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1. Introduction 
The discovery of penicillin, derived from the fungus 

Penicillium, marked the beginning of significant research 
on its metabolites. Fungi produce a wide variety of secon-
dary metabolites, although only a small proportion has 
been fully identified and studied [1]. These metabolites 
include mycotoxins, which can be harmful to plants, ani-
mals, and humans [2], as well as beneficial compounds 
that contribute to sustainable agricultural practices [3]. Al-
though primary metabolites are essential for an organism's 
growth and basic functions, secondary metabolites play 
diverse roles, sparking considerable scientific interest. 
Some, such as antibiotics, have positive impacts on hu-
man health, whereas others, such as mycotoxins, can pose 
significant risks. By 2014, approximately 22,500 bioac-
tive metabolites had been identified, with fungi accoun-
ting for 40% of these compounds. Fungi utilize secondary 
metabolites as part of their defence mechanisms [4]. These 
metabolites, which vary greatly in structure and function, 
are synthesized through specialized biosynthetic pathways 
that are often organized into gene clusters. Primary cate-

gories of secondary metabolites include terpenoids, poly-
ketides, non-ribosomal peptides, and hybrid compounds 
[1]. Although not directly involved in growth, these meta-
bolites play essential biological roles that aid the survival 
of the organism [5]. Terpenoids, which are synthesized via 
the mevalonate and deoxyxylulose phosphate pathways, 
are volatile compounds with significant biological activi-
ties. Examples include carotenoids, sesquiterpenoids such 
as trichothecenes, and diterpenoids such as gibberellins. 
Notable terpenoids include deoxynivalenol, a mycotoxin 
produced by Fusarium, and helvolic acid, an antibiotic 
derived from Aspergillus spp. [1]. Fungal species, such 
as Candida albicans, secrete metabolites with antibio-
film properties, such as farnesol [6]. Polyketides are ano-
ther important group of fungal metabolites that include 
mycotoxins, such as aflatoxins, produced by Aspergillus 
flavus and Aspergillus parasiticus [4]. Other harmful po-
lyketide mycotoxins such as zearalenone and fumonisin 
are produced by Fusarium spp. [7]. Polyketides such as 
lovastatin, a cholesterol-lowering drug, are produced by 
Monascus ruber and Aspergillus terreus [8]. 
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This study aimed to provide an overview of the diverse 
and important secondary metabolites produced by fungi, 
with a focus on their biological activities and potential 
applications in pharmaceuticals, agriculture, and biotech-
nology. It includes various classes of fungal metabolites.

2. Anti-biofilm and bioactive compounds produced by 
fungi

Terreic acid, a compound produced by the fungus As-
pergillus terreus, inhibits biofilm formation in Escherichia 
coli. Similarly, myriocin, a polyketide with anti-biofilm 
properties, was initially isolated from Myriococcum albo-
myces and later from Mycelia sterilia and Isaria sinclai-
rii (Table 1) [9]. Polyketides, the largest and most diverse 
group of secondary metabolites, are synthesized through 
a series of enzymatic reactions starting with acetyl-CoA 
[1]. Among non-ribosomal peptides, penicillin G, pro-
duced by Penicillium fungi, is the most famous antibiotic. 
Its discovery by Alexander Fleming has prompted signi-
ficant research on fungal metabolites [4]. Although over 
2.5 million fungal species have been identified, only a 
small fraction has been studied in detail [10]. Additionally, 
cyclosporine A, an immunosuppressant, is derived from 
Tolypocladium fungi, whereas ergotamine, an alkaloid, 
originates from the Claviceps species. Another important 
category of fungal metabolites is mycotoxins, including 
enniatin B, which is produced by Fusarium spp. These 
low molecular weight compounds are synthesized through 
non-ribosomal pathways, which are distinct from ribo-
somal protein synthesis. The Norine non-ribosomal pep-
tide database currently contains 544 monomers, of which 
1,740 peptides have been synthesized [1]. A hybrid class 
of non-ribosomal peptides and polyketides includes the 
antibiotic equisetin, which is produced by Fusarium fungi, 
along with mycotoxins such as ochratoxin A (Penicillium, 
Aspergillus), fusarin C (Fusarium), and cyclopiazonic acid 
(Penicillium, Aspergillus) [1]. In addition to antibiotics and 
mycotoxins, fungal pigments play vital biological roles, 
including β-carotene from Blakeslea trispora, astaxanthin 
from Phaffia rhodozyma, and a variety of pigments from 
Monascus species, such as ankaflavin, monascin, rubro-
punctatin, and monascorubrin, as well as oosporein and 
tennelin from Beauveria bassiana [5].

