
213

                                                                                                                                                                                 Cell. Mol. Biol. (ISSN: 1165-158X)

1. Introduction
The ongoing advancements and progress in our stan-

dard of living have led to a noticeable increase in the issue 
of urban air quality, which has emerged as a significant 
subject of interest for researchers. As a consequence of 
this advancement, many different kinds of pollutants have 
been generated. The issue of pollution in urban areas is 
increasingly recognized as a significant problem [1, 2], 
and it is presently regarded as one of the primary envi-
ronmental health concerns [3]. Comprehending urban air 
pollution is essential for municipal governance and urban 
planning. In this regard, the adoption of biological moni-
toring has proven to be a more effective approach [4, 5]. 
However, the response of species and ecosystems is more 

important than the concentration of some pollutants in the 
air [6, 7]. 

Heavy metals (HMs) have gained significant attention 
among the various airborne contaminants due to their non-
biodegradable and pervasive features and their toxic and 
detrimental effects on living things, even at low levels [8]. 
In recent decades, there has been noteworthy global inte-
rest among researchers in utilizing vegetation for moni-
toring pollution caused by different heavy metals [9-13]. 
The utilization of plants as passive samplers in biomonito-
ring offers several advantages, including extensive spatial 
and temporal coverage, as well as cost-effectiveness [14, 
15]. Therefore, it has been observed that higher plants with 
long-term survival capabilities can be employed for bio-
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monitoring air quality [16, 17]. In recent times, trees have 
become the primary choice for bioindicators in air quality 
biomonitoring studies across the globe [18, 19]. A few stu-
dies have been conducted to assess the phytoremediation 
potential of woody vegetation in urban areas across the 
country. For example, a study conducted by [3] examined 
the phytoremediation ability of Eucalyptus camaldulensis 
and Morus alba in different urban and rural areas. Simi-
larly, [20] examined the phytoremediation potential of 
four tree species (M. alba, V. nilotica, A. ampliceps, and A. 
indica) in different urban areas.

The genus Ficus L., commonly referred to as figs, is 
a type of angiosperm belonging to the Moraceae family. 
Figs are native to tropical and subtropical regions, and 
some species are present in semi-warm temperate zones 
[21]. The genus contains approximately 800 species that 
are distributed worldwide [22]. Among them, 120 species 
are found in the Americas, 105 species in Africa, and 367 
species are distributed throughout the Asian-Australasian 
region [23]. In Pakistan, several Ficus species, such as F. 
virens, F. religiosa, F. benjimina, F. elastica, F. microcar-
pa, etc, have been widely planted along the roads, in and 
around the industrial as well as residential areas of many 
big cities like Faisalabad. 

The accumulation of heavy metals in plants is prima-
rily affected by specific plant organs (such as leaves or 
bark) and species characteristics, which encompass fac-
tors such as growth rate and biomass [24, 25].  Metals 
are acquired by plants through their root system from the 
soil and subsequently transported to different plant tissues 
[26-28]. The climate change and pollution issue in central 
Punjab, Pakistan, specifically in Faisalabad City, has been 
intensifying for a considerable period. The urban environ-
ment in Faisalabad is confronted with substantial difficulty 
concerning the absorption of heavy metals, which presents 
potential hazards to both the ecology and public health. 
The industrial and urban activities in the region result in 
the emission of heavy metals into the atmosphere, soil, and 
water, causing their buildup in the ecosystem. 

This accumulation raises concerns about the long-term 
impacts on flora, fauna, and human inhabitants[29, 30]. 
The limited research on heavy metal uptake in the urban 
landscape of Faisalabad poses challenges to the develop-
ment of successful methods of mitigation and safety regu-
lations. Hence, this study aimed to examine the capacity of 
four distinct species of Ficus: F. virens, F. religiosa, F. ben-
jimina, and F. microcarpa, to accumulate and withstand 
heavy metals in their leaves within the industrial hub of 
the country. The levels of heavy metals such as Cd, Cu, Cr, 
Pb, Zn, and Mn were analysed in both mature and young 
leaves of four different Ficus species. These species were 
collected along roads with high traffic flow, and industrial 
and residential areas of the city in order to highlight the 
usefulness of these species as a bioindicator of air metallic 
pollution. 

2. Materials and Methods
2.1. Study area and sampling sites

The research was carried out in a metropolitan city, 
Faisalabad, the industrial hub and the third largest city 
in the Punjab Province of Pakistan, having an estima-
ted population of 3.7 million in 2023 with a growth rate 
of 2.37%. The city is located at a longitude of 73°5′28″ 
East, a latitude of 31°25′0″ North, and has an elevation 

of approximately 186 m above mean sea level. The city 
of Faisalabad is subject to a semi-arid climate, which is 
defined by an average annual rainfall of around 375 milli-
meters (14.8 in). The precipitation exhibits a pronounced 
seasonality, with approximately 50% of the total rainfall 
concentrated in the monsoon season, specifically during 
July and August. The summer season experiences high 
temperatures, ranging from 26.9 to 45.5°C, while in win-
ter, the temperatures range from 4.1°C to 19.4°C. In this 
particular region, the winds are generally light. 

