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1. Introduction 
Cancer cachexia, a complex metabolic syndrome, 

causes continuous weight, and muscle loss. [1] Approxi-
mately half of all patients with cancer experience cachexia, 
resulting in death in 22% of them. [2, 3] Furthermore, it 
impairs chemotherapy effectiveness and exacerbates side 
effects [4, 5] In this condition, muscle atrophy directly 
correlates with mortality. [6] The direct causes of muscle 
atrophy are inflammatory cytokines and muscle-specific 
protein degradation. [6, 7] Chemotherapy induces muscle 
consumption. [8] Moreover, anticancer drugs are directly 
toxic to muscles, leading to muscle loss and dysfunction.

Chemotherapy is a well-established treatment for va-
rious cancer conditions. [9] Doxorubicin (DOX), classi-
fied as an anthracycline, is used as a cell proliferation inhi-
bitor in treating blood, breast, and various solid tumors. 
[10] Its anticancer mechanism involves strong binding to 
the cell nucleus and subsequent insertion into deoxyribo-
nucleic acid (DNA), forming a DOX-DNA complex that 
induces cell apoptosis. [11-13] Oxaliplatin (OXA), a third-
generation platinum complex, is currently used to treat 
solid cancers, such as colorectal and advanced ovarian 
cancer. [14, 15] Activated OXA generates platinum-DNA 

adducts containing bulky 1,2-diaminocyclohexane rings, 
effectively inhibiting DNA replication and demonstrating 
anticancer activity. [15, 16] However, these drugs nega-
tively affect other cells, resulting in adverse effects that 
induce apoptosis. [10, 12, 13, 15, 17, 18] Moreover, these 
anticancer drugs induce muscle toxicity, leading to muscle 
loss and functional impairments. [19-23] This muscle loss, 
attributed to toxicity, hampers the continued administra-
tion of anticancer drugs, thus negatively affecting patient 
survival rates. [6, 24-26] Although the specific mechanism 
of muscle loss remains incompletely identified, muscle 
regeneration begins with myoblasts after muscle loss. The 
key mechanism for damaged muscle self-renewal cells in-
volves the proliferation of myoblasts and their subsequent 
differentiation into myotubes. However, research investi-
gating the mechanism protecting myoblasts from the ad-
verse effects of anticancer drugs is currently inadequate. 
Recent studies indicate that dying cells possess protective 
mechanisms that extend to neighboring cells. [13] Skeletal 
muscles employ a repair mechanism after injury, wherein 
satellite cells are activated, differentiate into myoblasts, 
and rapidly proliferate to fuse with damaged muscle fibers. 
This process is also modulated by exosomes. [25, 27-29]
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Exosomes, ranging from 30 to 150 nm in size and enc-
losed by a lipid bilayer, are extracellular vesicles dischar-
ged from cells. [30] They contain DNA, RNA, and prote-
ins, which they release into the extracellular environment, 
enabling interactions with surrounding cells and playing a 
vital role in intercellular communication. [31-34] Exoso-
mes promote the proliferation and differentiation of target 
cells. [35] Previous studies have shown that exosomes also 
regulate the survival of parent cells. For example, they 
exert control over cancer cell growth and metastasis. [36, 
37] Owing to their biocompatibility and capacity as car-
riers, exosomes hold potential in molecular therapeutics 
for cell protection. [38, 39] Therefore, this study aims to 
investigate how exosomes released from myoblasts under 
cell death conditions, especially serum starvation, can pro-
tect muscle cells from drugs and cell death. [40] 

This study demonstrated the restoration of myoblast 
viability during serum starvation, a condition associated 
with myoblast death, using myoblast-derived exosomes 
(MDEs). Subsequently, the exosome protein profile was 
determined using mass spectrometry to confirm their po-
tential cell death inhibitory function. After identifying the 
protein IDs in the exosomes, Gene Ontology (GO) analy-
sis was conducted to understand their functional roles. 
Furthermore, the therapeutic potential of MDEs in inhibi-
ting cachexia induced by DOX and OXA, two anticancer 
drugs known to cause cachexia, was assessed.

2. Materials and methods
2.1. Cell culture

C2C12 myoblast cells were purchased from the Ameri-
can Type Culture Collection (ATCC). They were cultured 
in HyClone™ Dulbecco's Modified Eagle Medium/High 
glucose (DMEM, Hyclone), supplemented with 10% heat-
inactivated Fetal Bovine Serum (FBS; Hyclone) and 1% 
penicillin/streptomycin (P/S;s Gibco / COM). The cell cul-
ture was incubated at 37°C in an incubator (ICU 240 Eco, 
Memmert) with a 5% carbon dioxide environment.