3. Importance of volatile fungal metabolites in fungal 
communication and agricultural applications 

The volatile metabolites produced by fungi are essen-
tial for the communication between symbiotic partners, 
whether in mutualistic or antagonistic interactions [11]. 
For instance, non-pathogenic Fusarium species release 
volatile compounds that serve as biocontrol agents in 
agriculture. These Fusarium strains have been shown to 
inhibit the growth of Fusarium oxysporum sp. cubense 
tropical race 4 (FocTR4) [12]. Likewise, various Tricho-
derma species produce volatile metabolites that help ma-
nage plant diseases [13], and certain Trichoderma strains 
have been shown to suppress FocTR4 growth [14]. The 
volatile compounds not only facilitate microbial commu-
nication but also influence the behavior and physiology 
of other microbes, such as bacteria and fungi. They can 
also affect host plants, with Trichoderma species, such as 
isobutyl alcohol, isopentyl alcohol, 2-methyl-propanol, 
3-methylbutanal, 3-methyl-acetate, sesquiterpenes, diter-
penes, tetraterpenes, and pyranones, all of which enhance 
plant growth and stress tolerance [15]. In symbiotic (Fig. 
1) relationships between fungi and host plants under 
stress, chemical metabolites from both partners drive the 
interactions [16]. Endophytic fungi release a variety of vo-
latile compounds that facilitate symbiosis with host plants, 
act as growth promoters, and provide protection against 
pathogens [17]. For example, Sarocladium brachiariae, 
an endophytic fungus, releases volatile compounds such 

Compounds Producer Organisms Significance References
Terreic acid Aspergillus terreus Inhibits biofilm formation in Escherichia coli. [9]

Myriocin Myriococcum albomyces, Mycelia 
sterilia, Isaria sinclairii Polyketide with anti-biofilm properties. [9]

Polyketides Penicillium spp. Famous antibiotic; discovery by Alexander Fleming 
stimulated significant research on fungal metabolites. [4]

Mycotoxins Fusarium, Penicillium, Aspergillus
Includes enniatin B (Fusarium spp.), ochratoxin A 
(Penicillium, Aspergillus), fusarin C (Fusarium), and 
cyclopiazonic acid (Penicillium, Aspergillus).

[1]

Equisetin Fusarium spp. Hybrid non-ribosomal peptide/polyketide antibiotic. [1]

Fungal pigments Blakeslea trispora, Phaffia rhodozyma, 
Monascus spp., Beauveria bassiana

Includes β-carotene, astaxanthin, and pigments such as 
ankaflavin, monascin, rubropunctatin, monascorubrin, 
oosporein, and tennelin.

[5]

Non-ribosomal 
peptides Various fungi Synthesized through non-ribosomal pathways. Norine 

database contains 544 monomers and 1,740 peptides. [1]

Table 1. Fungal producers and their secondary metabolites with diverse biological activities and applications.

Fig. 1. The importance of volatile fungal metabolites in fungal com-
munication and agricultural applications [22].
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4.1. Terpenoids are metabolites derived 
Terpenoids are a broad class of metabolites derived 

from five-carbon precursors, specifically isopentenyl di-
phosphate (IPP) and dimethylallyl diphosphate (DMAPP). 
In fungi, their synthesis occurs via the mevalonate pathway 
with acetyl-CoA serving as the initial substrate. Terpenoid 
production involves a variety of enzymes including ter-
pene synthases, terpene cyclases, cytochrome P450 mo-
nooxygenases, NAD(P)+-dependent oxidoreductases, and 
flavin-dependent oxidoreductases. These enzymes help to 
modify the structure of terpenoids, resulting in the forma-
tion of bioactive compounds [29]. Terpenoids consist of 
isoprene units that can be either linear or cyclic and may 
be saturated or unsaturated. They are categorized based 
on the number of isoprene units, and range from hemi-
terpenoids (C5) to tetraterpenoids (C40). Fungi primarily 
produce sesquiterpenoids, diterpenoids, and triterpenoids 
[30]. While volatile terpenes are well documented, fungi 
also produce other bioactive terpenoids, such as aristo-
lochenes, carotenoids, gibberellins, indole-diterpenes, and 
trichothecenes [23]. Carotenoids, which are tetraterpenoid 
pigments, are synthesized by plants, fungi, and certain 
bacteria. These compounds are valuable in various indus-
tries including food, cosmetics, medicine, and agriculture 
[31]. Fungal carotenoid production is often triggered by 
stress in the growth medium, with β-carotene being the 
most prevalent carotenoid [32]. Furthermore, fungi such as 
arbuscular mycorrhizal fungi (AMF) can enhance carote-
noid production in crops such as sorghum and tomatoes 
and increase the levels of lycopene and β-carotene [33]. 
Pankin et al. [34] used chemometric methods and spec-
troscopy to identify carotenoids in Fusarium species in 
oat grains and demonstrated their potential for rapid, low-
cost plant disease detection. Additionally, trichothecenes, 
mycotoxins derived from sesquiterpenes, pose significant 
concerns in agriculture. Over 150 trichothecene analogs 
have been identified, and their production is regulated by 
the TRI genes [35]. Gibberellins are diterpenoid phyto-
hormones produced by fungi to support plant growth [36]. 
Endophytes, such as Epichloë, generate gibberellins and 
auxins that stimulate plant growth and enhance defence 
mechanisms through alkaloid production [37]. 