The city is home to a variety of industrial activities, 
including the textile industry, ceramic tile manufacturing, 
and pipe manufacturing industries. The vehicular traffic 
volume in the city is extremely high and different kinds of 
vehicles, such as trucks, coaches, rickshaws, motorcycles, 
tourism vehicles, and road tractors, move across the city 
daily. Congestion is observed on all the major roads pas-
sing through the city, and it is in close proximity to eco-
nomic zones and industrial states. Samples were collec-
ted from 3 sites: roads with heavy traffic flow, industrial 
area, and residential area. Overall, 15 sampling points, 5 
for each site, were randomly selected for leaf sampling of 
selected Ficus species (Figure 1).

2.2. Leaf sampling
Leaf sampling was conducted in November 2022 fol-

lowing nearly 60 days of rainfall. This ensures that heavy 
metals are not released from the leaf surface. Sampling 
was conducted from the lower one-third of the canopy of 
each tree species. Eight fully expanded leaves were selec-
ted from each tree species: two from each cardinal direc-
tion. These leaves were taken from the shoot of the current 
year (young leaves, YL), as well as from the shoot of the 
previous year (old leaves, OL). A total of 120 samples were 
collected across the entire study area, with 40 samples ta-
ken from each site and 60 samples from each age class. 
Special attention was taken to ensure that no flaws, like in-
sects, bird droppings, or pesticide residue, were gathered. 
The leaves were meticulously transported to the laboratory 
for further analysis, following the required procedures of 
washing, drying, and grinding.

2.3. Sample digestion
The leaf samples were initially subjected to wet diges-

tion using the procedure outlined by [17]. In a 100 mm 
volumetric flask, 0.2 grams of leaf sample and 4 mm of ni-
tric acid (HNO3) were added and mixed well. Before hea-
ting, the solution was incubated for a few hours. After this, 
the solution was meticulously heated using a water bath 
until the red fumes emitted from the flask were eliminated. 
Then, the solution was cooled to room temperature, and 
4 mL of perchloric acid was added to the flask. Filtration 
was carried out with the help of Whatman filter paper no. 
42. By adding the purified water, the volume was adjusted 
to the desired level.

 The atomic absorption spectroscopy technique was 
employed to assess heavy metals in the leaf samples. For 
the evaluation of the presence of heavy metals like cop-
per (Cu), cadmium (Cd), chromium (Cr), lead (Pb), zinc 
(Zn), and manganese (Mn), air acetylene was utilized as 
fuel, while the radiation source utilized hollow cathode 
lamps [3, 31]. Furthermore, the prescribed solutions for 
each trace element under investigation were utilized, and 
their retrieval rates were calculated to validate and ensure 

https://en.wikipedia.org/wiki/List_of_cities_in_Pakistan_by_population
https://geohack.toolforge.org/geohack.php?pagename=Faisalabad&params=31_25_0_N_73_5_28_E_type:city_region:PK
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rences were identified using LSD test, with a significance 
level of p < 0.05.

3. Results
3.1. Heavy metals in tree leaves
3.1.1.Copper (Cu)

Copper (Cu) is considered a heavy metal, but it is also an 
essential micronutrient required for chlorophyll and seed 
production and for several enzymatic activities. Cu accu-
mulation beyond the permissible limit (>1 mg/m3) causes 
several oxidative toxic effects on plants and humans. In the 
present study, we revealed the Cu accumulation index in 
younger and older leaves of Ficus species (F. benjamina, 
F. microcarpa, F. religiosa, and F. virens) grown at three 
different sites: residential, industrial, and highways, as 
demonstrated in Figure 2. The results of our study showed 
a maximum accumulation of Cu in older leaves of all sub-
ject species as compared to younger leaves. In addition to 
that, it is also obvious from the results of the current study 
that the site also plays a significant role in Cu accumula-
tion, as trees located in industrial areas had the maximum 
concentration of Cu, followed by trees present alongside 
highways. A minimum concentration of Cu (5.72 mg kg-1, 
7.75 mg kg-1, 7.89 mg kg-1, 8.45 mg kg-1) was reported in 
trees located in residential areas. For instance, F. virens, 
alongside highways and in residential areas, accumulated 
21.68 % and 15.98 % lower Cu in their leaves (both youn-
ger and older) as compared to corresponding species in 
industrial areas. Likewise, F. benjamina in industrial areas 
accumulated 6.15 % and 60.93 % higher copper as compa-
red to the corresponding species in highway and residen-
tial areas, respectively. Similarly, F. religiosa in industrial 
sites accumulated 15.84% and 53.71 % higher Cu in their 
leaves than those in highway and residential areas, respec-
tively.  Although all species of Ficus showed a significant 
potential to accumulate Cu in their leaves in all study sites, 
but overall Cu-accumulation trends for all subjected tree 

the effectiveness of the methodology used in identifying 
heavy metals from the leaf samples of ficus tree species. 
Moreover, to ensure quality standards, the materials, solu-
tions, and acids utilized were of analytical grade and hi-
ghly purified. In order to ensure quality control, reagent 
blanks, as well as standard reference materials (namely 
SRM 1515 and 1573a for plants), were included in the 
analysis. These materials were replicated, and 10% of the 
entire specimen population was used to check purities and 
detect any potential inaccuracies or biases in the analytical 
method. During the complete digestion process, the reco-
very rates used for most trace metals were 78 to 120% in 
standard reference materials [32]. 

2.4. Heavy metals assessment
An atomic absorption spectrophotometer (Shimadzu 

AA-6800) was used to evaluate the amount of different 
HMs such as zinc, copper, cadmium, chromium, man-
ganese, and lead in old and new leaf samples collected 
from four different ficus tree species and were described 
as mg kg-1 [1].

