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1. Introduction
The balance of microbes in the gut is directly linked 

to human health and disease. Compared with other body 
parts, the gastrointestinal (GI) tract has a very large group 
of microorganisms, approximately 100 trillion [1]. Many 
studies have shown the important link between gut bacte-
ria and basic biological processes in humans. For example, 
research has shown that the microbiome in humans plays 
a large role in metabolism, immunity, and nutrient acqui-
sition from food [2]. By considering the traits of the gut 
microbiota, including its wide variety, stability, resilience, 
and mutually beneficial relationship with the host, we can 
classify the host and the bacteria that reside within it as 
“superorganisms" [3]. The gut microbiota can influence 
biological processes in numerous ways. It plays a vital role 
in extracting energy and nutrients from food because of 
harbouring diverse metabolic genes, which encode distinct 
enzymes and biochemical pathways [4]. Additionally, the 
production of biologically active compounds such as vita-

mins, amino acids, and lipids is highly dependent on the 
gut microbiota [5]. Extensive studies are being conducted 
to determine the precise characteristics of a "healthy" gut 
microbiota and its connection to the physiological pro-
cesses of the host. Nevertheless, the relative distribution of 
microorganisms is dissimilar among individuals and may 
vary within the same individual. Notably, the gastrointes-
tinal microbiota of humans may vary due to environmental 
factors and age [6].   

The gut microbiota consists of bacteria, yeasts, and vi-
ruses. A healthy microbiota community typically exhibits 
a substantial range of taxonomic diversity, many microbial 
genes, and a consistent core microbiota. A healthy micro-
biota would be a diverse and stable microbial community 
that contributes to host health and well-being. A typical 
composition of such is a balance of beneficial bacteria 
from the genus Bifidobacterium and the genus Faecalibac-
terium. These are associated with the maintenance of gut 
integrity, anti-inflammatory effects, and metabolic func-
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tions. On the other hand, an imbalance in the microbiota, 
or dysbiosis, is often associated with inflammatory bowel 
diseases, metabolic disorders, and infections  [7]. Bacte-
ria are categorized taxonomically based on their phylum, 
classes, orders, families, genera, and species. Among all 
the phyla, only a small number account for over 160 spe-
cies [8]. Firmicutes (Bacillota), Bacteroidetes, Actinobac-
teria, Proteobacteria, Fusobacteria, and Verrucomicrobia 
are the predominant microbial phyla found in the gut. Fir-
micutes and Bacteroidetes together account for 90% of the 
gut microbiota [9]. 

Several factors can change the composition of the gut 
microbiota, including host genetics, diet and age [10,11]. 
Other factors such as geographical location, and mater-
nal lifestyle (urban or rural) also shape the gut microbiota 
composition [12,13]. Diet is one of the most powerful 
modulators of gut microbiota functions and composition. 
The table below summarizes the possible effects of differ-
ent dietary patterns on gut microbiota composition classi-
fied by phyla (Table 1)  

On the other hand, recent studies have pointed out the 
important contribution of geographic location to gut mi-
crobiota diversity. For example, Sun et al. [21] performed 
a population-based study in China and found significant 
regional differences in gut microbiota composition, which 
indicated that geographic factors should be considered 
when linking microbiota profiles to human phenotypic 
variations. Similarly, Porras et al. [22]  studied the effect 
of geographic differences on susceptibility to enteric in-
fections and found that gut microbiota profiles were differ-
ent in different regions, which shaped immune responses 
and infection susceptibility. Furthermore, Ying et al. [23]  
showed how geographic habitats and host species shape 
gut microbiota diversity in non-human primates, further 
emphasizing environmental factors as a driver of micro-
bial communities. These findings highlight the importance 
of geographical and environmental factors in microbiome 
studies, thus providing a critical context in which to under-
stand the variability observed in gut microbiota composi-

tion across different populations and regions.
Another critical factor that has to be taken into con-

sideration, in particular in countries like Egypt, is exces-
sive use of antibiotics in shaping the gut microbiome. In 
Egypt, antibiotic misuse and overuse have led to a high 
prevalence of multi-drug resistant (MDR) bacteria among 
the population [24]. A growing number of studies have 
demonstrated that antibiotics can have both short-term 
and long-term effects on intestinal microbial populations 
[25,26]. Moreover, antibiotic usage has been linked to a 
decrease in gut microbial diversity [27]. Following antibi-
otic therapy, the baseline composition of the gastrointesti-
nal microbiota was largely restored within 90 days; how-
ever, certain common species remained undetectable [28]. 

Currently, there are two major methods for analyzing 
microbial communities with high-throughput sequencing: 
whole-genome shotgun metagenomics (WGS) and marker 
gene studies. WGS metagenomics attempts to sequence 
every genome present in an environmental sample to infer 
the functional capacities and biodiversity of a microbial 
community being studied. In this respect, it is possible to 
characterize the full diversity of habitat archaea, bacteria, 
eukaryotes, viruses, and plasmids along with their gene 
content, given that the whole genetic material of a sample 
is retrieved [29]. WGS metagenomics is primarily advan-
tageous over marker gene sequencing in that it enables the 
characterization of the genetic and genomic diversity of 
the analyzed community, as well as the identification of 
potential and novel functions. Moreover, this approach 
allows in enabling the analysis of microbial metabolic 
pathways, resistance genes, and other functional attributes 
that play critical roles in health and disease. Therefore, we 
aimed in our study to explore the functional potential of 
gut microbiota across diverse populations not only the mi-
crobial composition.  Additionally, the assembly of com-
plete genomes from metagenome data is feasible when an 
appropriate sequencing depth is employed. This approach 
allows for acquiring prototype genomes of uncultured or-
ganisms and insights into the "genomic diversity" of mi-

Type of diet Characteristics Microbial composition Microbial diversity

Western 
Regular intake of saturated fats, animal 
proteins, refined sugars, and processed 
foods.

