filters, it became apparent that the majority of compounds 
adhered to the lead-likeness criteria. During lead optimi-
zation, compounds typically undergo chemical modifica-
tions that often increase their size and lipophilicity [60]. 
Most compounds demonstrated zero violations, indicating 
their suitability for lead optimization, whereas a subset 
displayed one or two violations. Synthetic Accessibility 
(SA) scores for all compounds were below 0.5, with the 
exception of Mcule-4537745040 and Wortmannin, which 
surpassed this threshold. The SA score was normalized 
within the range of 1–10 (Table 5).

3.3. Molecular interaction studies
The molecular interactions between ADMET-filtered 

hits and EphA2 were investigated using three distinct 
tools: AutoDock Vina, DockThor, and SwissDock. The 
average free energy of binding was calculated to identify 
consistent lead compounds.

3.3.1. AutoDock Vina
Using the ADV tool developed by Mcule, we conduc-

ted docking simulations with EphA2 for all nine ligand 
hits (Mcule-1579910267, Mcule-1893218381, Mcule-
2449737562,Mcule-3981378344,Mcule-4562900743, 
M c u l e - 7 7 9 0 0 9 4 7 2 9 , M c u l e - 7 7 9 1 8 7 2 4 5 1 , 
Mcule-8617639093, Mcule-9992566928) and reference 
inhibitors (Dasatinib, Vemurafenib, Wortmannin, Sorafe-
nib) to determine their binding affinities, represented by 
free energy changes (ΔG). Our results revealed that doxa-
zosin was the most potent inhibitor, with a ΔG of -8.6 kcal/
mol.

Interestingly, the ligand hits exhibited significantly 
improved binding interactions compared with doxazosin, 

S.No. Ligands Log S (ESOL) Log S (Ali) Log S (SILICOS-IT)
1 Mcule-2973506626 -5.55 -5.24 -8.03
2 Mcule-5816723133 -5.9 -6.16 -8.9
3 Mcule-9233397999 -4.13 -4.23 -5.73
4 Mcule-1579910267 -5.51 -5.93 -7.45
5 Mcule-8114411145 -5.85 -6.91 -7.25
6 Mcule-1991062471 -6.65 -7.68 -10.48
7 Mcule-8617639093 -4.43 -4.12 -5.62
8 Mcule-9536445798 -6.52 -7.36 -10.08
9 Mcule-4933708772 -4.62 -5.63 -7.92
10 Mcule-9992566928 -4.68 -4.51 -8.15
11 Mcule-3223214310 -3.94 -4.26 -4.76
12 Mcule-2097380359 -5.23 -6.05 -8.7
13 Mcule-1024981469 -4.83 -4.75 -6.14
14 Mcule-1893218381 -5.1 -5.48 -6.48
15 Mcule-2449737562 -4.79 -4.53 -5.88
16 Mcule-2991653790 -6.49 -7.77 -9.25
17 Mcule-4537745040 -4.5 -4.18 -8.49
18 Mcule-2225687401 -4.73 -4.85 -6.05
19 Mcule-6893679909 -5.13 -6.2 -7.19
20 Mcule-7244896358 -7.09 -9.35 -9.14
21 Mcule-4185234246 -6.19 -7.07 -9.11
22 Mcule-7907634139 -4.65 -4.88 -6.02
23 Mcule-7791872451 -4.23 -4.29 -5.62
24 Mcule-3981378344 -3.66 -3.14 -6.24
25 Mcule-5486633936 -4.48 -5.45 -7.41
26 Mcule-1058769814 -3.6 -3.23 -5.46
27 Mcule-4562900743 -5.33 -6.18 -6.9
28 Mcule-7790094729 -4.17 -4.54 -6.59
29 Mcule-2525256456 -5.33 -6.13 -7.54
30 Mcule-2363150472 -5.73 -6.41 -8.71
31 Mcule-7595714167 -4.85 -5.62 -7.07
32 Mcule-3430403539 -4.61 -5.86 -5.34
33 Mcule-3445614275 -5.73 -6.45 -8.79
34 Mcule-3838220036 -4.59 -4.91 -5.92
35 Mcule-7046491392 -5.78 -6.24 -7.66
36 Mcule-3034040298 -4.93 -5.58 -6.82
37 Mcule-1656232882 -3.54 -3.69 -5.85
38 Doxazosin 2.37 -5.33 -5.15
39 Dasatinib -4.98 -6.11 -6.88
40 Vemurafenib -6.02 -6.81 -10.07
41 Wortmannin -3.1 -3.07 -5.15
42 Sorafenib -5.11 -5.71 -8.6

Table 3. The computed solubility values for established inhibitors and BOILED-Egg filtered compounds. 
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as detailed in Table 6. Specifically, Mcule-1579910267 
(ΔG: -10.8 kcal/mol), Mcule-1893218381 (ΔG: 
-10.4 kcal/mol), Mcule-2449737562 (ΔG: -10.4 
kcal/mol), Mcule-3981378344 (ΔG: -9.8 kcal/
mol), Mcule-4562900743 (ΔG: -9.7 kcal/
mol), Mcule-7790094729 (ΔG: -9.7 kcal/
mol), Mcule-7791872451 (ΔG: -9.9 kcal/mol), 
Mcule-8617639093 (ΔG: -10.7 kcal/mol), and 
Mcule-9992566928 (ΔG: -10.5 kcal/mol) demonstrated 
notably improved binding affinities (Table 6).