2.5. Bio-concentration factor
The Bio-concentration factor (BCF) indicates the ratio 

of all the metal content in the leaves to the soil concen-
tration. Bio-concentration factor (BCF) also indicated 
the enrichment and intensification of various HMs. The 
approach explained by [6] was employed to measure the 
deposition of specific HMs in plants, as indicated by the 
following formula:

 Where Charvested tissue indicates metal contents in leaf 
samples and Csoil represents soil metal concentration. 

2.6. Comprehensive bio-concentration index (CBCI) 
and metal accumulation index (MAI)

The comprehensive bio-concentration index (CBCI) 
designates the aptitude of trees to amass multiple metals 
and was estimated by adopting the relationship explained 
by [33]. 

The accumulation of various types of substances in the 
leaves of trees occurs simultaneously. An accumulation in-
dex was calculated based on the data gathered during this 
study to estimate the general effectiveness of the tree spe-
cies in terms of metal accumulation. This index is known 
as the metal accumulation index (MAI) and measures the 
metal accumulation. MAI was computed by following the 
formula developed by [34]. 

2.7. Statistical analysis
Following the assessment of data normality, the diffe-

rence in leaf heavy metal data across species of selected 
sites were examined using a one-way analysis of variance 
(ANOVA) with the assistance of Statistica version 10 tool, 
developed by StatSoft, Inc. Statistically significant diffe-

Fig. 1. Study area map showing the sampling point distribution within 
selected sites.
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species was F. virens > F. religiosa > F. microcarpa. For 
instance, in industrial areas, F. virens accumulated 64.29 
% and 60.71% higher Cu than F. microcarpa and F. Reli-
giosa, respectively, as depicted in Figure 2.

3.1.2. Cadmium (Cd)
Cadmium (Cd) is a very toxic heavy metal due to its 

non-degradable nature and high persistency in nature and 
causes detrimental effects on the environment. Chronic 
exposure to Cd can cause severe morphological, physio-
logical, and biochemical effects on plants and cause kid-
ney and lung damage in humans. In the present study, we 
revealed the Cd accumulation index in younger and older 
leaves of Ficus species (F. benjamina, F. microcarpa, F. 
religiosa, and F. virens) grown at three different sites: 
residential, industrial, and highways, as demonstrated 
in Figure 3. The results demonstrated that species types 
and study sites significantly influenced Cd accumulation 
percentage, as Cd accumulation was maximum (0.58 mg 
kg-1, 0.37 mg kg-1, 0.80 mg kg-1, 0.88 mg kg-1) in all subjec-
ted tees in the industrial site as compared to the other two 
areas, and the overall Cd-accumulation trend in all subjec-
ted trees was F. virens > F. religiosa >. F. benjamina > F. 
macrocarpa.  Moreover, the results of this study revealed 
that older leaves have accumulated more concentration 
of cadmium than younger leaves. For instance, younger 
leaves of F. benjamina, F. microcarpa, F. religiosa, and 
F. virens in industrial areas accumulated 0.49 mg/kg, 0.33 
mg/kg, 0.67 mg/kg, and 0.79 mg/kg of Cd respectively 
whereas older leaves have accumulated 0.68, 0.42, 0.93 
and 0.97 mg/kg cadmium.

Among sites, it can be observed that trees in residen-
tial areas have accumulated a minimum concentration of 
Cd for all selected species, while the maximum amount of 
Cd was reported in trees located in Industrial areas. For 
instance, F. virens in highway and residential areas accu-
mulated 10.23% and 16.87% less Cd in their older leaves 
as compared to the correspondence species in industrial 
areas. Likewise, F. microcarpa in industrial areas accumu-
lated 10.53% and 20.00% higher Cd than the correspon-
ding species in highway and residential sites. F. benjamina 
also showed statistically significant results for different 
sites as it appeared that leaves of F. benjamina in industrial 
areas accumulated 21.43 % and 30.77 % higher Cd than in 
corresponding species in highway and residential areas, as 
demonstrated in Figure 3. 

3.1.3. Chromium (Cr)
Chromium is the second most common metal pollutant 

in the soil, sediment, groundwater, and atmosphere, and 
its excessive amount can be detrimental to human beings. 
The Cr accumulation pattern in younger and older leaves 
of selected Ficus species grown at three different sites: 
residential, industrial, and highway was represented in 
Figure 4. The results demonstrated that minimum accu-
mulation of Cr (1.44 mg kg-1, 1.69 mg kg-1, 1.99 mg kg-1) 
was reported in younger leaves of F. microcarpa followed 
by F. benjimina and F. religiosa, respectively across all 
study sites. Meanwhile, the maximum accumulation of Cr 
(3.45 mg kg-1, 4.52 mg kg-1, 4.59 mg kg-1) was estimated 
in older leaves of F. virens. Overall, among all subjected 
samples of selected tree species, older leaves showed a 
significantly higher accumulation of Cr as compared to 
younger leaves, as demonstrated in Figure 4. Cr accumula-

tion with respect to the study sites was considerably higher 
in both younger and older leaves of all subjected tree spe-
cies on highways, followed by industrial areas and resi-
dential areas. For example, F. religiosa alongside highway 
accumulated 1.53 % more Cr in their leaves as compared 
to industrial areas, whereas F. virens alongside highway 
areas accumulated 3.40 % more Cr in their leaves as com-
pared to industrial areas. On the other hand, F. microcarpa 
species at industrial sites accumulated 8.99% and 46.97 
% more Cr in their leaves (both younger and older) than 
the corresponding trees on highways and residential sites, 
respectively. Furthermore, F. benjamina in industrial areas 
accumulated 4.5 % and 28.51 % higher Cr in their leaves 

Fig. 2. Mean values ± SD of Cu (mg kg-1) in new and old leaves of 
Ficus species at three different studied sites.