↓ Bacteroidetes (Prevotella) [14,15]
↑ Firmicutes
↑ Pseudomonadota (Proteobacteria,
Enterobacteriaceae) [16]

↓ Decrease[17]

Vegetarian 

Plant-based food regular intake of fiber 
and starch (cereals, legumes, nuts). 
avoid  consumption of any form of 
seafood or meat

↑ Bacteroidetes (Prevotella,
Bacteroides thetaiotaomicron)
↑ Firmicutes
(Clostridium clostridioforme, 
Faecalibacterium prausnitzii)
↑ Pseudomonadota
(Klebsiella pneumoniae), [18]

↑ Increase [19]

Omnivorous Regular intake of a variety of foods, 
including fish or meat 

↓ Bacteroidetes (Prevotella)
↓ Firmicutes
(Clostridium clostridioforme, 
Faecalibacterium prausnitzii)
↓ Actinobacteria
(Bifidobacteria)
[20]

↓ Decrease [20]

Table 1. Effects of different dietary patterns on the composition of gut microbiota classified by phylandance.

Abbreviations: ↑, increase in bacterial relative abundance; ↓, decrease in bacterial relative abu
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tain paired-end 100-bp reads. All samples library prepa-
ration was performed following the BGISEQ-500 whole 
genome sequencing library preparation protocol Beijing 
Genomics Institute (BGI), (Shenzhen, China). 

2.4. Pre-processing of reads
The BGISEQ-500 sequencer generated paired-end 

reads for each sample, which went through the following 
preparation processes: The adapter filtering criteria ex-
cluded reads that had a sequence match of 25.0% or high-
er with the adapter sequence, with a tolerance of up to 3 
base mismatches. All readings that met these criteria were 
completely discarded. In addition, readings with lengths 
shorter than 150 bp were eliminated using a read length 
filter. Readings with a nitrogen (N) level of 0.1% or high-
er were also excluded using the nitrogen removal filter. 
Reads were quality-checked via FastQC v0.11.5 [32]. The 
reads were filtered from adaptors, trimmed, and cleaned 
using Trimmomatic v0.36 [33]. Finally, the quality values 
of the output reads were modified to Phred+64 to acquire 
purified readings for subsequent analysis. The completion 
of this step was carried out using SOAPnuke software, 
which was developed by BGI [34]. 

2.5. Diversities
In the present study, alpha diversity, which describes 

the richness and evenness of microbial species within a 
single sample, and beta diversity, which compares the dif-
ferences in microbial composition among different sam-
ples or groups, were generated and assessed by QIIME 2 
[35] , a very important bioinformatics platform designed 
for this purpose to analyse microbiomes. For within-com-
munity diversity, which refers to species richness in every 
sample, we estimated some metrics, such as the Shannon 
diversity index and observed operational taxonomic units 
(OTUs). These indices provide information on the micro-
bial diversity and evenness of a particular sample. For beta 
diversity, which quantifies differences in microbial com-
munity composition between samples, distance metrics 
such as the Bray-Curtis and Jaccard indices were used. 

2.6. Taxonomic profiling of reads 
The taxonomic classification of the shotgun metage-

nomics data involved the use of two different classi-
fier tools: alignment-based classification, used by Kaiju 
(https://narrative.kbase.us/#catalog/apps/kb_kaiju/run_
kaiju) [36] which is available through KBase [37]. Kaiju 
yields information about the archaeal and bacterial com-
position of each sample. The standard Krona [38] plots 
are supplemented by stacked bar plots with fractional clas-
sification in the KBase implementation of Kaiju. More-
over, Kaiju uses the Burrows-Wheeler transform (BWT) 
to align sequences directly with the NCBI non-redundant 
protein sequence database (nr).  The second classifier tool 
is the Kraken/kraken2 [39, 40] "k-mer based" taxonomic 
classification algorithm, which uses a reference database 
that includes approximately 40,000 bacterial, viral, fungal, 
and protozoan genomes. 

2.7. Metagenomic assembly
Metagenomic assembly was performed via KBase [37]. 

Each sample was quality-checked again using FastQC 
[32] and paired reads were merged into one object using 
the KBase app Merge Reads Libraries v1.0.1 (https://nar-

crobial ecosystems [30]. 
The current study aimed to study the structure of the 

bacterial gut microbiota in populations from two different 
geographical regions in Egypt through WGS sequencing 
at a depth of 10 GB data per sample, which may provide 
a comprehensive understanding of the factors influencing 
gut health in the region. 

2. Materials and methods
2.1. Sample collection and ethics statement

The study was approved and conducted in accordance 
with the guidelines defined by the ethics committee of the 
faculty of pharmacy at Suez Canal University (Project 
number 201809PHDH1). Informed consent was received 
to disclose the information gathered from the healthy par-
ticipants and to publish the study while maintaining the 
confidentiality of their identity.

The strict inclusion and exclusion criteria were done at 
the participant selection to reduce any potential confound-
ing variables and ensure consistency within the study. 
The study included participants who self-reported being 
healthy and had a local omnivorous dietary intake. The 
exclusion criteria included the use of antibiotics within the 
six months prior to the collection of samples, as well as 
any gastrointestinal chronic diseases. Fecal samples were 
obtained from six individuals (three samples from each re-
gion) who were in good health and aged between 43 and 
52 years. The samples were collected from two distinct 
districts in Egypt, Ismailia (30.5965° N, 32.2715° E) and 
Cairo (30.0444° N, 31.2357° E). Specimens were obtained 
from Ismailia on September 25, 2021, and from Cairo on 
October 3, 2021. Study participants were directed to pro-
vide fecal samples in a sterile container within 20 minutes 
after defecation. The fecal samples were immediately pre-
served on dry ice after being collected from the individu-
als, then transported to the microbiology and molecular 
biology laboratory at MSA University and placed in a 
freezer set at -80 °C until the DNA extraction process. The 
metadata and informed consent of participants are present-
ed in Table S1 (Supplementary information)