To validate the consistency of their binding patterns, 
we conducted docking simulations with EphA2 using two 
distinct tools, DockThor and SwissDock. This approach 
aimed to ascertain the reliability and robustness of obser-
ved interactions. Further investigation and analysis of 
these promising ligand hits could offer valuable insights 
into their potential as effective EphA2 inhibitors, poten-

tially surpassing the efficacy of doxazosin.
3.3.2. DockThor

DockThor predicted Dasatinib to be a more potent 
binder with EphA2 than Doxazosin (ΔG: -8.3 kcal/mol), 
showing a binding energy of ΔG: -9.1 kcal/mol. Among the 
ligand hits, seven compounds, namely Mcule-1579910267 
(ΔG: -10.0 kcal/mol), Mcule-1893218381 (ΔG: 
-9.4 kcal/mol), Mcule-2449737562 (ΔG: -9.6 
kcal/mol), Mcule-3981378344 (ΔG: -9.4 kcal/
mol), Mcule-7790094729 (ΔG: -9.4 kcal/mol), 
Mcule-7791872451 (ΔG: -9.2 kcal/mol), and 
Mcule-9992566928 (ΔG: -9.6 kcal/mol), demonstrated a 
higher binding affinity compared to Dasatinib. However, 
molecules Mcule-4562900743 (ΔG: -9.1 kcal/mol) and 
Mcule-8617639093 (ΔG: -7.9 kcal/mol) exhibited similar 
and weaker binding interactions with EphA2 compared to 
Dasatinib (Table 6).

S. 
No.

Ligands
Drug-likeness Medicinal Chemistry Attributes

Number of violation *BAS PAINS Brenk Lead 
likeness

#SARO5 Ghose Veber Egan Muegge
1 Mcule-2973506626 0 0 0 0 0 0.55 0 0 2 4.31
2 Mcule-5816723133 0 1 0 0 0 0.55 0 0 2 3.52
3 Mcule-9233397999 0 0 0 0 0 0.55 0 0 0 3.11
4 Mcule-1579910267 0 0 0 0 0 0.55 2 1 1 3.40
5 Mcule-8114411145 0 0 0 0 0 0.55 0 0 1 3.46
6 Mcule-1991062471 1 0 0 1 0 0.55 0 0 2 4.2
7 Mcule-8617639093 0 0 0 0 0 0.55 1 0 1 3.73
8 Mcule-9536445798 0 0 0 0 0 0.55 0 2 3 3.38
9 Mcule-4933708772 0 0 0 1 0 0.55 0 0 1 4.37
10 Mcule-9992566928 0 0 0 0 0 0.55 0 0 2 3.35
11 Mcule-3223214310 0 0 0 0 0 0.55 0 0 1 4.51
12 Mcule-2097380359 0 0 0 0 0 0.55 0 2 2 3.86
13 Mcule-1024981469 0 0 0 0 0 0.55 0 0 1 3.55
14 Mcule-1893218381 0 0 0 0 0 0.55 0 0 1 2.83
15 Mcule-2449737562 1 0 0 0 0 0.55 0 2 1 3.01
16 Mcule-2991653790 1 0 0 1 0 0.55 0 0 2 3.74
17 Mcule-4537745040 0 0 0 0 0 0.55 0 0 1 5.12
18 Mcule-2225687401 0 0 0 0 0 0.55 0 0 1 3.11
19 Mcule-6893679909 0 0 0 0 0 0.55 0 0 2 4.08
20 Mcule-7244896358 0 2 0 0 0 0.55 0 0 2 4.1
21 Mcule-4185234246 0 0 0 0 0 0.55 0 0 2 3.95
22 Mcule-7907634139 0 0 0 0 0 0.55 0 0 1 4.21
23 Mcule-7791872451 0 0 0 0 0 0.55 0 0 0 3.25
24 Mcule-3981378344 0 0 0 0 0 0.55 0 0 0 2.98
25 Mcule-5486633936 0 0 0 0 0 0.55 0 1 1 3.72
26 Mcule-1058769814 0 0 0 0 0 0.55 0 0 1 3.56
27 Mcule-4562900743 0 0 0 0 0 0.55 0 0 1 4.11
28 Mcule-7790094729 0 0 0 0 0 0.55 0 0 0 3.4
29 Mcule-2525256456 0 0 0 0 0 0.55 0 0 2 3.92
30 Mcule-2363150472 0 0 0 0 0 0.55 0 0 2 3.81
31 Mcule-7595714167 0 0 0 0 0 0.55 0 0 1 3.7
32 Mcule-3430403539 0 0 0 0 0 0.55 0 0 2 3.48
33 Mcule-3445614275 0 0 0 0 0 0.55 0 0 2 4.11
34 Mcule-3838220036 0 0 0 0 0 0.55 0 0 1 4.42
35 Mcule-7046491392 0 0 0 0 0 0.55 2 0 2 4.86
36 Mcule-3034040298 0 0 0 0 0 0.55 0 0 2 3.39
37 Mcule-1656232882 0 0 0 0 0 0.55 0 0 1 3.67
38 Doxazosin 0 0 0 0 0 0.55 0 0 1 4.03
39 Dasatinib 0 2 0 1 0 0.55 0 0 3 3.83
40 Vemurafenib 0 2 0 1 0 0.55 0 0 2 3.38
41 Wortmannin 0 0 0 0 0 0.55 0 1 2 4.92
42 Sorafenib 0 1 0 1 0 0.55 0 1 1 5.66

Table 4. Calculated pharmacokinetics properties of known inhibitors and BOILED-Egg filtered ligand hits.