Fig. 3. Mean values ± SD of Cd (mg kg-1) in new and old leaves of 
Ficus species at three different studied sites.

Fig. 4. Mean values ± SD of Cr (mg kg-1) in new and old leaves of 
Ficus species at three different studied sites.
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than in the corresponding species in highway and residen-
tial areas, as demonstrated in Figure 4. 

3.1.4. Lead (Pb)
Lead (Pb) is an important heavy metal that has a lot of 

industrial uses, but its higher accumulation causes several 
toxicity effects in plants and humans. In the present study, 
the Pb accumulation pattern in younger and older leaves of 
various Ficus species grown at three different sites (resi-
dential, industrial, and highway) was revealed (Figure 5). 
The results demonstrated that a minimum accumulation of 
Pb (1.55 mg kg-1) was reported in F. benjamina, followed 
by F. microcarpa (1.74 mg kg-1) and F. religiosa (2.61 mg 
kg-1), respectively at residential areas. Meanwhile, the 
maximum accumulation of Pb was reported in older leaves 
of F. virens. Overall, among all subjected samples of selec-
ted tree species, older leaves showed a significantly higher 
accumulation of Pb than younger leaves, as demonstrated 
in Figure 5. Pb accumulation with respect to the study sites 
was considerably higher in both younger and older leaves 
of all subjected tree species in industrial areas, followed 
by highways and residential areas (Figure 5). For instance, 
F. virens tree plants accumulated 20.50% and 34.26 % 
lower Pb in their leaves in highway and residential areas, 
respectively, as compared to corresponding tree plants in 
industrial areas. Likewise, F. macrocarpa species at indus-
trial sites accumulated 22.11% and 29.95% higher Pb in 
their leaves (both younger and older) than the correspon-
ding trees on highways and residential sites, respectively. 
Similarly, F. religiosa at industrial sites showed 21.93 % 
and 35.93 % higher accumulation of Pb in their leaves as 
compared to the corresponding species at highway and 
residential sites. Additionally, F. benjamina in industrial 
areas accumulated 21.43 % and 32.34 % higher Pb in their 
leaves than in the corresponding species in highway and 
residential areas, as demonstrated in Figure 5. 

3.1.5. Zinc (Zn)
The results regarding the Zinc accumulation pattern in 

younger and older leaves of selected Ficus species grown 
at three different sites: residential, industrial, and highway 
were demonstrated in Figure 6. The results of this study 
indicated that minimum accumulation of Zn (11.54 mg kg-

1) was reported in younger leaves of F. microcarpa in resi-
dential areas followed by F. benjimina (12.54 mg kg-1) and 
F. religiosa (16.65 mg kg-1), respectively. Meanwhile, the 
maximum accumulation of Zn (31.01 mg kg-1) was esti-
mated in older leaves of F. virens at industrial sites. Ove-
rall, among all subjected samples of selected tree species, 
older leaves showed a significantly higher accumulation 
of Zn as compared to younger leaves, as demonstrated in 
Figure 6. Zn accumulation with respect to the study sites 
was considerably higher in both younger and older leaves 
of all subjected tree species in industrial areas, followed 
by highway and residential areas. For instance, F. virens, 
alongside highway and residential areas, accumulated 7.82 
% and 25.50 % less Zn in their leaves (both younger and 
older) than the corresponding trees in industrial areas. 
Likewise, F. microcarpa grown in industrial areas accu-
mulated 11.93 % and 17.64 % more Zn than the highway 
and residential areas. Furthermore, F. benjamina accumu-
lated 11.93 % and 17.64 % more Zn in industrial areas as 
compared to highway and residential areas, respectively 
(Figure 6).

3.1.6. Manganese (Mn)
Manganese is also an essential micronutrient and has 

many industrial applications. Its excessive amount can be 
a cause of serious environmental hazards and health risks 
to human health. In the present study, the Mn accumula-
tion pattern in younger and older leaves of selected Ficus 
species grown at three different sites: residential, indus-
trial, and highway was represented in Figure 7. The results 
demonstrated that minimum accumulation of Mn (24.56 
mg kg-1) was reported in younger leaves of F. microcarpa 
at highway sites followed by F. benjimina (25.71 mg kg-1) 
and F. religiosa (27.65 mg kg-1), respectively. Meanwhile, 
the maximum accumulation of Mn (51.43 mg kg-1) was es-
timated in older leaves of F. virens at industrial sites. Ove-
rall, among all subjected samples of selected tree species, 
older leaves showed a significantly higher accumulation 
of Mn as compared to younger leaves, as demonstrated 
in Figure 7. Mn accumulation with respect to the study 
sites was considerably higher in both younger and older 
leaves of all subjected tree species in industrial areas, fol-
lowed by residential areas and highways. For instance, F. 
virens, alongside highway and residential areas, accumu-
lated 24.14% and 12.27% less Mn in their leaves as com-
pared to industrial areas. Likewise, F. religiosa present in 
industrial sites accumulated 27.79 % and 13.36 % more 
Mn than the corresponding species in highway areas and 
residential areas. Furthermore, F. benjamina present in in-
dustrial areas has accumulated 23.68 % and 1.51 % more 
Mn than in highway and residential areas, as demonstrated 
in Figure 7.