2.2. Microbial metagenomic DNA extraction
Microbial metagenomic DNA was extracted from fecal 

samples using HiPurA® Stool DNA Purification Kit (Hi-
Media®, India). A sterilized spatula was used to scrape 250 
mg of each frozen fecal sample to prevent freeze-thaw cy-
cles and microbial contamination. After the samples were 
weighed, lysis buffer was added, and the samples were 
centrifuged using a Sigma 3-16KL refrigerated benchtop 
centrifuge at a speed of 8000 xg for 3 minutes at room 
temperature. The remaining steps of the protocol were car-
ried out as described according to the manufacturer's man-
ual. The quality of the DNA was evaluated through visual 
inspection of the DNA on a 1% agarose gel electrophoresis 
[31], whereas the quantification of the DNA was carried 
out using a Jenway 7415 Nano Scanning Micro-Volume 
Spectrophotometer (Jenway, United Kingdom). 

2.3. Metagenomic sequencing
Metagenomic sequencing of all the samples was per-

formed on the BGISEQ-500 DNBseq platform. High-den-
sity DNA Nanochip technology was used to load DNBs 
into the patterned nanoarray.  Finally, the combinatorial 
Probe-Anchor Synthesis (cPAS) platform was used to ob-
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rative.kbase.us/#catalog/apps/kb_ReadsUtilities/KButil_
Merge_MultipleReadsLibs_to_OneLibrary)   [37]. Bins 
from each sample were recovered through coassembly using 
MetaSPAdes v3.15.3 (https://narrative.kbase.us/#catalog/
apps/kb_SPAdes/run_metaSPAdes) [41], MEGAHIT 
v1.2.9 (https://narrative.kbase.us/#catalog/apps/MEGA-
HIT/run_megahit)  [42], and IDBA-UD v1.1.3 (https://
narrative.kbase.us/#catalog/apps/kb_IDBA/run_idba_ud) 
[43]. "The Compare Assembled Contig Distributions tool 
v1.1.2 (https://narrative.kbase.us/#catalog/apps/kb_as-
sembly_compare/run_contig_distribution_compare) [37] 
was used to compare the quality assembly on the basis of 
the contig lengths and size distributions after coassembly. 
Longer contigs provide more genomic information mak-
ing them more reliable for further analysis. 

2.8. Metagenomic binning
Contigs were binned and coassembled with MaxBin2 

v2.2.4 (https://narrative.kbase.us/#catalog/apps/kb_max-
bin/run_maxbin2) [44], MetaBAT2 v1.7 (https://narra-
tive.kbase.us/#catalog/apps/metabat/run_metabat)  [45], 
and CONCOCT v1.1 (https://narrative.kbase.us/#catalog/
apps/kb_concoct/run_kb_concoct)  [46]. MaxBin2 uses 
107 bacterial marker genes with a minimum of 1000-base-
pair contigs and a probability threshold of 0.8. Implemen-
tation of the Markov Clustering Algorithm by MetaBAT2 
clusters contigs into bins based on their sequence and 
abundance similarities, thereby appropriately binning them 
into different genomes. CONCOCT uses Bowtie2 for read 
mapping and a 2500-base-pair contig length threshold. Af-
ter initial binning, the resulting bins were optimized us-
ing DAS Tool v1.1.2. (https://narrative.kbase.us/#catalog/
apps/kb_das_tool/run_kb_das_tool) [37] app. DAS Tool 
bins were quality-checked and refined (parameters: refer-
ence tree, full tree; completeness, ≥90 %; contamination, 
≤5 %) using CheckM v1.0.18 app (https://kbase.us/applist/
apps/kb_Msuite/run_checkM_lineage_wf)   [47].  Con-
sensus-based bin consolidation across samples improves 
binning by reducing false positives and optimizing bin 
completeness. These bins were then extracted as assem-
blies using the KBase app Extract Bins as Assemblies from 
BinnedContigs v1.0.2 (https://narrative.kbase.us/#catalog/
apps/MetagenomeUtils/extract_bins_as_assemblies)[37].

2.9. Genome annotation and functional profiling
Several bioinformatics tools for the annotation of mi-

crobial genomes and their functional profiles are available. 
First, we used RASTk v1.0.7.3 (https://narrative.kbase.
us/#catalog/apps/RAST_SDK/annotate_genome_assem-
bly) [48] to precisely annotate the genome by identifying 
genes and predicting activities against known subsystems. 
This was followed by one of the very robust functional 
profiling approaches Distilled and Refined Annotation of 
Metabolism (DRAM) (https://narrative.kbase.us/#catalog/
apps/kb_DRAM/run_kb_dram_annotate) [49] to inves-
tigate the metabolic potential and functional diversity of 
these genomes. Several databases are used by DRAM to 
annotate metagenomic assembled genomes (MAGs) and 
subsequently condense the findings to aid in the exami-
nation of their functional and structural characteristics. 
Moreover, it employs functional marker genes to deduce 
metabolic descriptors of MAGs. This study utilized inte-
grated data management and computing facilities provided 
by KBase [37] to accelerate data handling and analysis.

2.10. Data availability
The raw reads from the metagenome sequencing data 

have been submitted to the NCBI SRA database under 
accession number PRJNA982264, accession numbers 
SRR24888589 to SRR24888594. [https://www.ncbi.nlm.
nih.gov/bioproject/PRJNA982264]

2.11. Statistical analysis
All statistical analysis was done using the appropriate 

tools for metagenomic data processing and analysis of di-
versity indices. In the case of alpha diversity, Shannon, 
inverse Simpson, and observed OTUs were calculated to 
assess the richness and evenness of species in the sam-
ples. For beta diversity, Bray-Curtis and Jaccard indices 
were used to compare the microbial composition between 
samples. Beta diversity patterns were visualized by means 
of Principal Coordinate Analysis. Statistical significance 
considerations were made at a p-value threshold of <0.05. 
However, the comparisons of alpha and beta diversities 
did not show statistical significance among all samples, 
because all p-values were above this threshold. Data pro-

Fig. 1. Three box plots stacked vertically. Each plot compares the 
alpha diversity indices:  (a) Observed OTUs, (b) InvSimpson, and (c) 
Shannon between Cairo and Ismailia samples, with their respective 
p-values (P ≤ 0.05).
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cessing was done in QIIME 2 and visualized with associ-
ated bioinformatics to ensure robustness in analysis.

