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1. Introduction 
Over many decades of intensive research, a variety of 

anticancer compounds have been developed, leading to 
significant advancements in treatment options [1]. Despite 
these breakthroughs, cancer remains a formidable chal-
lenge in modern medicine. Many existing therapies, while 
beneficial, often fall short due to issues such as drug resis-
tance, limited efficacy, and undesirable side effects [2]. 
This underscores the urgent and ongoing need for novel 
anticancer drugs that are not only more effective but also 
possess lower toxicity, improving both patient outcomes 
and quality of life. The development of innovative thera-
pies that can target cancer cells with high precision while 
minimizing damage to healthy tissues is critical to addres-
sing this unmet medical need [3].

Monoacylglycerol lipase (MAGL) is an essential se-
rine hydrolase enzyme that catalyzes the breakdown of 
the endocannabinoid 2-arachidonoylglycerol (2-AG) and 
other monoacylglycerols, playing a key role in lipid meta-
bolism within both the brain and peripheral tissues [4, 5]. 
By regulating the levels of 2-AG, MAGL influences many 
signaling pathways associated with cell growth, inflam-
mation, and cellular homeostasis [6]. In general, aggres-

sive tumors exhibit increased MAGL expression, which 
is known to facilitate tumor growth by releasing free fatty 
acids that enhance cancer cell proliferation and foster a 
malignant environment [7]. Thus, blocking MAGL offers 
a viable therapeutic approach, as it may impede cancer 
progression by modifying lipid signaling and decreasing 
the availability of fatty acids [8]. 

Recently, MAGL inhibitors have gained considerable 
attention for their potential role in cancer treatment [9, 
10]. Among them, the compound JZL184 has demonstra-
ted promising anticancer activity by inhibiting MAGL. 
This inhibition leads to an accumulation of the endocan-
nabinoid 2-AG, which subsequently activates the CB1 
cannabinoid receptor. This receptor activation initiates 
notable antimetastatic and anti-invasive effects, particu-
larly observed in lung cancer cells [11]. In another inves-
tigation, treatment of colorectal cancer cell lines with 
JZL184 resulted in reduced tumor growth, enhanced apop-
tosis, and improved sensitivity of tumor cells to 5-fluo-
rouracil [12]. Furthermore, studies have shown that the 
reversible MAGL inhibitor 1,5-diphenylpyrazole-3-car-
boxamide exhibits antiproliferative properties on cancer 
cell lines and alleviates oxaliplatin-induced neuropathic 
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hypersensitivity in vivo [13]. Compound 23 significantly 
reduced the viability of breast, colon, and ovarian cancer 
cell lines, exhibiting IC50 values in the low micromolar 
range. However, its potential was limited by inadequate 
solubility [14]. These findings hold substantial promise for 
the future of cancer research, suggesting that selectively 
targeting MAGL could complement or even surpass cur-
rent treatment strategies by halting tumor progression at 
the metabolic level. By impeding fatty acid release and 
modulating endocannabinoid signaling, MAGL inhibitors 
have the potential to reduce both tumor proliferation and 
metastasis while enhancing the effectiveness of existing 
chemotherapeutics.

Computer-aided drug design (CADD) has become in-
dispensable in modern drug discovery, offering precision 
and efficiency in identifying and optimizing lead com-
pounds [15]. Techniques like pharmacophore modeling 
enable researchers to define essential molecular features 
for bioactivity, guiding the design of potent compounds. 
Virtual screening further accelerates the discovery process 
by sifting through large compound libraries to pinpoint 
promising candidates [16]. Molecular dynamics (MD) si-
mulations provide insights into protein-ligand interactions 
at an atomic level, enhancing our understanding of stability 
and binding modes. Quantum-based methods such as den-
sity functional theory (DFT) allow detailed examination 
of electronic properties, while molecular mechanics with 
generalized born surface area (MM/GBSA) calculations 
offer accurate binding energy estimations, refining lead 
optimization [17, 18]. Together, these CADD techniques 
are reshaping the drug discovery landscape, making the 
process more targeted and resource-efficient. These com-
putational workflows (Fig. 1) used in this study lay the 
groundwork for more advanced in vitro and in vivo valida-
tions, ultimately shaping a new generation of targeted the-
rapies aimed at minimizing toxicity and resistance. In the 
broader vision of this study, the integration of CADD with 
other cutting-edge approaches will further refine drug can-
didate design, streamline the discovery process, and acce-
lerate the translation of these novel MAGL inhibitors into 
clinically viable anticancer treatments, thereby improving 
patient outcomes and long-term quality of life.