24

Identifying Inhibitor against EphA2.            Cell. Mol. Biol. 2024, 70(8): 16-31

S. 
No.

Ligands
Drug-likeness Medicinal Chemistry Attributes

Number of violation *BAS PAINS Brenk Lead 
likeness

#SARO5 Ghose Veber Egan Muegge
1 Mcule-2973506626 0 0 0 0 0 0.55 0 0 2 4.31
2 Mcule-5816723133 0 1 0 0 0 0.55 0 0 2 3.52
3 Mcule-9233397999 0 0 0 0 0 0.55 0 0 0 3.11
4 Mcule-1579910267 0 0 0 0 0 0.55 2 1 1 3.40
5 Mcule-8114411145 0 0 0 0 0 0.55 0 0 1 3.46
6 Mcule-1991062471 1 0 0 1 0 0.55 0 0 2 4.2
7 Mcule-8617639093 0 0 0 0 0 0.55 1 0 1 3.73
8 Mcule-9536445798 0 0 0 0 0 0.55 0 2 3 3.38
9 Mcule-4933708772 0 0 0 1 0 0.55 0 0 1 4.37
10 Mcule-9992566928 0 0 0 0 0 0.55 0 0 2 3.35
11 Mcule-3223214310 0 0 0 0 0 0.55 0 0 1 4.51
12 Mcule-2097380359 0 0 0 0 0 0.55 0 2 2 3.86
13 Mcule-1024981469 0 0 0 0 0 0.55 0 0 1 3.55
14 Mcule-1893218381 0 0 0 0 0 0.55 0 0 1 2.83
15 Mcule-2449737562 1 0 0 0 0 0.55 0 2 1 3.01
16 Mcule-2991653790 1 0 0 1 0 0.55 0 0 2 3.74
17 Mcule-4537745040 0 0 0 0 0 0.55 0 0 1 5.12
18 Mcule-2225687401 0 0 0 0 0 0.55 0 0 1 3.11
19 Mcule-6893679909 0 0 0 0 0 0.55 0 0 2 4.08
20 Mcule-7244896358 0 2 0 0 0 0.55 0 0 2 4.1
21 Mcule-4185234246 0 0 0 0 0 0.55 0 0 2 3.95
22 Mcule-7907634139 0 0 0 0 0 0.55 0 0 1 4.21
23 Mcule-7791872451 0 0 0 0 0 0.55 0 0 0 3.25
24 Mcule-3981378344 0 0 0 0 0 0.55 0 0 0 2.98
25 Mcule-5486633936 0 0 0 0 0 0.55 0 1 1 3.72
26 Mcule-1058769814 0 0 0 0 0 0.55 0 0 1 3.56
27 Mcule-4562900743 0 0 0 0 0 0.55 0 0 1 4.11
28 Mcule-7790094729 0 0 0 0 0 0.55 0 0 0 3.4
29 Mcule-2525256456 0 0 0 0 0 0.55 0 0 2 3.92
30 Mcule-2363150472 0 0 0 0 0 0.55 0 0 2 3.81
31 Mcule-7595714167 0 0 0 0 0 0.55 0 0 1 3.7
32 Mcule-3430403539 0 0 0 0 0 0.55 0 0 2 3.48
33 Mcule-3445614275 0 0 0 0 0 0.55 0 0 2 4.11
34 Mcule-3838220036 0 0 0 0 0 0.55 0 0 1 4.42
35 Mcule-7046491392 0 0 0 0 0 0.55 2 0 2 4.86
36 Mcule-3034040298 0 0 0 0 0 0.55 0 0 2 3.39
37 Mcule-1656232882 0 0 0 0 0 0.55 0 0 1 3.67
38 Doxazosin 0 0 0 0 0 0.55 0 0 1 4.03
39 Dasatinib 0 2 0 1 0 0.55 0 0 3 3.83
40 Vemurafenib 0 2 0 1 0 0.55 0 0 2 3.38
41 Wortmannin 0 0 0 0 0 0.55 0 1 2 4.92
42 Sorafenib 0 1 0 1 0 0.55 0 1 1 5.66

Table 5. Calculated drug-likeness and medicinal chemistry properties of known inhibitors and BOILED-Egg filtered ligand hits.