Fig. 5. Mean values ± SD of Pb (mg kg-1) in new and old leaves of 
Ficus species at three different studied sites.

Fig. 6. Mean values ± SD of Zn (mg kg-1) in new and old leaves of 
Ficus species at three different studied sites.
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3.2. Comprehensive bio-concentration index (CBCI) 
and metal accumulation index (MAI)

Comprehensive bio-concentration index (CBCI) and 
metal accumulation index (MAI) in leaf samples of four 
selected Ficus species were measured for three different 
selected sites, i.e., industrial areas, highway areas, and 
residential areas. CBCI and MAI for all selected sites and 
species are summarized in Table 1. For the industrial area, 
the maximum MAI (7.01) was calculated for F. religiosa 
leaves, whereas the minimum MAI (2.33) was estima-
ted for the leaves of F. microcarpa. In highway areas, F. 
virens showed a different trend as maximum MAI (6.48) 
was observed in the leaves of F. virens as compared to F. 
religiosa. F. benjamina showed a minimum MAI (2.14) in 
residential areas, whereas F. religiosa showed the maxi-
mum MAI in residential areas. The selected tree species 
were tested for their ability to store various multi-heavy 
metals from the soil by measuring their CBCI. In indus-
trial areas, CBCI was present in the range of 0.39-1.09. In 
highway areas, CBCI was found in the range of 1.16-0.62. 
In residential areas, CBCI was found in the range of 0.38-
0.56 for all studied Ficus species, as depicted in Table 1. 

3.3. Bio-concentration Factor (BCF)
Table 2 displays data regarding the bio-concentration 

factor values for various aged leaf samples of chosen Ficus 
species at all three selected sites. Results of the current stu-
dy indicate that various heavy metals have shown a wide 
range of BCF for selected species. Moreover, newer leaves 
have shown less BCF content than older ones. At industrial 
sites, BCF contents ranged from 0.13 to 0.82 for newer 
leaves and 0.19 to 0.98 for older leaves. Minimum BCF 
contents of chromium were found in the newer leaves of F. 
microcarpa, whereas maximum BCF contents of Cupper 
were found in F. virens.  At the highway site, BCF contents 
ranged from 0.12 to 0.67 for newer leaves and 0.17 to 0.83 
for older leaves. In residential areas, BCF contents ranged 
from 0.12 to 0.72 for newer leaves and 0.17 to 0.81 for 
older leaves. The results of the current study reveal that all 
selected species of Ficus have accumulated cadmium, but 
minimum BCF contents were observed in F. microcarpa 
for all the calculated heavy metals. F. virens showed the 
maximum potential to accumulate BCF contents for Cd, 
Cu, Pb, Cr, Zn, and Mn in its older leaves as compared to 
all other selected species (Table 2).

3.4.Principal component analysis and correlation
PCA analysis indicated that all the parameter varia-

tions were covered in the first two components, explaining 
96.4% variation. The first factor contributed to 79.3% 
whereas the second factor contributed to 17.1% variation 
with maximum variation contribution by CBCI, Cd and 
Cu shown in Figure 8. Data loaded onto “PC 1” include 
F. benjimina (r = -3.66), F. microcarpa (r = -4.91), F. reli-
giosa (r = 2.76), and F. virens (r = 5.81); while on “PC 2” 
included include F. benjimina (r = -0.50), F. microcarpa 
(r = 0.27), F. religiosa (r = 0.59), and F. virens (r = -0.36). 
Based on the qualitative data of various tree species, PCA 
plot indicated F. virens and F. religiosa were close to each 
other for various traits, while F. benjimina and F. micro-
carpa were highly diverse and varied from each other in 
terms of different traits as depicted in Figure 8.  

The Pearson correlation analysis demonstrated that 
CBCI highly negatively correlated with the MAI, while 
negatively correlated with Cd, Cu, and Zn concentration 
and showed slightly negative correlation with Cr and no 
correlation with Pb, and Mn. Mantel’s correlation analysis 
showed that F. benjamina and F.virens tree species showed 
significantly positive correlation with CBCI and negative 

Fig. 7. Mean values ± SD of Mn (mg kg-1) in new and old leaves of 
Ficus species at three different studied sites.

Fig. 8. Principle component analysis (PCA biplot) showing the rela-
tionship between various heavy metals and selected Ficus tree spe-
cies. 

Fig. 9. Pearson interaction and mental test between different variables 
(heavy metals) and selected Ficus species. The heatmap indicates the 
pairwise correlations between the variables while the lines demons-
trate mantel test results, and the color represents Pearson’s correlation 
coefficient. Cd (cadmium), Cu (copper), Cr (chromium), Pb (lead), 
Zn (Zinc), Mn (Manganese), MAI (metal accumulation index), CBCI 
(comprehensive bio-concentration index).
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Table 1. Leaf means (young+old) ± SD, metal accumulation Index (MAI), and Comprehensive bio-concentration Index (CBCI) OF Cd, Cu, Cr, Pb, Zn, and Mn of Ficus species in 
Industrial, Highway, and Residential Areas. F.religiosa>F.virens>F.benjamina>F.microcarpa for industrial areas, F.virens>F.benjamina>F.religiosa>F.microcarpa for highway areas, and 
F.religiosa>F.virens>F.microcarpa>F.benjamina for residential area.