2. Materials and methods
2.1. Virtual screening

The Pharmit [19] web server was utilized to create 
pharmacophore model based on the X-ray crystal structure 
of the inhibitor ZYH bound to the MAGL protein, with 
PDB ID 3PE6. After evaluating multiple protein struc-
tures, this protein was selected for its 1.35 Å resolution, 
low R-value of 0.147, minimal missing residues, and its 
origin from Homo sapiens. The selection criteria priori-
tized high resolution, low R-values, and minimal missing 
residues to ensure comprehensive coverage of the binding 
site. Additionally, a protein co-crystallized with an inhibi-
tor was preferred to facilitate the identification of binding 
pocket residues for virtual screening and docking.

The pharmacophore model was then employed for 
virtual screening against the MolPort database, which in-
cludes 5.241 million molecules. To ensure that only com-
pounds with favorable properties progressed through the 
screening process, multiple filtering criteria were applied. 
The pharmacophore shape filter was used to capture the 
essential three-dimensional features required for target 

binding, thereby enhancing the likelihood of identifying 
active compounds. Lipinski’s “rule of five” [20] was in-
corporated to filter out molecules that are unlikely to be 
orally active, by limiting molecular weight to ≤500, logP 
to ≤5, hydrogen bond acceptors to ≤10, and hydrogen bond 
donors to ≤5, which together serve as indicators of good 
absorption and permeability. In addition, Veber’s filter 
[21] was implemented by restricting the number of rota-
table bonds to ≤10 and the polar surface area to ≤140 Å2, 
parameters that correlate with improved oral bioavailabi-
lity and conformational stability. An energy cutoff of -7.0 
kcal/mol was set to exclude less energetically favorable 
interactions, while a minimized RMSD (mRMSD) cutoff 
of 2 Å was applied to ensure that the predicted binding 
poses remained consistent with the initial query-aligned 
conformation after energy minimization [22].

2.2. Molecular docking by Vina-GPU
Gypsum-DL 1.2.1 [23] was employed to generate 3D 

models of filtered molecules in SDF format. Additionally, 
the durrant_lab_filters flag was applied to refine the mo-
dels to eliminate variants that, while chemically feasible, 
are unlikely according to Durrant lab standards. Ultima-
tely, 4,027 processed molecules were saved individually 
in PDB format, which was subsequently converted to 
PDBQT format using Open Babel 3.1.1 [24].

AutoDock Vina-GPU 2.1 [25, 26] was then used for 
molecular docking of the 4,027 molecules to the MAGL 
protein in a single run. The GPU-accelerated platform si-
gnificantly enhanced docking speed and accuracy, which 
is crucial for rapid drug discovery. Each compound requi-
red approximately one second for docking. AutoDock 
Vina-GPU 2.1 was installed on a Linux workstation run-
ning Rocky Linux 9, equipped with a 24-core AMD Ryzen 
AM4 4.8 GHz processor, a 12 GB NVIDIA GeForce RTX 
3080 Ti Trinity GPU, 64 GB DDR4 C18 AMD RAM, and 
an NVMe hard disk. 

The docking process centered on the binding site of the 
co-crystallized ligand, ZYH [27], with a grid box positio-
ned at coordinates -10.87, 20.029, and -9.412 (x, y, and 
z axes) and a dimension of 30 points in each direction. 
The default thread size was set to 8000 [25]. Following 
the docking, an in-house Python script was used to analyze 
and rank the binding energies of each model, organizing 
the output files for detailed assessment of docking results.