5. Entomopathogenic fungi as biological control agents
As global agricultural systems face growing challenges 

owing to food demand and climate change, there is an in-
creasing need for sustainable pest control strategies [38]. 
Although chemical pesticides are commonly used, their 
long-term effectiveness is uncertain, necessitating the de-
velopment of alternative pest control methods [39]. Insect 
growth regulators (IGRs) derived from natural sources, 
particularly entomopathogenic fungi, are promising alter-
natives to synthetic insecticides [40]. These fungi, which 
have been studied for over a century, inhabit diverse eco-
systems and are rich sources of bioactive compounds for 
pest control [41]. The insecticidal properties of entomo-
pathogenic fungi are largely attributed to their secondary 
metabolites that play a role in host infection and invasion. 
These metabolites include enzymes, toxins, and bioactive 
compounds with antifungal, antibacterial, antioxidant, 
antiviral, and insecticidal activities, which make them 
ideal pest management candidates [42]. Secondary meta-
bolites from these fungi include peptides, cyclic depsipep-
tides, amino acid derivatives, polyketides, and terpenoids 

as 2-methoxy-4-vinylphenol, 3,4-dimethoxystyrol, and 
caryophyllene, which exhibit antifungal activity against 
Fusarium oxysporum sp. cubense [18]. Similarly, the 
Hypoxylon anthochroum strain Blaci releases metabo-
lites such as phenylethyl alcohol, 2-methyl-1-butanol, 
phellandrene, elemene, and eucalyptol, which contribute 
to biological weed control and suppress fungal pathogens 
[19]. Curvularia eragrostidis, another endophytic species, 
emits volatile metabolites including 1-H-indene 1-metha-
nol acetate, tetroquinone, and naphthalene, which have 
antimicrobial properties [20]. Dark septate endophytes 
(DSE), a group of fungi with growing recognition for their 
role in sustainable agriculture, also produce volatile com-
pounds with significant antimicrobial effects. For instance, 
DSE fungi, such as Leptodontidium sp., release metabo-
lites, such as chamigrene and 1,3-cyclopentadiene, which 
help combat plant pathogens [21].