S. No Ligand name AutoDock Vina DockThor SwissDock ΔG (Average)
(kcal/mol)

1 Mcule-1579910267 -10.8 -10.0 -7.1 -9.3
2 Mcule-1893218381 -10.4 -9.4 -7.8 -9.2
3 Mcule-2449737562 -10.4 -9.6 -6.1 -8.7
4 Mcule-3981378344 -9.8 -9.4 -8.8 -9.3
5 Mcule-4562900743 -9.7 -9.1 -7.1 -8.6
6 Mcule-7790094729 -9.7 -9.4 -8.1 -9.0
7 Mcule-7791872451 -9.9 -9.2 -7.0 -8.7
8 Mcule-8617639093 -10.7 -7.9 -6.9 -9.1
9 Mcule-9992566928 -10.5 -9.6 -7.2 -9.1
10 Dasatinib -7.7 -9.1 -8.1 -8.3
11 Doxazosin -8.6 -8.3 -7.3 -8.1
12 Vemurafenib -8.6 -9.1 -7.3 -8.3
13 Wortmannin -8.6 -8.1 -6.1 -7.6
14 Sorafenib -7.2 -6.4 -8.6 -7.4

Table 6. Molecular interactions of the top nine ligands and reference inhibitors.



25

Identifying Inhibitor against EphA2.            Cell. Mol. Biol. 2024, 70(8): 16-31

3.3.3. SwissDock
SwissDock analysis revealed that the inhibitor So-

rafenib, with a calculated binding free energy (ΔG) of 
-8.6 kcal/mol, exhibited significant interactions with the 
EphA2 receptor compared to the reference inhibitor Da-
satinib (ΔG: -8.1 kcal/mol). A single ligand hit, namely 
Mcule-3981378344 (ΔG: -9.4 kcal/mol), demonstrated a 
stronger binding affinity than Dasatinib, while the other 
ligand hits displayed weak interactions with Sorafenib. To 
identify potential drug candidates with enhanced binding 
capabilities, a consensus ΔG was determined by averaging 
the ΔG values predicted by three selected docking methods 
for each compound. The conformational arrangement of 
molecules and their intermolecular forces significantly in-
fluence their interactions, and docking methods aid in pre-
dicting optimal ligand binding orientations within receptor 
binding pockets, crucial for identifying potent ligands.

The negative sign in the energy released during binding 
interactions signifies stronger binding. Based on calculated 
ΔG values, nine molecules, namely Mcule-1579910267, 
Mcule-1893218381,Mcule-2449737562,Mcule-
3981378344,Mcule-4562900743, Mcule-7790094729, 
M c u l e - 7 7 9 1 8 7 2 4 5 1 , M c u l e - 8 6 1 7 6 3 9 0 9 3 , a n d 
Mcule-9992566928, displayed favorable interactions with 
EphA2 compared to Dasatinib. Consequently, Dasatinib 
and the top four hits were selected for a 50ns molecular 
dynamics simulation study. Docking affinities of the top 
nine ligands and reference inhibitors are shown in Table 6. 

3.4. MD simulation study
Using the GROMACS software, a 50-nanosecond Mo-

lecular Dynamics Simulation (MDS) was carried out to in-
vestigate the stability of the docked complexes that included 
the top four hits: Mcule-1579910267, Mcule-1893218381, 
Mcule-3981378344, and Mcule-8617639093, as well as 
the known inhibitor Dasatinib, in connection with EphA2. 
To thoroughly evaluate the molecular interactions and sta-
bility of the complex, various plots were generated, such 
as the Root Mean Square Deviation (RMSD), Root Mean 
Square Fluctuation (RMSF), Solvent Accessible Surface 
Area (SASA), Free Energy of Solvation during SASA, 
Gyration, and Hydrogen Bonds. Binding of the ligands to 
the active site of EphA2 results in conformational adjust-
ments, which contribute to the stability of the complexes 
[61,62].

3.4.1. Root mean square deviation
Protein stability and its similarity to the native structure 

are typically gauged using Root Mean Square Deviation 
(RMSD) and Root Mean Square Fluctuation (RMSF), both 
of which provide valuable insights. In the case of EphA2 
complexes, the RMSD values for Dasatinib (black), 
Mcule-3981378344 (blue), Mcule-1579910267 (red), 
Mcule-1893218381 (green), and Mcule-8617639093 (yel-
low) were 0.38 nm, 0.42 nm, 0.38 nm, 0.33 nm, and 0.34 
nm, respectively. These values are presented in Figure 4A 
and Table 7.

The RMSD plot effectively illustrates the dynamic 
behavior of these complexes over time. Notably, the com-
plex containing Mcule-1893218381 and EphA2 exhibited 
enhanced stability compared to the dasatinib complex. 
This observation indicates that Mcule-1893218381 for-
med a more consistent interaction with the EphA2 recep-
tor, leading to a more stable complex throughout the simu-

lation period.