2.3. Molecular dynamics
To replicate the cellular conditions in silico, complexes 

Fig. 1. A schematic flowchart illustrates the steps followed in this 
study.
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(MD) simulations.
3.2. Molecular docking

AutoDock Vina-GPU 2.1 was employed to dock 4027 
compounds obtained from virtual screening into the active 
site of MAGL. This software employs thousands of GPU 
cores for parallel processing, allowing it to perform doc-
king operations at a rate of up to 50 times faster while 
maintaining the same level of accuracy. The results are 
summarized in Table S1 of supplementary information. 
Out of these, the top five ligands showing the highest doc-
king score were selected to further analysis by MD simula-
tion. The intermolecular interactions of these ligands along 
with co-crystallized inhibitor of MAGL which serves as 
control, are presented in Fig. S1 of supplementary infor-
mation. 

Across all compounds shown in Figure S1, consistent 
hydrogen bonding interactions are observed with residues 
like Ala51, Met123 and Ser122, which play a pivotal role 
in stabilizing the ligand within the binding pocket. Hydro-
phobic contacts with residues such as Leu213, Leu241, 
and Val270 further enhance ligand binding, forming a hy-
drophobic environment that anchors the ligand. π-π stac-
king interactions, notably with Tyr194, add another layer 
of stabilization through aromatic interactions. Moreover, 
it also contributes to establishing polar contacts with com-
pounds Molport-010-716-199, Molport-020-263-494 and 
MolPort-007-806-063. An additional hydrogen bond was 
also formed between Glu53 and Molport-010-716-199. 
These analyses could guide future ligand optimization for 
improved binding affinity and efficacy.

3.3. Molecular Dynamics
3.3.1. Root-mean square deviation (RMSD)

The RMSD plot indicates that all six complexes, in-
cluding the control, exhibit overall stability throughout 
the 100-nanosecond simulation. This is evident from the 
RMSD values remaining within a reasonable range-typi-
cally between 1.0 Å and 3.0 Å-with average values not 

of selected molecules and the ZYH-bound MAGL protein 
underwent comprehensive all-atom molecular dynamics 
(MD) simulations using GROMACS version 2022.3 [28]. 
Briefly, protein-ligand complexes were placed in cubic 
simulation boxes filled with TIP3P water, neutralized and 
balanced with Na⁺ and Cl⁻ ions. MAGL was paramete-
rized using AMBER99SB-ILDN whereas ligands were 
treated with GAFF2 force fields. Energy minimization 
was performed using the steepest descent algorithm, and 
systems underwent 1 ns equilibration under NVT and NPT 
ensembles. Finally, the production simulations were per-
formed for 100 ns in the NPT ensemble.

2.4. MMGBSA binding free energy calculations
Binding free energies for ligands were computed using 

the MMGBSA method with the gmx_MMPBSA tool [29]. 
To ensure metastable sampling for analysis, a total of 200 
frames were collected at intervals of 0.1 ns from the final 
20 ns of MD simulations. The binding energy calculations 
included gas-phase (electrostatic and van der Waals) and 
solvation (polar and nonpolar) energy contributions. Addi-
tionally, per-residue energy contributions were analyzed to 
understand ligand-receptor interactions [30].

2.5. DFT computations
Density functional theory (DFT) calculations were car-

ried out using the Orca 5.0.4 software package [31]. Geo-
metry optimizations for the compounds were performed 
with the 6-311G(d,p) basis set, employing the Lee-Yang-
Parr correlation functional (B3LYP) [32, 33]. The highest 
occupied molecular orbital (HOMO) and the lowest unoc-
cupied molecular orbital (LUMO) were visualized through 
the Avogadro program (http://avogadro.cc/). 