3. Results
3.1. Diversities

The results of the alpha matrices for the microbial di-
versity between the Cairo and Ismailia samples are pre-
sented using three diversity indices: Observed OTUs, the 
inverse Simpson Index, and the Shannon Index (Figure 1, 
Table 2). The observed OTUs had a p-value of 0.366 for 
the species richness metric. The inverse Simpson index, 
which considers species richness and evenness (how the 
sample is evenly distributed), had a p-value of 0.649. Fi-
nally, the Shannon index, which also considers richness 
and evenness with weight on the richness, yielded a p-
value of 0.481. Sample D4 presented the highest diversity, 
with the Shannon index equal to 4.31 and the InvSimpson 
index at 27.66. It may indicate a very diverse and even 
microbial community. Contrariwise, the lowest diversity 
has sample D1: Shannon index at 1.45, InvSimpson in-
dex-1.69, which corresponds to the low diversification of 
the microbial community. For beta diversity, axis 1 in the 
Principal Coordinate Analysis (PCoA) diagram (Figure 
2a) of gut microbiome samples accounts for 31.53% of the 
variation in the data, making it the most significant dimen-
sion for differentiating across the samples based on their 
microbial compositions. Axis 2 accounts for 24.52% of the 
variation, whereas Axis 3 explains 17.51%. The three axes 
account for approximately 73.56% of the total variation, 
providing a substantial summary of the differences in gut 
microbiome composition between samples. Although the 
clustering observed indicated notable differences in micro-
bial community structure between Cairo and Ismailia, this 
difference was not significant at the p-value level of 0.05. 
Such patterns may yet reflect possible microbial commu-
nity changes due to the different lifestyles in urban and 
rural areas and/or food intakes.  Cairo (A) samples are 
represented by red dots, whereas Ismailia (D) samples are 
represented by blue dots. Distinct clustering indicates no-
table differences in their microbial communities. 

Heatmap analysis (Figure 2b) revealed different micro-
bial profiles between samples from Cairo and Ismailia in 
the similarity of the microbial profiles places the samples 
in clusters. The color gradient reflects the abundance of 
a given species. Red and orange shading indicate a rela-
tively high abundance, whereas blue and light shading in-
dicate low abundance. The dendrogram at the top shows 
the hierarchical clustering of samples, whereas that on the 
left shows the clustering of microbial species with respect 
to their co-occurrence patterns. Some microbial species, 
such as Segatella hominis and Bacteroides thetaiotaomi-
cron, were highly abundant in the Cairo samples; others, 

such as Faecalibacterium prausnitzii and Akkermansia 
muciniphila, were highly abundant in the Ismailia. 

3.2. Taxonomic profiling (phylum level)
The bar plot (Figure 3a, b) revealed that both samples, 

from Cairo and Ismailia, almost had similar microbial 
compositions, with minor differences in the relative abun-
dances of specific phyla. In both cases, Bacteroidota and 
Firmicutes (Bacillota) are the most dominant phyla that 
constitute almost the vast majority of the microbial com-

Fig. 2. (a) Principal coordinate analysis (PCoA) plot with Bray-Cur-
tis dissimilarity. Plots illustrating distances between communities in 
all individual samples (n=6) using the Bray-Curtis distance matrix. 
The plot shows how different samples cluster based on their microbial 
community composition. Samples A (Cairo): represented by red dots 
whereas Samples D (Ismailia): represented by blue dots.. (b) Heat-
map depicting the relative abundance of the top 50 microbial spe-
cies across six samples from Cairo (A3, A5, A7) and Ismailia (D1, 
D4, D9). The similarity in microbial profiles places the samples in 
clusters. The color gradient reflects the abundance of a given species. 
Red and orange shading indicate a relatively high relative abundance, 
whereas blue and light shading indicate the opposite. The dendrogram 
at the top shows the hierarchical clustering of samples, whereas that 
on the left shows the clustering of microbial species with respect to 
their co-occurrence patterns.

Sample-ID Observed taxonomic units (OTUs) Shannon InvSimpson
A3 8792 3.444615 7.467138
A5 9312 3.639237 8.463820
A7 8927 3.077853 4.359834
D1 7740 1.450012 1.694001
D4 9288 4.309622 27.658565
D9 8557 2.410568 3.429882

Table 2. Alpha Diversity Metrics of the gut microbiome samples showing observed values, 
Shannon index, and inverse Simpson index of different sample IDs.

a

b
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munity. While Bacteroidota was more abundant in the Is-
mailia samples (~60–65%), the relative abundance of Bac-
illota was greater in the Cairo samples (~35–40%). Other 
phyla, such as Pseudomonadota, Verrucomicrobiota, and 
Actinomycetota, presented relatively low abundance at 
both locations, with the first demonstrating a slightly rela-
tively high relative abundance in the Ismailia samples.

3.3. Assembly
The assemblies with the best values in terms of N50 in 

this regard were chosen for binning and further analysis 
(Table 3), which corresponded to metaSPAdes [41] in both 
the Ismailia and Cairo samples with N50 values of: 12,768 
and 12,536, respectively. The quality of the assemblies 
was assessed by N50, which is a median contig length that 
covers 50% of the total base content in the assembly. The 
better this value is, the stronger an assembly is for doing 
subsequent analyses, including the correct binning.The 
metagenomic binning of samples from Cairo and Ismailia 
was subsequentially conducted by MaxBin2 [44], MetaB-
AT2 [45], and CONCOCT [46].