2.2. Exosome purification
The cells were grown to approximately 80% density, 

after which the medium was replaced with DMEM con-
taining 1% P/S and cultured for 24 h. Subsequently, the 
supernatant was collected and centrifuged at 1,000 RCF 
for 10 min at 4℃ to eliminate dead cells and debris. The 
resulting supernatant was harvested again and centrifuged 
at 10,000 RCF for 35 min at 4℃ to eliminate cell frag-
ments and large vesicles produced during cell death. The 
supernatant underwent further concentration by filtration 
through a 100 kDa Amicon filter (Merck), followed by ult-
racentrifugation at 100,000 RCF for 1 h and 10 min at 4℃. 
The precipitate was then resuspended in DMEM. Protein 
quantity was determined using a BCA Protein Assay Kit 
(Thermo Fisher Scientific) before use.

2.3. Nanoparticle Tracking Analysis (NTA)
The extracted exosomes were diluted in 1 mL of distil-

led water (DW), and their particle size was measured with 
the Nanosight NS300 system (Malvern). Data analysis 
was performed using NTA software (version 3.2).

2.4. Transmission Electron Microscopy
(A) [TEM image processing] 
To capture negatively stained electron microscopy ima-

ges, 5 μl of each purified sample was administered onto 
carbon-coated grids, which underwent a 1-minute glow-
discharge treatment (Harrick Plasma) in ambient air. Fol-
lowing this, the grids were subjected to negative staining 
using a 1% uranyl acetate solution. The resultant prepared 
grids were examined using a Tecnai 10 transmission elect-
ron microscope outfitted with a Lanthanum hexaboride 
(LaB¬6, FEI) cathode, operated at 100 kV. Images were 
documented using a 2Kⅹ2K UltraScan CCD camera (Ga-
tan) at a magnification of 10,000 (equivalent to 1.0 nm per 
pixel). This equipment setup was situated at the Kangwon 
Center for Systems Imaging in Chuncheon, Republic of 
Korea. [41]

(B) [Cryo-EM data collection and sample preparation] 
For cryo-EM, 4 μl of each prepared sample was applied 

to glow-discharged Quantifoil R 1.2/1.3 300 mesh holey 
carbon EM grids (Quantifoil) using a Vitrobot Mark IV 
(Thermo Fisher), with a 4-second blotting time and 100% 
humidity at 4°C. The prepared grids were then transferred 
to an Elsa Cryo-Transfer Holder 698 (Gatan). Subsequ-
ently, they were examined using a Tecnai 10 TEM (FEI) at 
100 kV, with temperature monitoring. Images were captu-
red using an UltraScan CCD camera (Gatan) at a nominal 
magnification of 40,000×. These instruments were housed 
at the Kangwon Center for Systems Imaging in Chunche-
on, Republic of Korea. [41] 

2.5. DIL Staining 
A culture medium was prepared by adding 

1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine 
perchlorate (DIL) to DMEM containing 1% P/S at a con-
centration of 100 nM/ml. Cells were cultured to 80% conf-
luence, at which point the supernatant was aspirated and 
replaced with the DIL-mixed medium. After 24 h of cultu-
re, the supernatant was collected and centrifuged at 1,000 
RCF for 10 min at 4℃. This resulted in the isolation of 
only the supernatant. The supernatant was centrifuged at 
10,000 RCF for 35 min at 4℃, filtered using a 100 kDa 
Amicon filter (Merck) for concentration, and subsequently 
ultracentrifuged at 100,000 RCF for 1 h and 10 min. The 
precipitate was used to treat the cells, which were subse-
quently observed under a fluorescence microscope. 

2.6. Cell viability assay 
To assess the effects of exosomes extracted from 

C2C12 myoblasts on muscle cells and the toxicity of DOX 
and OXA, C2C12 myoblasts were plated in a 96-well plate 
at a density of 1 x 10^4 cells/well and incubated in a CO2 
incubator for 24 h. After supernatant removal, exosomes 
were added to DMEM with 1% P/S and COM at a con-
centration of 20 μg/mL. To investigate the effect of exoso-
mes on the toxicity of Doxorubicin hydrochloride (44583-
10MG, Sigma) and Oxaliplatin (O9512-5MG, Sigma) on 
muscle cells, the compounds were mixed with exosomes 
at concentrations of 1 μM, 0.8 μM, and 20 μg/ml respecti-
vely, adjusting the total volume to 200 μL for 24 h of incu-
bation. After supernatant removal, 10 μL of Cell Counting 
Kit-8 (CCK, Dojindo) was added to 90 μL of DMEM con-
taining 1% P/S in each well. Absorbance was subsequently 
measured at a wavelength of 450 nm using a microplate 
reader (SpectraMax ABS, Molecular Devices).