3. Results
3.1. Virtual screening and molecular docking by ML-
based ultra-fast Vina-GPU

The virtual screening process aimed at identifying in-
hibitors of MAGL is outlined in Figure 1. A pharmaco-
phore model was developed on the Pharmit web server, 
utilizing a bound inhibitor from the X-ray crystal struc-
ture of MAGL (PDB ID: 3PE6). This pharmacophore suc-
cessfully captured essential chemical and spatial features 
necessary for ligand binding to MAGL, based on the inte-
ractions of (2-cyclohexyl-1,3-benzoxazol-6-yl){3-[4-(py-
rimidin-2-yl)piperazin-1-yl]azetidin-1-yl}methanone with 
the enzyme. The pharmacophore model served as a shape 
filter to virtually screen a library of 5.241 million mole-
cules from the Molport database, identifying an initial set 
of 28,873 hits.

Subsequent filtering using Lipinski’s rule of five and 
Veber’s rule reduced the number of hits to 11,366. Energy 
minimization was then performed using AutoDock Vina 
and Smina on the Pharmit server, applying a binding affi-
nity cutoff of -7.0 kcal/mol, resulting in 10,198 molecules. 
Structural alignment using root mean square deviation 
(RMSD) filtering removed molecules with deviations 
above 2Å, leaving 5,771 compounds. A single conformer 
stability filter further refined the hits to 4,156 molecules. 
Next, the Gypsum-DL program generated 3D models from 
2D structures, and the Durrant lab filter excluded proble-
matic molecules, leaving 4,027 candidates. These were 
docked using Vina GPU-2.1, and the top five scoring mo-
lecules were selected for subsequent molecular dynamics 

Fig. 2. Results of molecular dynamics in terms of root mean square 
deviation (a), root mean square fluctuation (b), radius of gyration (c) 
and solvent accessible surface area (d) for the top five hits along with 
native inhibitor.
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exceeding 2.2 Å in any complex. While initial interactions 
caused minor deviations, the ligand-protein complexes 
eventually stabilized over time (Figure 2a).

3.3.2. Root-mean square fluctuation (RMSF)
Figure 2(b) presents the RMSF plots of six ligand-

MAGL complexes, including the control. The analysis of 
the peaks indicates that all structures remain stable throu-
ghout the simulation, with no major deviations observed. 
Most residues exhibit fluctuations below 3 Å, reflecting 
minimal structural changes. A prominent increase in flexi-
bility is observed around residues 150-190 across all com-
plexes, likely due to inherent flexibility or ligand interac-
tion, while the rest of the enzyme remains stable. Ligands 
such as Molport-005-022-518 and Molport-010-716-199 
exhibit RMSF profiles comparable to the control, indica-
ting their minimal impact on residue flexibility. Although 
Molport-020-263-494 and Molport-047-717-902 exhibit 
slightly higher fluctuations, these complexes remain stable 
overall.

3.3.3. Radius of gyration
The radius of gyration (Rg) is a measure of the com-

pactness of a protein structure, with lower values indica-
ting a more compact and stable conformation and higher 
values suggesting expansion or flexibility. During the 
100-nanosecond simulation of the six ligand-MAGL com-
plexes, the Rg values change only slightly (17.6 Å to 18.8 
Å), which means that all structures stay stable and com-
pact. The control complex maintains consistent Rg values 
around 18.2 Å, serving as a reliable baseline. Ligands 
like Molport-007-806-063 slightly lower the Rg, which 
points to a more compact shape. On the other hand, Mol-
port-010-716-199 and Molport-047-717-902 show small 
changes, which account to some flexibility (Fig. 2c).

3.3.4. Solvent accessible surface area
Understanding ligand-protein interactions depends 

greatly on solvent-accessible surface area (SASA), which 
measures the amount of protein surface exposed to the sur-
rounding solvent. Changes in SASA can signal shifts in 
protein conformation, ligand binding, or interactions with 
the solvent, offering insights into the stability and dynami-
cs of the complex. Fig. 2(d) displays the SASA results for 
the virtually screened molecules in complex with MAGL. 
The average SASA values range from 1270 Å2 to 1289 
Å2. The peaks indicate consistent solvent exposure across 
all complexes, suggesting steady interactions throughout 
the simulation. In particular, Molport-007-806-063 has 
the lowest average SASA value at 1270 Å2, suggesting a 
tighter interaction with the enzyme due to a more compact 
shape. On the other hand, Molport-005-022-518 has the 
highest SASA at 1289 Å2, indicating slightly more solvent 
exposure, which could reflect minor flexibility in the bin-
ding region. However, this small difference does not point 
to any significant changes or instability in the interaction.