3.4.2. Root mean square fluctuation
Assessing the stability of protein-ligand complexes 

during molecular dynamics (MD) simulation is crucial 
for understanding the interactions between molecules. To 
achieve this, Root Mean Square Fluctuation (RMSF) was 
utilized to quantify the fluctuations of residues in the com-
plex. While the Root Mean Square Deviation (RMSD) pro-
vides information about the average spatial displacement 
of the complex, the RMSF provides insights into the struc-
tural stability of the complex. The figure presented in the 
text highlights residue fluctuations during the interaction 
with Mcule-3981378344 and Mcule-8617639093 (Figure 
4B). It is noteworthy that the figure demonstrates that the 
variations in residues are more pronounced during binding 
with Mcule-3981378344 compared to Mcule-8617639093. 
This observation suggests that the ligands and inhibitors 
had distinct effects on EphA2 throughout the simulation. 
The RMSF values provide information on the flexibility 
of specific residues within the binding pocket and shed 
light on the extent of the structural perturbations caused 
by different ligands and inhibitors. Therefore, RMSF is a 
valuable tool for investigating the stability of protein-li-
gand complexes during MD simulations.

3.4.3. Solvent accessible surface area and free energy of 
solvation

Figure 4C presents a comprehensive examination of 
solvent accessibility surface area (SASA) as a method 
for differentiating between protein models that exhibit 
native-like and non-native-like behavior. This approach 
offers a more precise measurement of the protein sur-
face exposure to solvent molecules, revealing intricate 
details that might otherwise go unnoticed. In the context 
of the interactions between EphA2 and the compounds 
Dasatinib, Mcule-3981378344, Mcule-1579910267, 
Mcule-1893218381, and Mcule-8617639093, the average 
SASA values were calculated to be 21.42 nm², 21.32 nm², 
21.37 nm², 21.36 nm², and 21.27 nm², respectively. The 
findings in Figure 4C indicate that, when bound to EphA2, 
Dasatinib and Mcule-1893218381 lead to a decrease in the 
solvent accessibility of internal EphA2 residues compared 
to the binding of Mcule-8617639093. This suggests that 
the former compounds induce a more compact and less 
solvent-exposed conformation of EphA2, suggesting more 
stable interactions.

Further insights into the binding interactions were 
provided by the average free energy of solvation for each 
compound. Specifically, the values of ΔGSolv were deter-
mined to be -28.59 kJ/mol/nm², -28.83 kJ/mol/nm², -28.86 
kJ/mol/nm², -28.74 kJ/mol/nm², and -28.82 kJ/mol/nm² 
for Dasatinib, Mcule-3981378344, Mcule-1579910267, 
Mcule-1893218381, and Mcule-8617639093, respectively 
(Table 7).

The combined analysis of root-mean-square devia-
tion (RMSD), root-mean-square fluctuation (RMSF), 
SASA, and free energy of solvation plot strongly supports 
Mcule-1893218381 and Mcule-8617639093 as promising 
inhibitors of the target protein EphA2. These compounds 
exhibit favorable interactions, as inferred from their ability 
to induce a more constrained solvent-exposed conforma-
tion of EphA2 and the calculated free energy of solvation. 
This collective evidence suggests that Mcule-1893218381 
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and Mcule-8617639093 are potential candidates for fur-
ther exploration as EphA2 inhibitors.

3.4.4. Radius of Gyration
The assessment of protein compactness in biological 

systems involves analyzing a parameter known as the 
radius of gyration (Rg). The relationship between Rg 
and protein stability was inverse, indicating that a more 
compact protein exhibits a lower Rg value. In this study, 
we examined the average Rg values for different EphA2-
compound complexes, including EphA2-Dasatinib (depic-
ted in black), EphA2-Mcule-1579910267 (highlighted in 
red), EphA2-Mcule-3981378381 (represented in green), 
EphA2-Mcule-1893218344 (shown in blue), and EphA2-
Mcule-8617639093 (indicated in yellow). The respective 
average Rg values were 2.044, 2.115, 2.048, 2.064, and 
2.018 nm (Table 7).

During the 50ns molecular dynamics simulation, we 
made an interesting observation: the average Rg values for 
the top hit compounds and the inhibitor remained remar-
kably similar. Notably, the EphA2-Mcule-8617639093 
complex exhibited comparatively low Rg values, indica-
ting a more compact conformation. In contrast, EphA2-
Mcule-1579910267 displayed a relatively high Rg value, 
suggesting a relatively less compact structure (Figure 
4D). Our analysis highlights the interplay between protein 
compactness and stability, providing valuable insights into 
the behavior of these compounds when interacting with 
EphA2.

In comparison to Doxazosin and Dasatinib, our scree-
ning process identified nine ligands with robust binding 
interactions to EphA2, based on average Gibbs free energy 
(Table 6). Among these, the EphA2-Mcule-3981378381 
and EphA2-Mcule-1893218344 complexes were no-
tably stable, engaging in six distinct types of interac-
tions: Mcule-3981378381 exhibited van der Waals, 
halogen (fluorine), pi-sigma, pi-pi stacked, alkyl, and 
pi-alkyl interactions. Notably, all four rings of EphA2-
Mcule-3981378381 established chemical interactions 
with sixteen residues of EphA2 (TYR92, ILE74, ALA42, 
GLU91, THR90, LYS44, MET65, ILE88, GLU61, 
ASP155, VAL29, PHE156, ILE21, GLY96, LEU144, and 
MET93) (Figure 5A).