2.7. Cell cycle Analysis and cell count
To determine the effect of exosomes extracted from 



105

Myoblast exosomes reduce chemo muscle toxicity.                                                                                                                                                                     Cell. Mol. Biol. 2024, 70(10): 103-109

This was followed by 90% solvent B (100% acetonitrile 
with 0.1% formic acid) for 4 min, and finally, the gradient 
returned to 2% solvent B for 20 min.

Xcaliber software version 4.4 was utilized for MS data 
collection. The Orbitrap analyzer scanned precursor ions 
within the mass range of 350-1800 m/z, achieving a reso-
lution of 60,000 at m/z 200

2.10. Statistical analysis
All data underwent statistical analysis using GraphPad 

Prism 5.0 (GraphPad Software) and expressed as Mean 
with standard error of the mean (SEM). Statistical signi-
ficance between groups was determined using one-way 
analysis of variance (ANOVA) followed by Dunnett’s 
multiple comparisons post-hoc tests, with significance set 
at P value <0.05. GO analysis used the Database for Anno-
tation, Visualization, and Integrated Discovery (DAVID), 
with a significance set at P <0.001.

3. Results
3.1. Characterization of C2C12 exosomes

To characterize exosomes isolated from myoblasts un-
der serum starvation conditions, C2C12 MDE was purifi-
ed under these conditions. Verifying MDE characterizati-
on involved calculating exosome size using NTA morp-
hology via electron microscopy (EM) and the presence of 
exosome-specific proteins, including TSG101, Alix, and 
HSP70 [42, 43], using western blotting (WB). Further-
more, to validate the uptake of DiI-labeled exosomes by 
myoblasts, exosomes were labeled with DiI and obser-
ved using a fluorescence microscope. Alix and TSG101, 
known to assist in the formation of multivesicular bodies 

C2C12 myoblasts on cell proliferation, C2C12 myoblasts 
were plated at 1 x 10^5 cells/well in 6-well plates and in-
cubated in a CO2 incubator for 24 h. After supernatant re-
moval, the cells were treated with exosomes at a concent-
ration of 20 μg/mL, followed by a 24-h incubation period. 
The cells were subsequently washed with PBS, harvested, 
and diluted 1:1 (v:v) with trypan blue for cell counting 
using a Countess™3 (Thermo Fisher). The remaining cells 
were then fixed in 70% ethanol at -4℃ for 24 h. The cells 
were stained with FxCycle™ PI/RNase Staining Solution 
(Thermo Fisher) and subjected to cell cycle analysis using 
a CytoFLEX flow cytometer (Beckman Coulter).

2.8. Western blotting
C2C12 myoblasts were cultured at a density of 1.5 x 

10^5 cells in a 6-well plate for 24 h. After supernatant re-
moval and three washes with PBS, the cells were lysed 
in Radio-Immunoprecipitation Assay (RIPA) buffer at 
4℃ for 15 min. Subsequently, they were centrifuged at 
18,000 RCF for 15 min at 4℃. Finally, 30 μg of protein 
was mixed with 5X Tris-glycine sample buffer (SB) using 
the BCA kit. For exosome analysis, 30 μg of total protein 
extracted from exosomes was mixed with SB and boiled at 
100℃ for 15 min to prepare samples. These samples were 
then loaded onto a 10% sodium dodecyl sulfate–polyacr-
ylamide (SDS) gel for electrophoresis. After electropho-
resis, the proteins were transferred to an Immobilon®-P 
PVDF Membrane 0.45 μM (Thermo Fisher Scientific) and 
blocked at room temperature for 1 h in a solution contai-
ning 5% skim milk, Tris-Buffered Saline, and 0.2% twe-
en20 (TBST). Subsequently, the membrane was incubated 
overnight at 4℃ with primary antibodies Tumor Suscep-
tibility Gene 101 (TSG101), apoptosis-linked gene 2-inte-
racting protein X (Alix), heat shock protein 70 (HSP70) at 
a 1:1000 ratio in TBST with 1% skim milk. The membra-
ne underwent three 5-min washes with TBST. It was then 
incubated for 1 h at room temperature with a secondary 
antibody at a 1:10000 ratio in 1 % skim milk. After three 
more washes, the membrane was treated with an Enhanced 
Chemiluminescence (ECL) solution (Absignal), prepared 
by mixing reagents A and B in a 1:1 ratio, and analyzed 
using a WSE-6200 LuminoGraph II (ATTO).