3.3.5. Hydrogen bond analysis
The hydrogen bond analysis highlights distinct interac-

tion patterns across the MAGL-ligand complexes. Mol-
port-007-806-063 always makes two to three hydrogen 
bonds with the protein during the simulation. This shows 
that it binds strongly and reliably, which is in line with 
its high binding affinity. In contrast, Molport-010-716-199 

demonstrates more fluctuating behavior, forming between 
1 and 5 bonds, suggesting a flexible binding mode that 
adapts dynamically during the simulation. Similarly, Mol-
port-047-717-902 shows variability in its hydrogen bond 
interactions, ranging from 1 to 4 bonds, reflecting tran-
sient but occasionally strong interactions with the pro-
tein. On the other hand, Molport-005-022-518 and Mol-
port-020-263-494 maintain fewer hydrogen bonds, typi-
cally between 1 and 2. A moderate number of hydrogen 
bonds are formed by the control ligand, ranging from 1 to 
2 bonds (Fig. 3).

3.3.6. Free energy landscapes (FEL) analysis
Gibbs free energy landscapes (FEL) offer valuable in-

sights into the stability and conformational dynamics of 
protein-ligand interactions by plotting structural parame-
ters, such as the Rg and RMSD, against Gibbs free ener-
gy. The FEL plots for the control and the five hit ligands 
in complex with MAGL indicate that all systems exhibit 
stable binding, as evidenced by the presence of deep ener-
gy wells, signifying energetically favorable conformations 
(Fig. 4a-f). Among the ligands, Molport-007-806-063 
stands out with the deepest well, indicating a highly stable 
and compact conformation, which aligns with its strong 
binding affinity. Similarly, Molport-010-716-199 and 
Molport-005-022-518 display favorable stability profiles, 
maintaining compact structures throughout the simu-
lation, and suggesting strong interactions. In contrast, 
Molport-047-717-902 and Molport-020-263-494 exhibit 
slightly elevated Rg values, implying that these ligands 
induce more flexibility within the binding pocket, al-
though they still demonstrate overall structural stability. 
The FEL data highlights the different degrees of stabi-
lity and compactness induced by the ligands, with Mol-
port-007-806-063 showing the most robust interaction.

3.3.7. Principal component analysis (PCA)
Principal component analysis (PCA) is a powerful tool 

in MD simulations for identifying the dominant motions 
and conformational transitions in protein-ligand com-
plexes. The PCA plots for the control and five hits in com-
plex with MAGL show distinct patterns of conformatio-
nal flexibility and stability. The control, along with Mol-
port-010-716-199 and Molport-007-806-063, exhibits two 
clear conformational clusters, suggesting that these sys-
tems dynamically transition between two stable states (Fig. 
4g-l). This indicates that while the systems are flexible, 

Fig. 3. Results of molecular dynamics simulations showing the number 
of hydrogen bonds formed during the simulation period for the GLXC-
25691 (control), Molport-047-717-902, Molport-010-716-199, Mol-
port-020-263-494, Molport-005-022-518, and MolPort-007-806-063.



107

Novel leads for monoacylglycerol lipase inhibition.                                                                                                                                                                        Cell. Mol. Biol. 2025, 71(5): 103-111

they maintain overall stability, likely contributing to strong 
binding interactions. However, Molport-047-717-902 and 
Molport-005-022-518 display more compact clustering, 
reflecting a more restricted and stable conformational 
space. These ligands appear to lock the protein into a more 
defined conformation, reducing flexibility and promoting 
strong, stable binding. In contrast, Molport-020-263-494 
shows a broader distribution of conformational states, 

indicating greater flexibility and variability in the protein-
ligand interaction. This increased flexibility may correlate 
with weaker binding, as the ligand induces less defined 
structural stability. 

