

Fig. S1. Identification of shared and unique genes between astrocyteand oligodendrocyte-derived ALS. Shared genes were identified using a Venn diagram, followed by pathway analysis of genes unique to each cell type. (A) Upregulated genes. (B) Downregulated genes.

	Term	P-value	Genes
1			ARHGEF12,ABI2,PDGFD,BR
	Regulation of actin cytoskeleton	0.005844482	KT,ITGAV,KHAS,EZR,MYH10 STS,AKR1C1,AKR1C3.HSD1
	Steroid normane prosynthesis	0.00005150	7B12
	Inositol phosphate metabolism	0.01270949	
	N-Glycan biosynthesis Phosphatidylinositol signaling	0.023820769	ALG8,ALG14,ALG13
	system	0.032250230	MIMH2,IMPAI,IPMN,DGKH
	Term	P-value	Genes
	p53 signaling pathway	0.00001556	SESN3,ZMAT3,GADD45A,M DM2,PMAIP1,TNFRSF10B,M DM4,PPM1D,TP53
	Cell cycle	0.000925657	TGFB2,HDAC2,ANAPC7,GA DD45A,MDM2,E2F3,TP53,Y WHAZ,ANAPC10
	Cellular senescence	0.00127543	TGFB2,RBBP4,GADD45A,IT PR1,MDM2,PIK3R3,MAPK1, TRPM7,E2F3,TP53
	Adherens junction	0.003065	LEF1,MAPK1,LMO7,WASL,N LK.WASF2
İ	Glioma	0.0040309	GADD45A,MDM2,PIK3R3,MA PK1 E2E3 TP53
Î			11(1,2210,1100
	Term	P-value	Genes
	p53 signaling pathway	0.381581782	CD82
	Glioma	0.389686200	CAMK2D
	cAMP signaling pathway	0.41449744	AFDN,CAMK2D
	Protein digestion and absorption	n 0.4926760	COL21A1
	T cell receptor signaling pathwa	y 0.49601619	PTPRC
	Term Begulation of lips/weie in	P-value	Genes
	adipocytes	0.000221863	ADCY9,IRS1,INSR,MGLL
	Insulin signaling pathway	0.0008882512	BP1,GCK
L	ongevity regulating pathway	0.0022771277	ADC 19,IAST,INSA,EIF4EBP 1
	AMPK signaling pathway	0.0040881826	R3B
	Galactose metabolism	0.01213000	B4GALT2,GCK
_	Term	P-value	Genes
	Aldosterone synthesis and	0.004566554	SCARB1,NR4A1,GNA11,AT
,	Secretion	0.006604896	LDHA, PPP3CB, PKM, ACAC
1	HIF-1 signaling pathway	0.0071222027	B,CAMK2G LDHA,PGK1,GAPDH,CAMK
1-	ner- i signaling pathway	0.0071322027	2G,IGF1R ALDH6A1,TPI1,INPP5A,PIP
11	PPAR signaling pathway	0.00858045367	4K2B SLC27A1,RXRA,PLIN4,PLIN
	r r r a r anginaning paarinay	0.0000042017	2
	Term	P-value	Genes
P	athways of neurodegeneration	0.00400429	FZD1,ACTR1A,PSMD2,MFN 2,CACNA1S,MAP2K7,TUBA
	Butanoate metabolism	0.009789146	4A,UBE2L3 ACADS,ACSM2B
	Salmonella infection	0.010929295	ACTR1A,PLEKHM2,MAP2K 7,TUBA4A.DNM2
	Tight junction	0.01294962	PPP2R1A,MAP2K7,TUBA4A
	GnRH signaling pathway	0.01363996	CACNA1S,MAP2K7,HBEGF
	ALS	921 (11.8%)	
		108 (1.4%) 221 (2.8%)	
	1725 (22.2%	108 (1.4%) 221 (2.8%) 3062 (39.3%) (2	1643 11.1%) Oligodendrocvi

Fig. S2. Shared and unique genes between astrocyte- and oligodendrocyte-derived ALS were identified using a Venn diagram. Unique genes were subsequently analyzed for involvement in key signaling pathways. (A) Upregulated genes. (B) Downregulated genes.

Α

в

Fig. S3. Biological processes demonstrated in upregulated and downregulated genes between A: Astrocyte and oligodendrocyte-derived ALS, B: Astrocyte-derived ALS and C: Oligodendrocyte-derived ALS.

Fig. S4. Hub proteins identified in (A) astrocyte- and oligodendrocyte-derived ALS, (B) astrocyte-derived ALS, and (C) oligodendrocyte-derived ALS. These data highlight key proteins associated with each condition.

Fig. S5. Node degree analysis of key hub genes in astrocyte- and oligodendrocyte-derived ALS. (A–C) Analysis of ACE upregulated hub genes: (A) Node degree table, (C) pie chart, and (E) bar plot visualization showing the distribution of node degrees among upregulated genes. (B–D) Analysis of BDF downregulated hub genes: (B) Node degree table, (D) pie chart, and (F) bar plot visualization representing the node degree distribution among downregulated genes. Higher node degrees indicate a greater number of direct connections, suggesting central roles in the respective regulatory networks.

Fig. S6. Node degree analysis of hub genes in astrocyte-derived and oligodendrocyte-derived ALS. (A–C) Analysis of ACE upregulated hub genes: (A) Node degree table, (C) pie chart, and (E) bar plot representation highlighting the node degrees of upregulated genes. (B–D) Analysis of BDF downregulated hub genes: (B) Node degree table, (D) pie chart, and (F) bar plot representation showing the node degree distribution among downregulated genes. Genes with higher node degrees are likely to play more central roles in the regulatory networks.

Fig. S7. Node degree analysis of additional hub genes identified in astrocyte- and oligodendrocyte-derived ALS. (A–C) Analysis of ACE upregulated hub genes: (A) Node degree table, (C) pie chart, and (E) bar plot showing node degree distribution among upregulated genes. (B–D) Analysis of BDF downregulated hub genes: (B) Node degree table, (D) pie chart, and (F) bar plot representing node degree distribution among downregulated genes. Node degree indicates the number of direct interactions, highlighting genes with potentially important regulatory roles in the disease network.

Fig. S8. Network illustrating the relationships between key extracellular vesicle miRNAs in (A) astrocyte-derived and oligodendrocytederived ALS, (B) astrocyte-derived ALS, and (C) oligodendrocytederived ALS.