Tree Species Cd (mg kg-1) Cu (mg kg-1) Cr (mg kg-1) Pb (mg kg-1) Zn (mg kg-1) Mn (mg kg-1) MAI CBCI
Industrial Area

F. benjamina 0.59 (0.13) 9.47 (0.77) 2.90 (0.16) 1.96 (0.35) 20.54 (3.14) 35.76 (4.33) 4.91 0.45
F. microcarpa 0.38 (0.06) 7.97 (1.05) 2.45 (0.65) 2.21 (0.31) 18.75 (3.19) 37.86 (2.98) 2.33 1.09
F. religiosa 0.80 (0.18) 12.2 (0.69) 3.50 (0.68) 3.06 (0.86) 24.70 (4.06) 41.89 (5.01) 7.01 0.39
F. virens 0.88 (0.12) 13.1 (1.70) 4.05 (1.57) 3.32 (0.79) 27.83 (4.49) 42.71 (4.82) 5.81 0.87

Highway Area
F. benjamina 0.49 (0.09) 8.83 (0.85) 2.69 (0.29) 1.74 (0.12) 17.55 (3.98) 29.69 (4.61) 5.42 1.16
F. microcarpa 0.36 (0.02) 7.66 (0.91) 2.18 (0.70) 1.84 (0.21) 16.54 (3.15) 27.89 (3.99) 2.09 0.67
F. religiosa 0.72 (0.08) 9.99 (1.31) 3.68 (0.62) 2.61 (0.55) 21.39 (4.16) 33.74 (4.01) 3.61 0.80
F. virens 0.79 (0.13) 10.66 (1.56) 4.10 (0.71) 2.88 (0.48) 25.32 (4.87) 35.52 (5.26) 6.48 0.62

Residential Area
F. benjamina 0.45 (0.09) 5.73 (0.70) 2.18 (0.24) 1.55 (0.16) 15.99 (4.88) 34.35 (3.29) 2.14 0.56
F. microcarpa 0.33 (0.04) 7.76 (0.58) 1.71 (0.38) 1.74 (0.18) 14.71 (3.46) 33.29 (4.11) 3.89 0.38
F. religiosa 0.67 (0.11) 7.89 (0.49) 2.72 (0.41) 2.62 (0.12) 20.09 (3.91) 37.76 (4.00) 6.92 0.51
F. virens 0.74 (0.08) 8.45 (0.74) 3.19 (0.75) 2.77 (0.20) 21.68 (4.48) 38.40 (3.90) 4.77 0.46
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Site Industrial Area
Leaf age YL OL

Tree species F. benjamina F. microcarpa F. religiosa F. virens F. benjamina F. microcarpa F. religiosa F. virens
Cd 0.22 0.15 0.31 0.36 0.31 0.19 0.42 0.44
Cu 0.60 0.49 0.79 0.82 0.68 0.59 0.86 0.98
Cr 0.18 0.13 0.20 0.23 0.20 0.19 0.26 0.30
Pb 0.36 0.42 0.52 0.59 0.47 0.52 0.78 0.83
Zn 0.33 0.30 0.37 0.44 0.41 0.38 0.52 0.56
Mn 0.51 0.53 0.56 0.58 0.71 0.76 0.86 089
Site Highway Area

Leaf age YL OL
Tree species F. benjamina F. microcarpa F. religiosa F. virens F. benjamina F. microcarpa F. religiosa F. virens

Cd 0.21 0.17 0.33 0.35 0.28 0.17 0.39 0.46
Cu 0.58 0.49 0.64 0.67 0.66 0.59 0.77 0.83
Cr 0.17 0.12 0.23 0.25 0.20 0.19 0.29 0.32
Pb 0.36 0.37 0.49 0.56 0.40 0.44 0.66 0.71
Zn 0.28 0.27 0.35 0.42 0.39 0.36 0.47 0.55
Mn 0.54 0.56 0.59 0.61 0.75 0.81 0.92 0.93
Site Residential Area

Leaf age YL OL
Tree species F. benjamina F. microcarpa F. religiosa F. virens F. benjamina F. microcarpa F. religiosa F. virens

Cd 0.22 0.17 0.33 0.37 0.29 0.20 0.42 0.46
Cu 0.47 0.66 0.68 0.72 0.56 0.74 0.75 0.81
Cr 0.16 0.12 0.20 0.24 0.20 0.17 0.26 0.29
Pb 0.36 0.40 0.63 0.66 0.42 0.47 0.68 0.73
Zn 0.27 0.25 0.35 0.41 0.41 0.39 0.51 0.54
Mn 0.58 0.56 0.64 0.65 0.86 0.81 0.93 0.97

Table 2. Bio-concentration factor of heavy metals (Cd, Cu, Cr, Pb, Zn, and Mn) in new and old leaf samples of Ficus species in Industrial, Highway and Residential Areas.
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correlation with MAI, while F. microcarpa and F. religiosa 
tree species demonstrated significantly positive correla-
tion with both MAI and CBCI (Figure 9). 