3.3.8. Molecular mechanics/generalised Born surface 
area (MM/GBSA) analysis

Table 1 presents the MM/GBSA analysis of screened 
ligands, including the control GLXC-25691. The control 
shows the strongest van der Waals interactions at -66.44 
kcal/mol, closely followed by Molport-007-806-063 
(-65.31 kcal/mol) and Molport-005-022-518 (-65.05 
kcal/mol). Molport-007-806-063 exhibits the most favo-
rable electrostatic contribution (-20.91 kcal/mol), while 
Molport-047-717-902 has the highest polar solvation 
penalty (39.98 kcal/mol). Non-polar solvation energy 
is similar across all ligands. In terms of gas-phase free 
energy, Molport-007-806-063 has the strongest interac-
tions (-86.21 kcal/mol), while Molport-047-717-902 
shows the highest desolvation penalty (32.93 kcal/mol). 
Overall, Molport-007-806-063 has the most favorable 
total binding free energy (-59.9 kcal/mol), surpassing the 
control (-56.26 kcal/mol). Molport-005-022-518 and Mol-
port-010-716-199 also exhibit appreciable binding with 
the MAGL protein. However, Molport-020-263-494 has 
the lowest interaction affinity (-36.23 kcal/mol) because 
it has weaker van der Waals forces and higher desolvation 
penalties.

The overall analysis of the energy decomposition plots 
reveals that key hydrophobic residues, such as Leu148, 
Leu184, Tyr194, and Leu205, consistently play a vital role 
in stabilizing ligand interactions with MAGL across all 
complexes (Fig. 5). Ligands that exhibit strong, negative 

Fig. 4. Results of the molecular dynamics simulations showing the 
free energy landscapes for GLXC-25691 (a), Molport-047-717-902 
(b), Molport-010-716-199 (c), Molport-020-263-494 (d), Mol-
port-005-022-518 (e), and MolPort-007-806-063 (f) along with 
the corresponding principal component analysis (PCA) plots for 
GLXC-25691 (g), Molport-047-717-902 (h), Molport-010-716-199 
(i), Molport-020-263-494 (j) Molport-005-022-518 (k), and Mol-
Port-007-806-063 (l).

Fig. 5. Results of energy decomposition computed by molecu-
lar mechanics/general born surface area for (a) GLXC-25691 
(control), (b) Molport-047-717-902, (c) Molport-010-716-199, 
(d) Molport-020-263-494, (e) Molport-005-022-518, and (f) Mol-
Port-007-806-063.
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Parameters Molport-047-717-902 Molport-010-716-199 Molport-020-263-494 Molport-005-022-518 MolPort-007-806-063 GLXC-25691 (control)
ΔEvdW -56.51±0.2 -62.45±0.2 -49.85±0.26 -65.05±0.18 -65.31±0.18 -66.44±0.23
ΔEele -17.55±0.33 -7.49±0.28 -7.07±0.42 -8.67±0.17 -20.91±0.18 -6.59±0.11
ΔEgb 39.98±0.22 23.32±0.2 26.9±0.35 28.25±0.2 34.56±0.14 24.88±0.13
ΔEsurf -7.04±0.02 -7.95±0.02 -6.21±0.04 -8.11±0.02 -8.24±0.01 -8.11±0.02
ΔGgas -74.06±0.42 -69.94±0.39 -56.92±0.6 -73.72±0.25 -86.21±0.25 -73.03±0.26
ΔGsolv 32.93±0.22 15.37±0.19 20.69±0.32 20.14±0.2 26.32±0.14 16.77±0.12
ΔGTota -41.13±0.33 -54.57±0.26 -36.23±0.36 -53.57±0.24 -59.9±0.23 -56.26±0.22

Table 1. Results of molecular mechanics/general born surface area for the top five hits along with native inhibitor.
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energy contributions from these residues, such as Mol-
port-007-806-063 and the control, tend to have stronger 
binding affinities. These hydrophobic interactions provide 
significant stability to the complexes, explaining the higher 
binding free energies observed in the MM/GBSA analysis.