Similarly, in the EphA2-Mcule-1893218344 complex, 
six distinct chemical interactions - van der Waals, carbon-
hydrogen bond, unfavorable donor-donor, pi-sigma, pi-pi 
stacked, and pi-alkyl - were observed. This complex enga-
ged with eighteen residues of EphA2 (ALA97, ARG141, 
SER159, LEU158, GLY157, PHE156, GLY22, GLU25, 
GLU24, ALA23, LYS44, GLU61, VAL29, ALA42, ILE74, 
THR90, ILE21, and LEU144) (Figure 5B).

The EphA2-Mcule-1579910267 complex displayed 
seven types of chemical interactions - van der Waals, 
conventional hydrogen bond, pi-sigma, pi-sulfur, pi-pi 
stacked, alkyl, and pi-alkyl. All four rings of EphA2-
Mcule-1579910267 contributed to chemical interactions 
with eighteen residues of EphA2 (LYS44, GLU61, ILE88, 

Ligands
Average 

PE
(kJ/mol)

Average 
RMSD
(nm)

Average 
SASA
(nm

2
)

ΔGsolv
(kJ/mol/nm

2
)

Rg
(nm)

Volume
(nm

3
)

Density
(kg/m

3
)

Mcule-1579910267 -935512 0.387 21.37 -28.86 2.1154 702.197 1024.87
Mcule-3981378344 -935053 0.337 21.36 -28.74 2.0640 702.104 1024.79
Mcule-1893218381 -935639 0.429 21.31 -28.83 2.0485 702.155 1024.76
Mcule-8617639093 -935990 0.349 21.27 -28.82 2.0189 702.321 1024.83
Dasatinib -937051 0.385 21.42 -28.58 2.0440 702.167 1024.74

Table 7. Summary of calculated molecular dynamics simulation parameters.

Fig. 4. A-D. Dynamics metrics of selected EphA2-ligand com-
plexes. A) RMSD tracks stability and conformational changes. 
B) RMSF shows residue-specific fluctuations. C) SASA indicates 
solvent exposure. D) Rg illustrates protein compactness changes 
over time. Complexes analyzed: EphA2-Dasatinib (black), EphA2-
Mcule-1579910267 (red), EphA2-Mcule-3981378381 (green), 
EphA2-Mcule-1893218344 (blue), and EphA2-Mcule-8617639093 
(yellow).

Fig. 5. A-E. Molecular interaction of selected ligands and EphA2. A) 
Mcule-3981378381, B) Mcule-1893218344, C) Mcule-1579910267, 
D) Mcule-8617639093, and E) Dasatinib. In each panel, a 3D repre-
sentation shows the EphA2-ligand complex, with ligands depicted 
in brown sticks firmly attached within the EphA2 cleft. The binding 
residues on EphA2 are illustrated in a 2D format, with a color legend 
indicating bond type and amino acid residues denoted by their three-
letter codes.
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MET65, THR90, ILE74, ALA42, GLU91, MET93, 
LUE144, TYS92, GLY96, ILE21, GLY96, VAL29, 
PHE156, GLY22 and  ALA23) (Figure 5C).

In the case of the EphA2-Mcule-8617639093 com-
plex, eight distinct chemical bonds were observed - van 
der Waals, conventional hydrogen bond, carbon-hydrogen 
bond, unfavorable positive-positive, pi-cation, pi-sulfur, 
pi-pi T shaped, and alkyl. These interactions engaged 
twelve chemical interactions with nineteen residues of 
EphA2 (ASN148, LEU149, LEU112, GLN113, MET117, 
VAL150, CYS151, ARG119, ASN72, GLY116, GLY120, 
and HIS71) (Figure 5D). Finally, the molecular interaction 
pattern of the EphA2-Dasatinib complex exhibited eight 
types of binding interactions: van der Waals, conventional 
hydrogen bond, carbon-hydrogen bond, halogen (fluo-
rine), unfavorable donor-donor, pi-cation, pi-donor hydro-
gen bond, and alkyl. All five rings of Dasatinib were found 
to engage in chemical interactions with nine residues of 
EphA2 (ARG141, SER159, ASP99, ARG103, LYS161, 
ARG199, ARG165, ASN206, and SER205) (Figure 5E). 

The analysis showcases the diverse and intricate nature 
of chemical interactions within the various EphA2-ligand 
complexes. The specific binding interactions and residues 
involved offer insights into the structural basis of the li-
gand-protein interactions, enhancing our understanding of 
their potential for targeted therapeutic applications.

3.4.5. Hydrogen bonds analysis
Hydrogen bonding is a crucial factor in the molecu-

lar recognition process and is essential for specifying 
the interactions between proteins and ligands. Molecular 
Dynamics (MD) simulations provided valuable informa-
tion about these interactions over time, as demonstrated 
by the analysis of compounds EphA2-Dasatinib, EphA2-
Mcule-1579910267, EphA2-Mcule-3981378381, EphA2-
Mcule-1893218344, and EphA2-Mcule-8617639093.

During a 50 ns MD simulation, the formation and 
dynamics of hydrogen bonds between these ligands and 
the EphA2 protein were evaluated. Hydrogen bonds are 
formed when a hydrogen atom is shared between a hy-
drogen bond donor (e.g., an electronegative atom with a 
hydrogen atom) and a hydrogen bond acceptor (e.g., an 
electronegative atom with a lone pair of electrons). Al-
though relatively weak compared to covalent bonds, hy-
drogen bonds are indispensable for molecular interactions 
because of their specificity and versatility.