3.4. Binning
Each of these tools generated different results. Max-

Bin2 generated 206 bins from the input 85,538 contigs 
of the Cairo samples; it could bin approximately 79.3% 
of them with a total binned contig length of 515,308,190 
bp, accounting for 85.0%. MetaBAT2 generated 309 bins 
and CONCOCT generated 237 bins for the same set of 
samples. Binning analysis yielded a varying number of 
bins, depending on the tool. MaxBin2 yielded the high-
est number of bins, likely due to the fact that it relies on 
marker gene-based approaches. The two clustering al-
gorithms focusing on sequence composition and contig 
connectivity MetaBAT2 and CONCOCT predicted fewer 
bins. The results of binning were then optimized via DAS 
Tool v1.1.2. Improved bin accuracy by integrating outputs 
from multiple binning tools and producing a more opti-
mized and non-redundant set of bins, optimizing their ac-
curacy through a dereplication, aggregation, and scoring 
strategy that ensures greater reliability for downstream 
analysis [37], maximizing the outputs from all three tools 
and compressing the 20,654 binned contigs to 115 high-
quality bins, which significantly improved the accuracy 

Fig. 3. (a) Bar plot comparing the   relative abundance of bacterial 
phyla in samples from Cairo and Ismailia. The five most abundant 
phyla that can be observed in the plot are Actinomycetota, Bacillota 
(Firmicutes), Bacteroidota, Pseudomonadota, and Verrucomicrobiota. 
The bars represent the microbial composition of each sample; the dif-
ferent colored sections within each bar reflect the relative abundances 
of the different phyla. (b) Kaiju data (phylum level) stacked-bar plot 
of the classification of reads at the phylum level across different 
samples. Each bar represents a sample, and the colors within the bar 
represent different bacterial phyla. These phyla include Bacteroidetes, 
Firmicutes, Proteobacteria, Verrucomicrobia, Actinobacteria, Euryar-
chaeota, Spirochaetes, some that remain unassigned at the phylum 
level, viruses, and a long tail of phyla with less than 0.5% each. The 
top subplot shows the fraction of classified reads, whereas the bottom 
subplot shows their percentage distribution across the different phyla.

Fig. 4. (a) Functional Gene Distribution using DRAM in gut micro-
biome samples from Cairo. Heatmap representing the functional gene 
distribution of gut microbiome isolates from Cairo. A broader distri-
bution of nitrogen metabolism genes indicates prominent nitrogen 
cycling and may be attributed to a diet rich in proteins. (b) Func-
tional Gene Distribution in gut microbiome samples from Ismailia. 
This heatmap highlights the presence and completeness of different 
functional genes in gut microbiome samples from Ismailia. Notably, 
many genes related to methanogenesis and methanotrophy were 
observed, which highlights the existence of extensive methane-rela-
ted processes. In addition to genes implicated in SCFA and alcohol 
conversions, strong representation has been observed, revealing the 
main metabolic activities in the gut ecosystem of this population. Like 
those of Cairo, genes for SCFA and alcohol conversions are well-re-
presented, reflecting their important roles in gut metabolic processes. 
These differences in gene distribution reflect dietary and other unique 
environmental influences on the gut microbiomes of Ismailia resi-
dents.

a

b

a

b
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and reliability of the metagenomic analysis. For the Is-
mailia samples, MaxBin2 produced 153 bins from 56,612 
input contigs, binning 78.4% of them (total length of 
354,042,378 bp, 83.4%). This corresponds to 218 bins for 
MetaBAT2, whereas CONCOCT delivers 184 bins. The 
DAS Tool v1.1.2 refinement yielded 14,446 binned con-
tigs, condensing into 50 high-quality bins and improving 
the accuracy and reliability of the binning process further, 
enabling better characterization of microbial communities 
in both regions.

3.5. Annotation and metabolism
Following Rastk annotation, functional profiling was 

carried out using DRAM and GTDB. The analysis revealed 
4310 genes common to both Cairo and Ismailia, indicating 
a significantly high degree of overlap in the microbial gene 
pool. Cairo had 775 unique genes, whereas Ismailia had 
384 unique genes. This overlap in genes and Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathways from 
both cities indicates a core of the microbial community 
and the functional potential of participants from both cit-
ies. Some of the shared functions include basic metabolic 
and biosynthetic processes: central carbon metabolism, 
amino acid biosynthesis, and lipid metabolism. Common 
bins underline fundamental metabolic functions conserved 
across populations and required for microbial survival and 
growth in both populations (Figures 4a, b). The table be-
low summarizes selected common and unique bins be-
tween regions (Table 3). It is important to highlight that 
KEGG pathway analysis also identified unique pathways 
in Cairo associated with antibiotic resistance and pathoge-
nicity, which may reflect the increased urban environmen-
tal exposure to antibiotics.

With 115 extracted genomes from the Cairo samples 
and 50 genomes from the Ismailia samples, 165 genomes 
were classified into the taxonomic class at the minimum 

Bin ID Region Annotation Role Metabolism Role
Common Bins

Bin.001.fasta_assembly Common Fundamental cellular processes (replication, 
transcription, translation)

Central metabolic pathways (glycolysis, 
TCA cycle)

Bin.029.fasta_assembly Common Stress response, DNA repair mechanisms, 
amino acid metabolism, nutrient uptake Nutrient acquisition and stress response 

Bin.075.fasta_assembly Common Lipid metabolism (beta-oxidation, 
phospholipid synthesis) Lipid biosynthesis and degradation

Bin.018.fasta_assembly Common Oxidative stress response (superoxide 
dismutase, catalase) Detoxifying reactive oxygen species

Bin.002.fasta_assembly Common Sulfur metabolism (sulfate transporters, 
reductases)

Assimilatory sulfate reduction and sulfur 
amino acid biosynthesis

Bin.025.fasta_assembly Common Motility and chemotaxis pathways (flagellar 
assembly, motor proteins) Motility and environmental response 