4. Discussion
Heavy metal (HMs) toxicity causes several morpho-

logical, physiological and biochemical effects on plant 
species from reduced nutritive value and inhibited pho-
tosynthesis to retardation of plant growth, as reported in 
several previous studies [3, 35-37]. Additionally, HMs 
concentration in soil from multiple sources including 
sewage sludge, pesticides, gasoline and paints, fertilizers 
and wastewater irrigation can become the main constitute 
of the food chain and cause serious health problems like 
kidney dysfunction, immune system dysfunction, nervous 
system disorder, skin lesions, cancer and vascular damage 
[5, 16, 38]. Taking into account the harmful effects of 
HMs on plants and humans, the present study was aimed 
at phytoremediation HMs concentration from the air envi-
ronment through tree species grown in different biological 
ecosystems. For this purpose, we selected four tree spe-
cies F. microcarpa, F. religiosa, F. benjamina and F.virens  
grown in industrial, residential, and highway sites of study 
area to assess their phytoremediation potential against 
selected HMs (Cd, Cr, Cu, Mn, Pb, and Zn). The results 
revealed that all selected ficus species demonstrated great 
potential to accumulate heavy metals depending on study 
site and tree species, as demonstrated in Fig 2-7 and Tables 
1-2. The observed variations suggest that these trees can 
serve as reliable bioindicators, offering valuable intuitions 
into the spatial dissemination of air metallic contamination 
in urban and residential areas.

Previous findings have strongly emphasized the bio-
monitoring and phytoremediation potential of tree species 
against HMs in soil, water and air environments [3, 16].  
Trees as bioindicators, have the capacity to engross HMs 
in their different parts and improve air, water and soil qua-
lity. Woody trees usually phytoremediation HMs through 
various processes including HMs mobilization, root up-
take, xylem loading, translocation from root to shoot, cel-
lular compartmentation, sequestration, and extraction via 
salt trichomes [16, 39]. So, trees can be used as the most 
suitable candidates for phytoremediation. In the present 
study, our results emphasized the same conclusion where 
all tree species showed the ability to accrue different types 
of HMs (Figure 2-7). In our findings, different tree species 
demonstrated varying trends of HMs accumulation in their 
younger and older leaves at different sites (Fig. 2-7 and 
Tables 1-2), which was similar to the previous conclusions 
[40, 41]. In our finding, F. virens showed maximum accu-
mulation of Cr, Cu, Cd, Mn, Zn and Pb concentrations in 
its younger and older leaves at industrial, residential, and 
highway sites followed by F. religiosa and F. microcar-
pa. The similar results were reported in pervious findings 
where F. virens efficiently phytoremediate Pb and Cu from 
the soils of Bareilly, India [42].  Similarly, Yeo and Tan 
(2011), reported that F. virens is a good candidate for the 
phytoextraction of Zn followed by Cd and Cu in wetlands. 
Additionally, our findings also indicate that the remaining 
two tree species are good bioindicators, bioextractors and 
biofiltrators against MHs.  For instance, several studies 
have indicated that the leaves of F. religiosa can be used as 
suitable bio-indicators for air pollution with crystal violet 
dye and heavy metals [44]. F. religiosa is reported to be 

useful in tracking and amelioration of HMs contamination 
in urban localities [45, 46]. In this study, F. microcarpa 
and F. benjamina showed lower potential to accumulate 
HMs as compared to the other two species but they can 
also be used to alleviate heavy metals in polluted soils. 
As in a previous study, F. microcarpa was reported as an 
appropriate option for Cd phytoextraction and Cu, Hg, 
and Pb phytostabilization [47]. Another species of Ficus, 
F. nitida has also been reported to be a viable option for 
phytoremediation [1]. The study highlights the importance 
of considering different Ficus species, as their responses to 
heavy metal accumulation vary. Some species may exhibit 
higher tolerance or accumulation capacity, making them 
more suitable for specific monitoring purposes.

Metal accumulation index (MAI) and comprehensive 
bioconcentration index (CBCI) of heavy metals by urban 
trees have been used as an effective tool to monitor air 
pollution index in many previous studies [3, 5, 48]. In the 
present study, we calculated MAI and CBCI of all selected 
HMs for all species and reported different trends varying 
with tree species and study sites. For MAI, the trend was 
F.religiosa> F.virens> F.benjamina> F.microcarpa for 
industrial areas, F.virens > F.benjamina> F.religiosa> 
F.microcarpa for highway areas, and F.religiosa> F.virens> 
F.microcarpa> F.benjamina for residential area (Table 1). 
The same conclusion was reported in previous findings, 
where MAI depends on study sites and tree species [3, 5]. 
It has been reported in many previous studies that plants 
are species-specific to accumulate heavy metals. Different 
plant species have different tendency to accumulate heavy 
metals [16]. Plants accumulate heavy metals in different 
parts of their body but the most commonly used organelles 
are leaves [49-51]. The sub-species of same species have 
different potential to accumulate heavy metals [52]. The 
reason behind these differences is that the heavy metal 
accumulation process in plants is interlinked with plant 
anatomical structure. Overall, the MAI and CBCI results 
of our findings indicate that all tree species have greater 
potential to phytoremediation selected HMs, which was 
similar to previous findings. For example, F. religiosa has 
been reported as one of the best species to accumulate dif-
ferent types of heavy metals [18, 45, 53].