The analysis revealed varying numbers of hydrogen 
bonds formed between the ligands and EphA2, rang-
ing from 1 to 5 bonds. Specifically, Dasatinib exhib-
ited 3-4 hydrogen bonds, Mcule-1579910267 showed 
1-2 bonds, Mcule-3981378381 demonstrated 1-5 
bonds, Mcule-1893218344 displayed 1-4 bonds, and 
Mcule-8617639093 had 2-3 bonds with the EphA2 protein 
(Figure 6A-E).

The observed hydrogen-bonding patterns emphasize 
the significance of these interactions in molecular rec-
ognition. Hydrogen bonds contribute to the specificity 
of these interactions, ensuring that the ligands are selec-
tively recognized. Furthermore, multiple hydrogen bonds 
collectively contribute to the stability of protein-ligand 
complexes, preventing premature dissociation. The direct 
correlation between the number of hydrogen bonds and 
binding affinity highlights their role in modulating interac-
tion strength.

In addition, hydrogen-bonding-induced conformation-
al changes were evident, aligning the ligands optimally 
within EphA2's binding pocket. The MD simulation cap-
tured the dynamic fluctuations in hydrogen bond forma-
tion, offering insights into the transient nature of these 
interactions. 

Over the course of a 50 ns Molecular Dynamics (MD) 
simulation, an analysis of the Root Mean Square Deviation 
(RMSD) was conducted for the EphA2 protein backbone, 
the ligand hits, the reference inhibitor, and their respective 
complexes. This analysis revealed intriguing insights into 
the stability of these molecular systems upon binding inte-
ractions.

Remarkably, the ligand Mcule-1579910267 exhibited 
a notably higher stability upon binding to EphA2, when 
compared to Dasatinib and the other ligands. The RMSD 
analysis indicated that Mcule-1579910267 complexed 
with EphA2 displayed minimal deviation from its initial 
conformation, suggesting a robust and relatively stable 
interaction.

Conversely, upon binding, deviations were obser-
ved in the complexes involving Mcule-3981378381, 
Mcule-1893218344, and Mcule-8617639093. These li-
gands demonstrated varying degrees of structural devia-
tion from their initial conformations during the simulation. 
This could be indicative of more dynamic interactions or 
less optimal binding geometries, resulting in increased 
conformational flexibility,

provides a visual representation of these observations. 
The RMSD plots depict the changes in structural alignment 
of the EphA2 backbone, ligands, reference inhibitor, and 
their respective complexes over the simulation duration. 
Peaks in the RMSD curves signify periods of increased 
structural deviation, suggesting fluctuations in the binding 
interactions Figure 7 (A-E).

Overall, the RMSD analysis underscores Mcule-
1579910267's enhanced stability upon binding to 
EphA2 in contrast to other ligands like Dasatinib 
and Mcule-3981378381, Mcule-1893218344, and 

Fig. 6. A-E. Hydrogen Bond Dynamics plots for interactions between 
EphA2 and selected compounds. A) Shows H-Bond Formation and 
Deformation in Dasatinib-EphA2 Interaction. B) Reveals H-Bond 
Formation and Disruption for Mcule-1579910267 with EphA2. C) 
Visualizes H-Bond Dynamics during Mcule-1893218344 interac-
tion with EphA2. D) Represents Hydrogen Bonding Patterns for 
Mcule-3981378381 with EphA2. E) Illustrates H-Bond Establish-
ment and Dissolution for Mcule-8617639093 with EphA2.
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Mcule-8617639093.

3.4.6. Analyzing Principal Component Dynamics and 
Conformational Changes

The Galaxy platform facilitated the application of Prin-
cipal Component Analysis (PCA) to dissect the 50 ns tra-
jectory of EphA2. The aim was to identify statistically si-
gnificant conformations and unravel the key motions wit-
hin the trajectory, specifically those responsible for confor-
mational changes. This analysis provides crucial insights 
into the system dynamics. Through PCA, the primary 
motions inherent in the trajectory were unveiled, and those 
pivotal for eliciting conformational shifts were identified. 
Notably, non-periodic conformational alterations were 
highlighted in both Dasatinib and Mcule-8617639093, 
shown by two clusters along the dominant PC1 plane. 
This behavior, exhibiting global non-periodicity, was in 
contrast to Mcule-3981378381, where the PC1 variation 
was relatively low.

Quantitative assessment indicated that 
Mcule-8617639093 exhibited greater variation than 
Mcule-3981378381 and Dasatinib. The first three princi-
pal components collectively accounted for 37.9% of dasa-
tinib, 27% of Mcule-3981378381, and 40.6% of Mcule-
8617639093's total variance in the eigenvalue rank plot. 
PC1 was particularly significant for each compound, contri-
buting 14.88%, 11.70%, and 16.18% of the variance for 
Dasatinib, Mcule-3981378381, and Mcule-8617639093, 
respectively (Figure 8 (A-C).  Comparative exploration 
of the findings for Dasatinib, Mcule-3981378381, and 
Mcule-8617639093 (Figure 8 (A-C)) offers an in-depth 
understanding of their unique dynamic behaviors and pro-
vides valuable insights into the intricate molecular dyna-
mics of EphA2, shedding light on the distinct conforma-
tional changes induced by various ligands. These insights 
can aid the design of targeted interventions and drug dis-
covery strategies.