Molport-007-806-063 demonstrates the strongest inte-
raction profile, with multiple key residues significantly 
contributing to the binding energy, especially via van 
der Waals interactions in hydrophobic areas, hence desi-
gnating it as the ligand with the greatest overall binding 
affinity. Other ligands, such as Molport-010-716-199 
and Molport-005-022-518, also show favorable interac-
tion profiles, with contributions from the same key resi-
dues, though to a slightly lesser extent compared to Mol-
port-007-806-063. These ligands still form stable inte-
ractions but do not reach the same binding efficiency. In 
contrast, Molport-020-263-494 and Molport-047-717-902 
display a more varied interaction profile, with some resi-
dues showing weaker or even positive contributions to the 
total energy. This suggests less favorable interactions, lea-
ding to weaker overall binding affinities in comparison to 
the more tightly bound complexes.

3.4. Density functional theory (DFT) computations
The density functional theory (DFT) computations 

provided key insights into the electronic structure of the 
five ligands, particularly through analysis of their HOMO-
LUMO energy gaps (ΔE). The energy gaps range from 
4.32 eV to 4.75 eV, reflecting the stability and reactivity 
of each ligand. Molport-010-716-199 displays the largest 
energy gap of 4.75 eV, indicating a high degree of stabi-
lity and low reactivity. This suggests that the ligand may 
have limited potential for strong electrostatic interactions 
or hydrogen bonding, as its electron-donating and -accep-
ting capabilities are reduced. Instead, the binding interac-
tions for this ligand are likely dominated by van der Waals 
forces, where weaker but stable hydrophobic interactions 
with the protein play a major role.

On the other hand, Molport-020-263-494, with a smal-
ler HOMO-LUMO gap of 4.32 eV, suggests a higher 
reactivity, which could enable more dynamic interactions 
with the protein. Despite this, its overall binding affinity 
appears lower due to less favorable solvation, weaker van 
der Waals interactions, and suboptimal electrostatic contri-
butions. This indicates that while electronic reactivity, 
inferred from the HOMO-LUMO gap, can facilitate inte-
ractions, it must be complemented by strong non-covalent 
interactions and favorable solvation properties to result in 
high binding affinity.

The electron density distributions across the ligands, as 
indicated in Fig. 6, reveal well-defined regions of positive 
(HOMO) and negative (LUMO) charge densities. These 
distributions are critical for guiding future drug design 
optimization. The red HOMO regions often concentra-
ted on nitrogen atoms or aromatic systems, are key for 
forming electrostatic interactions with protein residues. 
Meanwhile, the yellow LUMO regions highlight areas 
where the ligands can interact with electron-rich amino 
acids in the protein. These features make the ligands pro-
mising candidates for further drug discovery efforts, as 
optimizing these electronic properties could enhance both 
binding affinity and specificity for their protein targets 
[34].

4. Discussion
This study employed a comprehensive computational 

approach to find potential MAGL inhibitor candidates. 
The pharmacophore-based approach prioritized molecules 
that possess key spatial and chemical properties necessary 
for effective MAGL binding. Drug-likeness and bioavai-
lability filters like Lipinski’s and Veber’s rules efficiently 
eliminated unsuitable compounds early in the process. 
Additional steps like energy minimization and structu-
ral alignment (RMSD) were needed to narrow down the 
candidate list to molecules expected to bind strongly and 
stably. Using the single conformer and Durrant lab filters 
made the final candidates better by ensuring they were 
stable and removing possible problems like steric clashes 
or instability. Ultimately, molecular docking prioritized 
the compounds with the highest predicted binding affinity, 
facilitating the selection of the most promising candidates 
for rigorous MD simulation analysis.

The analysis of ligand-protein interactions highlighted 
the key residues and interaction types important for bin-
ding affinity and specificity. Consistent hydrogen bonding, 
hydrophobic interactions, and π-π stacking identified in 
top ligands provide insights into the molecular basis of 
MAGL inhibition. The detailed interaction profile serves 
as a valuable guide for further optimization and designing 
molecules with enhanced therapeutic potential.