In plants, stomata also play an essential role in the ac-
cumulation of heavy metals [54].  The dimensions and ar-
rangement of stomata play a crucial role in facilitating the 
exchange of gases within the leaves (Bradney et al. 2019). 
Furthermore, the anatomical and physiological structures, 
as well as the morphological traits, of plants have a subs-
tantial impact on the accumulation of heavy metals in any 
given species [55]. These characteristics of plants are for-
med by genetic and environmental attraction [56]. So, dif-
ferent plants not only react differently to heavy metal stress 
but also have different potentials to accumulate specific 
heavy metals [52]. So, species-specific variability is found 
in our study. In our study, F. virens have often shown the 
best results in accumulating different heavy metals. For 
all selected species in our study, older leaves have accu-
mulated more heavy metals as compared to newer leaves. 
The phenomenon of metal sequestration in aged organs 
has been assumed to be a potential mechanism by which 
plants are able to survive in soils that are contaminated 
with pollutants. The plants growing in soils contaminated 
with heavy metals employ various mechanisms to ensure 
their survival. [57]. Among different mechanisms, one of 
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the famous phenomena is the compartmentalization of 
metals [58, 59].  The plants effectively bind heavy metals 
using organic compounds within their tissues, operating 
at both cellular and sub-cellular levels to detoxify these 
harmful substances [60]. These heavy metals translocate 
to old leaves before shedding [61]. Accretion of HMs in 
older plant leaves, which are not very sensitive to toxic 
heavy metals, is considered a procedure for tolerating 
HMs stress in plants [62, 63]. This could be one of the 
possible reasons for the higher accumulation of heavy me-
tals in older leaves of plants. Our findings align with the 
conclusions of prior research. For example, [64] reported 
that older leaves of Calotropis procera have demonstrated 
a better capacity to accumulate much larger quantities of 
certain metals compared to green leaves. Another study 
has explored the translocation of arsenic from roots to old 
leaves, suggesting it as a potential detoxification process 
[65, 66].

 The findings of this study indicated that among dif-
ferent sites, trees present on residential sites accumulated 
fewer heavy metals. The influence of site on metal accu-
mulation is almost consistent across most studied heavy 
metals (HMs). The maximum amount of HMs was repor-
ted in industrial areas, followed by highways and residen-
tial sites. The results of the present study provide valuable 
insights into the fact that heavy metal pollution is prima-
rily caused by industrialization and heavy traffic. This is 
the reason why some species have accumulated different 
concentrations of heavy metals at different sites. Prior stu-
dies have documented the advantageous effects of bioac-
cumulation in industrial regions as trees present in these 
areas have the ability to capture heavy metals either on 
their leaves or within their internal tissues. This process al-
lows trees to function as natural filters or accumulators of 
these toxic metals [1, 57, 67]. Our study is in accordance 
with previous studies as it is suggested in previous studies 
that industries are the key source of HMs accumulation 
in cultivated soils, resulting in poor soil health conditions 
[68]. For example, industrial production is identified as 
the primary source of heavy metal pollution in cultivated 
land in China. The main source of heavy metal pollution 
for cultivated land in China is reported to be industrial 
production [69, 70]. Another study was conducted in the 
Yangtze Delta of China to collect 230 surface soil samples 
from an industrializing area. The findings of the study 
indicated that heavy metal pollution in the area is prima-
rily caused by industrial emissions [54]. In Tangshan City, 
China, industries pose serious health risks to children due 
to the accumulation of heavy metals [71]. The most dan-
gerous cause of pollution in Pakistan is also industries that 
do not properly dispose of mechanisms [11].

Along with industrialization, trees present alongside 
highways have accumulated a maximum concentration of 
HMs in their leaves. Previously, various researchers have 
also suggested that trees present on sites with dense traf-
fic accumulated more heavy metals as compared to those 
with less traffic or no traffic [55, 72]. High metal accu-
mulation in trees alongside highways might be due to the 
high concentration of toxic metals in the fuel consumed 
[73]. The uptake of pollutants by leaves of certain species 
is directly linked to the presence of pollutants present in 
the atmosphere [74]. The accumulation of toxic HMs in 
plants is species- and site-specific [18]. For example, resi-
dential areas are the least polluted areas; therefore, the HM 

concentrations in the plant leaves of residential areas are 
the lowest compared to both industrial and highway areas. 

5. Conclusion 
Heavy metals (HMs) have attained substantial impor-

tance among the various airborne contaminants due to 
their non-biodegradable and pervasive features, along 
with their harmful and damaging impacts on plants and 
humans, even at low concentrations. It is imperative to 
measure and track the level of heavy metal concentration 
in the air and take laborious steps to remediate HMs from 
the air environment. For this purpose, researchers focused 
on trees as bioindicators for assessing the air quality across 
the globe as they remain fixed within the landscape, with 
certain species being perennial and consistently exposed 
to pollutants. In the current study, a comprehensive ana-
lysis of HMs concentration in air and their accumulation 
in new and older leaves of Ficus species in diverse urban 
environments was done to reveal their role as bioindica-
tors and bioextractors of air metallic contamination. The 
results indicated that among selected tree species, , the 
general trend for HM accumulation was observed as F. 
virens > F. religiosa > F. benjamina > F. microcarpa. So, 
it is recommended to include Ficus virens and Ficus reli-
giosa for urban landscape planning and also near industrial 
areas for phytoremediation purposes. Meanwhile, the HM 
concentrations in both the NL and OL of selected tree spe-
cies were reduced in the order of Mn> Zn> Cu > Cr > Pb 
> Cd at all selected sites. The metal accumulation index 
(MAI) values in Ficus tree species ranged between 2.14-
5.42 for F.benjamina (minimum) to 4.77-6.48 for F. reli-
giosa (maximum) across all study sites. Overall, F. virens 
and F. religiosa accumulated maximum HMs in their old 
and new leaves, which emphasizes their affective phytore-
mediation role against all reported HMs.  Based on our 
findings, we suggested that F. virens and F. religiosa are 
suitable plants for urban areas with significant HMs conta-
mination and can be strategically planted in barrier areas 
to effectively mitigate atmospheric pollution. 
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