Unique Bins Cairo

Bin.079.fasta_assembly Cairo Secondary metabolite production 
(antibiotics, pigments)

Secondary metabolite biosynthesis 
(antibiotic and pigment production)

Bin.113.fasta_assembly Cairo Heavy metal resistance (mercury reductase, 
cadmium efflux pumps) Heavy metal detoxification

Bin.043.fasta_assembly Cairo Xenobiotic degradation (aromatic ring-
hydroxylating dioxygenases)

Degradation of complex organic 
pollutants

Bin.027.fasta_assembly Cairo Antibiotic resistance (beta-lactamases, 
efflux pumps) degrading and neutralizing antibiotics 

Bin.045.fasta_assembly Cairo Pathogenicity (toxins, secretion systems) Virulence factors and pathogenic 
interactions

Bin.031.fasta_assembly Cairo Aromatic compound degradation 
(dioxygenases, monooxygenases)

Degradation of polycyclic aromatic 
hydrocarbons (PAHs)

Unique Bins Ismailia

Bin.084.fasta_assembly Ismailia Carbohydrate metabolism (CAZymes, plant 
polysaccharide degradation) Degrading complex carbohydrates

Bin.077.fasta_assembly Ismailia Nitrogen fixation (nitrogenase, ammonia 
production)

Converting atmospheric nitrogen to 
ammonia 

Bin.003.fasta_assembly Ismailia Phosphate metabolism (solubilization, 
transport) Phosphorus acquisition and utilization

Bin.059.fasta_assembly Ismailia Lignin degradation (laccases, peroxidases) Breaking down lignin

Bin.072.fasta_assembly Ismailia Sulfur oxidation (sulfide:quinone 
oxidoreductase, adenylylsulfate reductase) Sulfur metabolism pathways

Bin.091.fasta_assembly Ismailia Vitamin B12 biosynthesis (cobalamin 
production) Cobalamin (vitamin B12) production

Table 3. Selected common and unique bins between regions.
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level using Classify Microbes with GTDB-Tk - v2.3.2 
[37]. At the lower taxonomic ranks, the numbers of ge-
nomes classified at the order, family, genus, and species 
levels were 153, 134, 130, and 108 respectively. Accord-
ing to the ANI analysis, all the genomes had no less than 
95% average nucleotide identity (ANI) with the reference 
genomes of the GTDB (Figure 5a, b).

4. Discussion
Studies of alpha and beta diversities in the gut micro-

biome enable understanding of the complexity and health 
of microbial communities from a part of the gastrointes-
tinal tract. Alpha diversity measures the species richness 
within the sample and indicates the diversity and evenness 
balance of microbes. All three indices used in the com-
parison of alpha diversity in the study showed no statisti-
cally significant differences in microbial diversity between 
metagenomic samples originating from Cairo and those 
from Ismailia.  Regarding OTUs, there is no indication 
that the species richness differs between the Cairo and 
Ismailia samples with a p-value of 0.366. Thus, in other 
words, it means that the incidence of various microbial 
species between the two locations is almost the same. The 
inverse Simpson index, which weights species richness 
and evenness equally, also showed no significant differ-
ence between the two locations with a p-value of 0.649. 
This, therefore, means that the overall diversity, includ-
ing the dominant structure of the communities, is likely to 
be very similar between Cairo and Ismailia. Similarly, the 
Shannon index, which considers richness and evenness, 
does not differ significantly between Cairo and Ismailia, 

with a p-value of 0.481 which is above the threshold of p 
< 0.05 However, it should be taken into consideration that 
the nonsignificant differences obtained might be linked to 
the small sample size, which reduces the statistical power 
of the study. This may limit the detection of small yet bio-
logically important differences in microbial diversity be-
tween the two locations.

The PCoA plot indicates that, although species richness 
and diversity (alpha diversity) may be similar between the 
two regions, there are differences in the types of species 
present that make up these communities. Although alpha 
diversity seems relatively constant across most environ-
ments, it is often beta diversity that captures the ecological 
processes underpinning community assembly in reaction 
to local conditions [50]. The nonsignificant differences in 
alpha diversity suggest that the microbial communities in 
Cairo and Ismailia exhibit similar levels of species rich-
ness and diversity. Nevertheless, the PCoA map clearly 
illustrates considerable differences in species composi-
tions between these locations, which may be accurately 
measured using beta diversity. This implies that although 
the overall diversity is similar, the specific taxa and their 
relative abundances differ between the two regions, most 
likely due to environmental or ecological factors.

High microbial diversity in the gut is regarded as a 
critical marker of health; hence, higher values are usually 
related to better resistance to diseases and good metabolic 
health [51]. Additionally, geographic location is known to 
affect microbial diversity, and individuals from different 
regions mostly present comparatively different microbial 
profiles [52]. However, the results of this study did not 
yield large differences between Cairo and Ismailia, sug-
gesting that the environmental and dietary influences may 
be more similar between the groups under study, resulting 
in more similar microbial diversity. Both the Shannon and 
inverse Simpson indices are relevant for health since they 
indicate the number of species present and how even the 
population is among those species. These findings imply 
that, compared with cohorts from different geographical 
regions in this study, individuals from both cohorts are 
relatively similar concerning gut microbial diversity. This 
might indicate a shared dietary pattern, close geographi-
cal location, way of life, or other common environmental 
factors between Cairo and Ismailia, predisposing them to 
a stable and comparable microbiome. These results agree 
with some global studies where geographic location alone 
does not always translate into large differences in microbi-
al diversity, especially in close regions with similar socio-
economic statuses and diets [53].

It should, however, be noted that sample size and the 
choice of indices may influence the ability to detect signif-
icant differences. Samples of a larger size, with more ad-
ditional indices measured in more extensive studies, may 
capture subtle differences that were perhaps not detected 
within this analysis.