2.9. RP-nano LC-ESI-MS/MS analysis 
An analysis was performed using a Thermo Scientific 

Quadrupole-Orbitrap instrument (Thermo Fisher Scien-
tific) coupled with a Dionex U 3000 RSLCnano HPLC 
system. Mass spectrometry analyses were conducted using 
a Thermo Scientific Orbitrap Exploris 240 mass spectro-
meter.

Fractions were reconstituted in solvent A (water/ace-
tonitrile, 98:2 v/v, with 0.1% formic acid) before being 
injected into the LC-nano ESI-MS/MS system. The samp-
les underwent initial trapping on an Acclaim PepMap 100 
trap column (100 μm x2 cm, nanoViper C18, 5 μm, 100 
Å, Thermo Fisher Scientific, part number 164564). They 
were washed for 6 min with 98% solvent A (water/aceto-
nitrile, 98:2 v/v, with 0.1% formic acid) at a flow rate of 4 
μL/min. Subsequently, they were separated on a PepMap 
RSLC C18 column (75 μm x 15 cm, nanoViper C18, 3 μm, 
100 Å, Thermo Fisher, part number ES900) at a flow rate 
of 300 nL/min.

The LC gradient began at 2% solvent B and increased 
to 8% over 10 min, then from 8% to 30% over 55 min. 

Fig. 1. Characterization of exosomes. (A) Western blot analysis 
shows the presence of exosome markers TSG101, Alix, and HSP70. 
(B) Nanoparticle tracking analysis (NTA) for quantifying the size of 
C2C12 myoblast exosomes. Concentration/size graph for exosomes. 
Size means 144.8 +/- 2.1. nm. (C) Left image: Cryo-electron micros-
copy (cryo-EM) and Right image: Transmission electron microscopy 
(TEM) images of exosomes (scale bars, 200 nm). (D) Exosomes labe-
led with DiI and C2C12 myoblasts nuclei stained with DAPI.
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within endosomes [44], were found to be highly expres-
sed during whole cell lysis (WCL). HSP70, known for its 
specific role when transported by exosomes [45], showed 
an equal expression level as WCL (Figure 1A). The avera-
ge size of the purified exosomes, measured via NTA, was 
determined as 144.8 +/- 2.1 nm, falling within the typical 
size range of 30–150 nm [30], characteristic of exosomes 
(Figure 1B). Exosomes exhibit a lipid bilayer structure, as 
confirmed through TEM and Cryo-EM imaging (Figure 
1C). Upon staining myoblast nuclei with DAPI and trea-
ting them with DiI-labeled exosomes, the exosomes were 
taken up by myoblasts. (Figure 1D), confirming their abi-
lity to enter and affect myoblasts.

3.2. Myoblasts-derived exosome enhanced cell viability
Serum starvation inhibited myoblast growth and indu-

ced cell death. [46] To validate the efficacy of exosomes 
secreted under these conditions, serum-starved MDEs 
were administered to C2C12 myoblasts, followed by a 
CCK-8 assay to assess cell viability. The results showed 
a dose-dependent increase in cell viability following exo-
some treatment under serum starvation (SF) and normal 
conditions. The increase in cell viability was significantly 
higher in the exosome-treated group under SF conditions 
than in normal conditions. At a concentration of 20 ug/ml, 
a significant increase of 63% was observed in cell viability 
under SF and 58% in the control group (COM) (Figure 2A, 
2B). As cell viability increased, alterations in cell cycle 
and proliferation were investigated through cell counting 
and PI staining. While cell cycle changes were not signi-
ficant in the exosome-treated group (Figure 2C), a notable 
increase in the number of viable cells was observed after 
exosome treatment under SF conditions (Figure 2D, 2E). 
This finding suggests that MDEs purified under serum-
starvation conditions can affect cell survival, indicating 
their potential to protect and maintain myoblast numbers 
for self-regeneration during cell death conditions. 