4. Secondary metabolites (SMs) produced by fungi 
Fungi produce a variety of low-molecular-weight com-

pounds known as secondary metabolites (SMs), which 
have diverse biological activities and potential applications 
in fields such as pharmaceuticals, agriculture, and biotech-
nology [23]. SMs are classified into four main categories: 
polyketides (PKS), non-ribosomal peptides (NRPs), terpe-
noids, and compounds derived from shikimic acid. Asco-
mycetes are particularly abundant in SM-related genes 
compared with basidiomycetes, archaeo-ascomycetes, and 
chytridiomycetes, whereas hemi-ascomycetes and zygo-
mycetes generally lack these genes [24]. Fungal species, 
such as Macrophomina phaseolina, Aspergillus flavus, and 
Magnaporthe oryzae, are known to possess extensive SM 
gene families [35]. Polyketides form a large and diverse 
class of compounds, including polyphenols, macrolides, 
polyenes, and polyethers, synthesized by polyketide syn-
thases (PKS), which are multidomain enzymes similar 
to fatty acid synthases [26]. The core structure of PKS 
enzymes comprises domains such as acyl carrier protein 
(ACP), acyltransferase (AT), and ketoacyl-CoA synthase 
(KS) as well as additional domains such as ketoreduc-
tase, dehydratase, enoyl reductase, methyltransferase, 
and thioesterase [23]. PKS enzymes share a common 
biosynthetic pathway involving the condensation of acyl-
CoA starter units with malonyl-CoA elongation units, and 
their structures are formed by poly β-keto chains created 
through the coupling of acetic acid units via condensation 
reactions [27]. In fungi, the most common form of PKS is 
iterative type I, which includes three subtypes: non-redu-
cing PKS (nrPKS), partially reducing PKS (prPKS), and 
highly reducing PKS (hrPKS). Other variants include ite-
rative type III and hybrid non-ribosomal peptide synthetase 
(PKS-NPRS) [26]. PKS compounds have various roles 
such as serving as pigments, virulence factors, signaling 
molecules, antibiotics, and antiparasitic agents. Some PKS 
compounds have shown potential as biocontrol agents for 
agriculture. For instance, polyketide derivatives, such as 
O-methylated SMA93 and radicinin from the endophy-
tic fungus Fusarium proliferatum ZS07, isolated from the 
long-horned grasshopper (Tettigonia chinensis), exhibit 
phytotoxic effects on Amaranthus retroflexus seed radicle 
growth. Rhodolamprometrin demonstrated antibacterial 
activity against Bacillus subtilis (ATCC 6633), further 
emphasizing the biocontrol potential of PKS compounds 
[28].
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[43]. Interestingly, entomopathogenic fungi contain gene 
clusters responsible for synthesizing these metabolites, 
although many of these genes are activated only under 
specific conditions such as stress or interaction with other 
organisms [44]. Fungi from the order Hypocreales are 
particularly notable for producing a wide range of secon-
dary metabolites that aid in their pathogenicity and help 
them compete with other microbes during insect infections 
[45]. The infection process begins when conidia attach 
to the insect cuticle, germinate, and form appressoria to 
penetrate the cuticle using enzymes, such as chitinases, 
lipases, and proteases. After the insect succumbs to physi-
cal damage, malnutrition, and toxicosis, fungi proliferate 
in the digestive tract, releasing secondary metabolites that 
target gut bacteria and suppress the growth of competing 
microorganisms, which aids fungal growth. This process 
typically takes 6–14 days from infection to death [46]. 
Well-known entomopathogenic fungi include species from 
Beauveria (e.g., B. bassiana and B. brongniartii), Metarhi-
zium (e.g., M. anisopliae, M. flavoviride, and M. robert-
sii), Isaria (e.g., I. fumosorosea and I. tennuipes), Lecani-
cillium (e.g., L. longisporum and L. lecani), and Hirsute-
la (e.g., H. danubiensis and H. thompsonii) [46, 47]. These 
fungi produce species-specific metabolites, including 
Beauveria bassiana, which is known to produce bioactive 
compounds such as alkaloids, pigments, cyclopeptides, 
and volatile compounds, making it a widely used bioinsec-
ticide [48]. The alkaloids produced by B. bassiana include 
pyridine derivatives such as bassianin, pyridomacrolidin, 
and tennelin, although their roles in fungus-host interac-
tions are still under investigation [49]. Additionally, B. 
bassiana produces red pigments such as oosporein, which 
may contribute to its insecticidal activity by reducing the 
number of insect hemocytes [49]. Cyclopeptides, such as 
bassianolides, beauverolides, and beauvericins, are also 
significant metabolites produced by Beauveria, and their 
insecticidal properties are being actively investigated [50].

The infection process of Beauveria bassiana involves 
distinct stages, including initial germination, secondary 
infection, and severe colonization of the host, as illustra-
ted in Figure 2.

6. Conclusion
Fungi are prolific producers of secondary metabolites 

that play crucial roles in ecological interactions and human 

applications. These metabolites, including terpenoids, po-
lyketides, non-ribosomal peptides, and hybrid compounds, 
not only serve as defense mechanisms for fungi, but also 
exhibit a range of biological activities with applications in 
pharmaceuticals, agriculture, and biotechnology. Studies 
of fungal secondary metabolites have uncovered com-
pounds with significant potential as antibiotics, antifungal 
agents, and biocontrol agents, which can aid in the deve-
lopment of sustainable agricultural practices and alter-
native pest control strategies. Entomopathogenic fungi, 
in particular, have demonstrated the potential of fungal 
metabolites as natural insecticides. These fungi produce 
a range of bioactive compounds, including enzymes, pep-
tides, and toxins, which help them infect and control insect 
pests. Species such as Beauveria bassiana, Metarhizium 
anisopliae, and Isaria fumosorosea are notable for their 
ability to produce insecticidal compounds, which makes 
them valuable tools for biological pest management. The 
discovery of new metabolites and the expansion of our 
understanding of fungal biosynthesis pathways will likely 
lead to the development of innovative and environmen-
tally friendly pest control options. In addition to their agri-
cultural significance, fungal metabolites also hold promise 
for human health, with compounds such as penicillin and 
cyclosporine providing critical medical benefits. The ex-
ploration of fungal biodiversity and identification of new 
metabolites offer exciting opportunities for drug discovery 
and development of novel therapeutic agents.
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