On the other hand, beta diversity compares differences 
in microbial composition between various samples or pop-
ulations, thereby helping to explain the variation pattern 
influenced by environmental factors, diet, or diseased con-
ditions in the microbiome. The observed microbial com-
positions suggest that although the overall microbial com-
munities in Cairo and Ismailia are similarly structured, 
there is a slight variation in the relative abundance of some 
phyla. The predominance of the phyla:  Bacteroidota and 

Fig. 5. (a) Krona circular view data of taxonomic genomic annotation 
for Cairo Ismailia samples (b) Krona circular view data of taxonomic 
genomic annotation for Ismailia samples.

a

b
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Bacillota (Firmicutes) from both locations is typical of gut 
microbiota compositions, where they play very important 
roles in the digestion of complex carbohydrates and main-
tenance of gut health. The slight enrichment of Bacteroid-
ota in the Ismailia samples indicates that it is enriched with 
more fiber and plant-based food components (character-
istic of rural lifestyles), which favor their growth [54]. In 
contrast, the greater abundance of Bacillota in Cairo may 
be related to a diet containing more proteins and fats, since 
members of this phylum are known to grow well in such 
environments [55].

The lower abundances of the Actinomycetota, Pseudo-
monadota, and Verrucomicrobiota phyla are in accordance 
with the results of several studies on the gastrointestinal 
microbiome [56]. Actinomycetota, Pseudomonadota, and 
Verrucomicrobiota are not as prevalent as Bacteroidota 
and Bacillota however, their presence remains crucial for 
the overall health of the colon. In particular, Verrucomi-
crobiota, mainly Akkermansia muciniphila, has recently 
been increasingly recognized for its beneficial effects on 
gut integrity and metabolic health [11]. 

At the species level, in the case of Cairo, there was a 
high abundance of Bacteroides thetaiotaomicron, which is 
among the most highly abundant bacterial gut symbionts 
and is implicated in the degradation of complex polysac-
charides and the maturation of the host immune system 
[57]. This could mean that the increased abundance of this 
bacterium in the samples from Cairo is related to a diet 
rich in complex carbohydrates, which this bacterium uses 
as a primary energy source. In urban diets, which often 
include a variety of plant-based foods as well as processed 
foods fortified with fibers, Bacteroides thetaiotaomicron 
thrives because of its ability to break down these complex 
carbohydrates [58]. The relatively high levels of this spe-
cies in the Cairo samples might also indicate a gut envi-
ronment that favors efficient energy extraction from food, 
a common trait in populations with access to diverse diets. 
Another most abundant species in Cairo is Megasphaera 
elsdenii. M. elsdenii is rarely present in the human intes-
tinal microbiota [59]. These bacteria produce butyrate, 
one of the key short-chain fatty acids important for colon 
health [60]. It may have a greater incidence in Cairo due 
to diets that contain greater amounts of fermentable fiber 
or specific carbohydrates, which favor the proliferation of 
SCFA-producing bacteria. This might indicate dietary in-
fluences that favor the fermentation of fiber and, therefore, 
may signal some form of balanced fiber intake even within 
an urban diet.

On the other hand, Faecalibacterium prausnitzii was 
more abundant in the Ismailia samples. This bacterium 
is one of the largest producers of butyrate, an SCFA [61] 
with anti-inflammatory activity through the production of 
anti-inflammatory molecules [62] such as shikimic and 
salicylic acids [63] and a role in maintaining gut health 
[64]. This result may indicate that people living in Ismailia 
have a relatively high intake of dietary fiber [65], especial-
ly from fruits, vegetables, and whole grains, which are re-
lated to the proliferation of butyrate producers. The abun-
dance of this microorganism is a signature of a healthy 
gut microbiome and has been implicated in protective ef-
fects against inflammatory Crohn's disease and ulcerative 
colitis [66]. Another species that was more abundant in 
the Ismailia samples was Akkermansia muciniphila. This 
bacterium has already been reported to play a role in de-

grading mucin, a glycoprotein that forms a protective layer 
in the gut [67]. The presence of Akkermansia muciniphila 
is related to a leaner body phenotype and might have a 
role in improving metabolic health [68], thus protecting 
against metabolic disorders such as obesity and type 2 dia-
betes [69]. The relatively high levels of this bacterium in 
Ismailia may suggest that this population has a diet that 
is favorable for gut health, and rich in polyphenols and 
fibers, which already has the ability to favor the growth 
of Akkermansia [70]. This species takes part in the main-
tenance of gut barrier integrity, which plays a crucial role 
in protection from inflammation, and hence in gut health. 
The high abundance of some beneficial species, such as 
Faecalibacterium prausnitzii and Akkermansia muciniph-
ila, in Ismailia, may indicate that dietary habits and life-
styles may be more conducive to maintaining a healthy 
gut microbiome. This finding could be indicative of a diet 
richer in whole foods, fibers, and probably less processed 
foods compared with those from Cairo. This may indicate, 
on the other hand, that at a higher level, Bacteroides the-
taiotaomicron could be an indication of a diet that is varied 
but perhaps replete with more processed foods typical of 
urban settings such as Cairo.

By contrast, the lower abundance of such beneficial 
bacteria as Faecalibacterium prausnitzii and Akkermansia 
muciniphila in Cairo samples, together with a high abun-
dance of Bacteroides thetaiotaomicron, indicates a gut 
microbiota shaped by the protein- and fat-rich urban diet. 
Such a microbial profile would indeed imply a higher risk 
of metabolic and inflammatory disorders, including obe-
sity, type 2 diabetes, and gut inflammation in urban popu-
lations of Cairo.

These findings strongly underscore the profound im-
pact of dietary and lifestyle differences between regions 
on gut microbiota composition. These data indicate the 
urgent need for targeted dietary interventions in urban set-
tings, promoting enhanced fiber and polyphenol intake to 
increase the beneficial bacteria of the gut and help reduce 
health risks associated with urban diets. Such interven-
tions have the potential to transform public health by way 
of reducing diet-related burdens of chronic diseases in 
such populations.