3.3. MDE restored myoblast cell viability reduction ca-
used by anticancer drug toxicity

Given the observed enhancement in cell viability and 
survival with MDE treatment under cell death conditions, 
a CCK-8 assay was conducted to verify the effectiveness of 
MDE treatment in suppressing muscle toxicity caused by 
the anticancer drugs DOX and platinum-based OXA. [47] 
Using the SF-treated group as a control (0% cell viability), 
the results were expressed as a percentage reduction in cell 
viability. At a concentration of 1 μM, DOX treatment sig-
nificantly reduced cell viability by an average of 19.4%, 
which decreased by 6.4% with simultaneous treatment of 
20 ug/ml of MDEs. The efficacy of exosomes in mitigating 
DOX-induced cell viability reduction was observed up to 
a 2-μM treatment (Figure 3A, 3B). For OXA, significant 
cell viability decreases of 26% at 10 μM and 17% at 8 
μM, compared to the control (SF), were observed. When 
exosomes were treated simultaneously with 10 μM OXA, 
the reduction in cell viability was reversed by 7.1% for 10 
μg/ml exosomes and 13.6% for 20 μg/ml exosomes. In the 
OXA 8 μM treatment group, exosome treatment increased 
cell viability by 5.6% (10 μg/ml) and 17% (20 μg/ml), res-
pectively, confirming that exosome treatment restored the 
reduction in cell viability of myoblasts via the anticancer 
drug. The efficacy of exosomes against OXA was highest 
at 10 μM and showed no effectiveness beyond 40 μM. (Fi-

gure 3C, 3D). These findings suggest that MDEs can res-
tore the cell viability reduction caused by DOX and OXA 
treatments when administered at concentrations above 20 
μg/ml. This suggests the potential of MDEs to mitigate 
muscle toxicity side effects of chemotherapy.

Fig. 2. Effects of C2C12 exosomes on cell proliferation. (A, B) Cell 
viability was assessed using a CCK-8 assay in the presence of COM 
and SF. (C) Analysis of cell cycle effects of exosomes on C2C12 via 
PI staining. (D, E) Representative images of treated cells and cell 
count (n=3).

Fig. 3. Effect of C2C12 exosomes on anticancer drugs. This figure 
illustrates the effect of co-treatment with anticancer drugs and exo-
somes on myoblast cell viability. The exosome-mediated efficacy of 
anticancer agents has been confirmed up to a certain concentration. 
The data presented are the mean ± S.E.M of three independent expe-
riments. Statistical significance levels are denoted as *p < 0.05, **p < 
0.01, ***p < 0.001, indicating a comparison between the anticancer 
drug monotherapy groups and the exosome treatment group. 

A B

C D
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3.4. Proteomic analysis of MDEs
To identify the active substances within the exosomes, 

MDEs were characterized using RP-nano LC-ESI-MS/
MS. After confirming the presence of proteins within the 
exosomes, 7,370 protein IDs were detected. Applying a 
Sequest HT score >10 and requiring at least two unique 
peptides, 1,074 protein IDs were identified. Correspon-
ding gene IDs were obtained, and genes related to muscle 
differentiation were analyzed using the DAVID. The ge-
nes were categorized using commonly accepted GO terms 
related to molecular function, cellular components, and 
molecular biological functions, with a significance level 
of p<0.001. The GO analysis revealed several elements 
essential for cell growth, such as cell cycle and ATP (Fi-
gure 4A – 4C). Kyoto Encyclopedia of Genes and Geno-
mes (KEGG) pathway analysis revealed significant genes 
related to metabolic pathways, such as the pyruvate cycle, 
which is directly related to cellular energy metabolism 
(Figure 4D). Overall, the classification of genes related to 
proteins within the MDEs indicated their involvement in 
multiple factors influencing cellular metabolic activities.

4. Discussion
Exosome signaling stimulates cell metabolism, reflec-

ting the functional characteristics of the parent cells. More-
over, these characteristics are determined by the exosome 
contents. [48] MDEs were isolated under serum starvation 
conditions in this study, a scenario known to induce apop-
tosis in myoblasts. [40] Findings from this study show a 
significant increase in cell count and viability, especially 
during anti-cancer drug treatment. Furthermore, proteomic 
analysis of MDEs secreted under cell death conditions re-
vealed the presence of proteins related to cell metabolism 

and survival. Therefore, exosomes from myoblasts under 
cell death conditions can serve as therapeutic agents to re-
duce muscle toxicity induced by anticancer drugs. Furt-
her research is needed to determine the effect of MDEs on 
myocytes or myotubes in the context of muscle toxicity. 
This will enable the confirmation of the muscle-protective 
function of exosomes secreted from myoblasts. 

Chemotherapy is the most prevalent treatment for can-
cer. However, these drugs can also affect normal cells, le-
ading to severe side effects. [49]  This study showed that 
chemotherapy drugs such as DOX and OXA restored cell 
viability. This suggests the possibility of protecting the ac-
tivity of myoblast exosomes, thereby preventing cell de-
ath, and enhancing myoblast activity to accelerate muscle 
regeneration. Further research is necessary to uncover the 
specific mechanisms through which MDEs increase cell 
viability. 

5. Conclusion
MDEs purified under serum starvation conditions 

reverse the reduction in cell viability caused by chemo-
therapeutic drugs. While further research is needed, these 
results indicate the potential to prevent muscle toxicity 
associated with cancer treatment
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