Stability analysis from RMSD, RMSF, Rg, SASA, 
Gibbs FEL, and PCA further supported the reliability of 
these interactions, confirming the structural integrity and 
stability of ligand-MAGL complexes. The different pat-
terns of hydrogen bonds and PCA clustering indicate that 
there are various ways the ligands can bind, with some li-
gands allowing for movement while still being stable, and 

Fig. 6. Results of density functional theory computations show the 
highest occupied molecule orbital (HOMO) and the lowest un-occu-
pied molecular orbital (LUMO) for the top five hits, along with the 
native inhibitor.
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others limiting movement to improve stability. Detailed 
MM/GBSA and residue-level decomposition analyses 
uncovered critical interactions underpinning strong ligand 
binding, emphasizing the importance of hydrophobic resi-
dues and van der Waals forces in mediating high-affinity 
interactions. Complementary DFT analyses improved our 
understanding by linking electronic structures to binding 
behaviors, clearly showing how small changes in electro-
nic properties greatly affected the strength of interactions. 
Studies of electron density mapping provided explicit, 
actionable insights, pinpointing precise structural features 
for future ligand optimization strategies. These insights are 
valuable for future ligand optimization strategies aimed at 
enhancing binding stability and therapeutic efficacy. 

A robust pharmacophore-based virtual screening ap-
proach was employed to identify potential MAGL inhi-
bitors in this study. Initially, a pharmacophore model was 
developed based on the X-ray crystal structure of MAGL 
complexed with its known inhibitor, (2-cyclohexyl-1,3-
benzoxazol-6-yl){3-[4-(pyrimidin-2-yl)piperazin-1-yl]
azetidin-1-yl}methanone. Utilizing the Pharmit web ser-
ver, 5.241 million compounds from the MolPort database 
underwent virtual screening. The pharmacophore shape 
filter initially identified 28,873 compounds as potential 
hits. Subsequently, the application of Lipinski’s and Ve-
ber’s rules narrowed the candidate pool down to 11,366 
compounds. Further refinement using an energy cutoff of 
-7.0 kcal/mol computed by the integrated Smina module in 
Pharmit reduced this number to 10,198 hits. An additional 
filter employing a minimized RMSD cutoff of 2 Å ensu-
red consistency of predicted binding poses with the initial 
pharmacophore query-aligned conformation after energy 
minimization, narrowing the results further to 5,771 hits. 
After filtering for single conformers, the number of com-
pounds decreased to 4,156. A subsequent Durrant Lab fil-
ter further reduced the dataset to 4,027 compounds by re-
moving substructures that, while technically feasible, are 
improbable or otherwise unsuitable for virtual screening. 
These 4,027 filtered hits were docked using Vina-GPU, 
and the five highest-ranking compounds were selected for 
detailed analysis.

In-depth computational assessments, including DFT 
calculations, MD simulations, and MMGBSA analyses, 
were performed. MMGBSA computations highlighted 
MolPort-007-806-063 as the most promising candidate, 
displaying the strongest binding energy of -59.9 ± 0.23 
kcal/mol, surpassing even the reference co-crystal inhi-
bitor, which showed a binding energy of -56.26 ± 0.22 
kcal/mol. The other top candidates demonstrated binding 
energies of -54.57 ± 0.26 kcal/mol, -53.57 ± 0.24 kcal/
mol, -41.13 ± 0.33 kcal/mol, and -36.23 ± 0.36 kcal/mol, 
respectively. Additionally, detailed per-residue interaction 
analyses were conducted to further elucidate binding in-
teractions. Collectively, these findings indicate that Mol-
Port-007-806-063 and the other top-ranking candidates re-
present promising leads for future experimental validation 
and potential therapeutic development as novel MAGL 
inhibitors. Suggested experimental validations include 
enzyme inhibition assays, cell-based activity assays, and 
crystallographic studies to confirm the binding modes and 
potency predicted by these computational analyses. 
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