Coassembly in metagenomics combines the sequenc-
ing reads of various samples into one composite assembly. 
It increases the length of contigs, thus increasing cover-
age to detect low-abundance species. This approach can 
improve the quality of the assembly by making full use 
of combined sequencing depth, thus identifying microbial 
genomes and genes shared across samples [71]. Hence, 
samples were coassembled according to their geographical 
location. Following Rast-k annotation, functional profiling 
was carried out using DRAM (figure 3a, b). Comparative 
analysis revealed differences in functional gene structure, 
probably driven by regional dietary habits and local envi-
ronmental factors.

Increasing the representation of methanogenesis and 
methanotrophy-related genes in Ismailia marks methane-
related processes within its gut microbiome. This influ-
ences methanogenic or methane-producing archaea, which 
can be found in a wide range of habitats, including the 
gastrointestinal tracts (GIT) of animals and humans [72]. 
These genes are so widespread to indicate that methane 
production and consumption are two relevant processes 
in the gut microbial ecosystem of this population. Such 
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functional divergence underlines the role of local ecologi-
cal and dietary factors on gut microbiota. Enrichment in 
methane-related genes in Ismailia participants might indi-
cate a diet rich in plant-based and high-fiber foods, which 
support methanogenic processes. In contrast, while the gut 
microbiomes from Cairo have a wider distribution of ni-
trogen metabolism genes, this would point to a more rel-
evant role of nitrogen cycling in these microbial commu-
nities. This may be driven by dietary practices, including 
increased intake of proteins that increase demands for ni-
trogen transformation processes such as ammonification, 
nitrification, and denitrification [73]. 

In both Ismailia and Cairo, there are many genes in-
volved in short-chain fatty acid conversions and alcohol 
conversions, highlighting the importance of these meta-
bolic pathways in diverse gut environments. These path-
ways are important in the digestion and absorption of di-
etary fibers and other complex carbohydrates, resulting in 
SCFAs that play important roles in gut health [61,62].

Such differences in gut microbiota composition be-
tween Cairo and Ismailia could be related to several en-
vironmental factors. Inhabitants of Ismailia would more 
often eat plant-based and high-fiber diets because of fresh 
agricultural production, which corresponds with the high-
er abundances of butyrate-producing bacteria Faecalibac-
terium prausnitzii and Akkermansia muciniphila. Whereas 
in Cairo, probably the urban population has bigger access 
to processed and protein-rich food-mix, reflected in bacte-
rial abundances like Bacteroides thetaiotaomicron. 

This microbial profile suggests potential implications 
for metabolic health in Cairo’s population. Diets high in 
protein and fats, particularly those derived from processed 
foods, have been associated with an increased risk of 
metabolic conditions such as obesity, type 2 diabetes, and 
cardiovascular diseases. The higher abundance of bacteria 
like Bacteroides thetaiotaomicron may indicate an adapta-
tion to these dietary patterns but may also be linked to an 
altered gut environment with pro-inflammatory abilities. 
Together with the lower prevalence of butyrate-producing 
bacteria, such as Faecalibacterium prausnitzii may indi-
cate a reduced anti-inflammatory capacity in this popula-
tion.

Differences in lifestyle are another important factor. 
For Cairo urban living, the stress associated with it, a trend 
of eating irregularly, and less physical activity could nega-
tively influence the diversity of gut microbiota. Further, 
exposure to industrial pollutants and higher rates of antibi-
otic misuse in urban settings could add to these microbial 
differences.

On the other hand, genome taxonomic annotation with 
the GTDB [37] tree was obviously dominated by bacterial 
genomes from three phyla: Firmicutes, (101); Bacteroide-
tes, (36), which accounted for nearly 80% of all MAGs. 
With fractional classification according to standard Krona 
[38] plots (Fig. 5a, b), most of the genomes within the 
Firmicutes cluster were further classified into two larg-
est clades, namely Clostridia (80), and Bacilli (21).  Fir-
micutes were dominated by four clostridial populations at 
the family level, including Lachnospiraceae (30), Oscillo-
spiraceae (26), CAG 508 (7), Acutalibacteraceae (5), and 
Anaerovoracaceae (3). In the same order, in Bacteroidales, 
the most abundant family was Bacteroidaceae (26).
5. Conclusion

This study provides a comprehensive analysis of the gut 

microbiome in two distinct geographic regions of Egypt, 
using advanced metagenomic sequencing techniques. The 
findings reveal that although microbial diversity is gener-
ally similar between the two regions, notable differences 
can be observed in the relative abundance of particular 
microbial species and functional genes. Regional dietary 
habits and environmental factors might influence these 
variations. Ismailia showed a higher prevalence of butyr-
ate-producing bacteria, such as Faecalibacterium praus-
nitzii and Akkermansia muciniphila, which is associated 
with gut health and metabolic benefits. On the other hand, 
in Cairo, there were higher levels of bacteria related to 
protein and fat digestion, a fingerprint of the urban dietary 
pattern. Functional gene analysis also showed these dif-
ferences related to methane and nitrogen metabolism be-
tween these two regions. However, this study had a limited 
sample size, and thus these results could not provide the 
general basis; therefore, larger studies on these observa-
tions are further required. However, the findings from this 
study will set a base for future studies in which hypotheses 
on dietary and environmental factors affecting the abun-
dance of Faecalibacterium prausnitzii and Akkermansia 
muciniphila including their functions, are tested. Further-
more, urban dietary habits will be analyzed regarding the 
presence of protein- and fat-metabolizing bacteria, such 
as Bacteroides thetaiotaomicron, in order to better under-
stand their potential relationship with metabolic and in-
flammatory diseases. These trials will be targeting larger, 
more diverse populations in order to give a clearer under-
standing of the health consequences of regional variations 
in gut microbiota.
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