4. Discussion
During the course of conducting Structure-Based Vir-

tual Screening (SBVS), we meticulously assessed over 
ten million compounds sourced from the MCULE digital 
archive of experimental ligands. Our systematic scree-
ning aimed to evaluate the binding affinity of these com-
pounds to our target protein, resulting in the identification 
of a significant number of compounds with robust bin-
ding affinities. Notably, many of these compounds were 
previously unidentified as potential ligands for specific 
target proteins. To narrow the search for promising can-
didates, we subjected the compounds to toxicity and BOI-
LED-Egg filtration, resulting in a refined list of only 37 
compounds. This effective filtration process demonstrated 
the specificity of our search strategy for the exclusion of 
unrelated compounds. Comparing our findings to those 
of well-established inhibitors, we identified nine ligands 
displaying stronger binding propensities to EphA2. Mo-
lecular docking analysis highlighted common molecular 
interactions, such as van der Waals forces, conventio-
nal hydrogen bonds, carbon-hydrogen interactions, and 
alkyl interactions, shared between the potential inhibitor 
dasatinib and the top two ligands Mcule-3981378381 
and Mcule-8617639093. Of particular interest, EphA2-
Mcule-8617639093 exhibited enhanced stability compa-
red to EphA2-Mcule-3981378381 and EphA2-Dasatinib 
in molecular docking simulations. This heightened sta-
bility was attributed to additional interactions, including 
pi-sulfur, pi-pi T-shaped, and unfavorable positive-posi-
tive interactions. These favorable interactions collectively 
contributed to an increased binding free energy, resulting 
in notable stability of the EphA2-Mcule-8617639093 
complex, suggesting its potential for suppressing EphA2 
overexpression.

Further investigations through Molecular Dynamics 
(MD) simulations have delved into the structural cha-
racteristics of these compounds. Parameters such as the 
Radius of Gyration (Rg) and Root Mean Square Devia-
tion (RMSD) exhibited stability with minimal fluctuations 
in specific regions. Additionally, Surface Area of Solvent 
Accessibility (SASA) analysis indicated favorable solvent 
exposure, implying potential improvements in protein 
solubility and facilitation of protein-protein interactions. 
Principal Component Analysis (PCA) of the atomic mo-
vements underlying protein function revealed distinctive 
patterns, particularly in the case of Mcule-8617639093. 
Interestingly, this compound displayed the highest magni-
tude in the first principal component (PC1). Interestin-

Fig. 7. A-E. The RMSD plot tracks structural alignment variations 
over time. Black, red, and green lines represent RMSD values of 
EphA2 protein backbone and reference inhibitors. A) EphA2-Dasa-
tinib complex, B) EphA2-Mcule-1579910267 complex, C) EphA2-
Mcule-3981378381 complex, D) EphA2-Mcule-1893218344 com-
plex, and E) EphA2-Mcule-861769093 

Fig. 8. A-C. Principal component analysis of EphA2 backbone 
Cα atom motions. A) Dasatinib, B) Mcule-3981378381, and C) 
Mcule-8617639093. 
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gly, all graphs indicate overlapping PC subspaces among 
the conformers, suggesting smooth transitions without 
significant energy barriers. Encouragingly, experimental 
testing for an established inhibitor demonstrated posi-
tive results for Mcule-8617639093, further validating 
its potential. Collectively, these findings suggest that 
Mcule-8617639093 is the most promising compound 
among the tested conformers. Subsequent in vitro studies 
are warranted to verify the inhibitory effects of this com-
pound. Moreover, our SBVS efforts identified a potent 
compound, Mcule-8617639093, which demonstrated 
strong binding affinity and stability against EphA2. These 
findings hold significant promise for future therapeutic in-
terventions and warrant further exploration and validation.

5. Conclusion
The study provides valuable insights into EphA2 over-

expression using small molecules. Through the design 
and evaluation of a diverse series of 100 derivatives, our 
in silico assessment, particularly ADME prediction us-
ing SwissADME tools, proved instrumental in assessing 
the pharmacokinetic and pharmacodynamic attributes. 
These compounds exhibited promising pharmacological 
profiles, including favorable solubility, oral absorption, 
and bioavailability, suggesting their potential as effec-
tive drug candidates. Notably, the majority of compounds 
showed non-substrate status for P-glycoprotein, indicat-
ing potential evasion of efflux mechanisms, along with 
optimal log P values for blood-brain barrier penetration 
and hepatocyte intrinsic clearance. The prominence of 
Mcule-8617639093, aligning with computational findings 
and exhibiting favorable drug-like attributes, suggests its 
potential as a potent inhibitor. Experimental validation 
will be crucial to confirm the therapeutic utility of these 
compounds in addressing EphA2-associated conditions.
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