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1. Introduction
Glioma is the most frequent and aggressive primary 

malignancy in the brain[1]. Approximately 49% of pri-
mary malignancies in the central nervous system (CNS) 
are glioblastoma (GBM), and 30% are lower-grade glioma 
(LGG)[2]. GBM has the worst prognosis with overall sur-
vival (OS) of 15 months, and most patients die from pro-
gressive disease[1]. Isocitrate dehydrogenase (IDH) mu-
tation, methylguanine-DNA methyltransferase (MGMT) 
promoter methylation, and 1p/19q-codeletion are protec-
tive factors for the prognosis of glioma patients[3, 4]. Dia-
gnosis of glioma requires tumor biopsy with consideration 
of histologic and genetic characteristics. Early diagnosis 
and precise prognosis are essential for the management of 
glioma patients. Therefore, it is crucial to identify accurate 
and predictive prognostic biomarkers for gliomas.

Super-enhancer (SE) was first proposed in 2013 as a 
set of cis-regulatory elements with super transcriptional 
activation potential to drive the expression of genes that 
define cell identity[5]. Moreover, SEs can promote the 
expression of oncogenes in numerous tumors, thereby re-
gulating tumorigenesis and progression[6]. Shang-Xin Liu 

et al reported that the expression of SOX2 was driven by 
SE. SOX2 was highly expressed in nasopharyngeal carci-
noma and was correlated with poor prognosis. Silencing 
of SOX2 suppressed tumor growth[7]. SE-driven lncRNA 
TMEM44-AS1 aggravated glioma progression through 
binding to SerpinB3 and activating Myc and EGR1/IL-6 
signaling pathways [8]. Moreover, subtype-specific SEs 
have been revealed in neuroblastoma, which were able to 
define regulatory subtypes and cell identity[9]. SE-related 
genes (SERGs) may serve as prognostic markers, and have 
been widely used to construct prognostic models in some 
tumors, such as breast cancer, hepatocellular carcinoma, 
and pancreatic cancer[10-12]. 

In the study, we comprehensively explore the role of 
SERGs in the prognosis, tumor microenvironment (TME), 
and immune features in glioma. We constructed and va-
lidated a SERGs risk model in predicting prognosis and 
immune features of 1,557 glioma patients from four data 
sets, including The Cancer Genomic Atlas (TCGA), the 
Chinese Glioma Genomic Atlas (CGGA) array, the CGGA 
sequencing, and GSE16011 from Gene Expression Omni-
bus (GEO) database.
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2. Materials and methods
2.1. Data collection

A total of 1557 glioma patients were collected from 
four data sets, including TCGA (n = 691), CGGA array (n 
= 286), the CGGA sequencing (n = 316), and GSE16011 
(n = 264) from GEO database. TCGA GBM data set was 
downloaded from UCSC Xena (https://xenabrowser.
net/datapages/?cohort=GDC%20TCGA%20Glioblas-
toma%20(GBM)&removeHub=https%3A%2F%2Fxe
na.treehouse.gi.ucsc.edu%3A443). TCGA LGG data set 
was downloaded from UCSC Xena (https://xenabrowser.
net/datapages/?cohort=GDC%20TCGA%20Lower%20
Grade%20Glioma%20(LGG)&removeHub=https%3A%
2F%2Fxena.treehouse.gi.ucsc.edu%3A443). CGGA_ar-
ray (DataSet ID: mRNA-array_301) and CGGA sequen-
cing (DataSet ID: mRNAseq_325) data sets were down-
loaded from CGGA (http://www.cgga.org.cn/download.
jsp). GSE16011 expression matrix was downloaded from 
GEO database (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE16011), and its survival data was achie-
ved from their previously published study[13]. The ex-
pression and survival data were cleaned and preprocessed 
by the tinyarray (v2.3.1) R package. 

2.2. SERGs signature construction and validation
A total of 1,126 SERGs were downloaded from 

SERGs database SEdb (http://www.licpathway.net/sedb) 
using data from GBM_Sample_02_1175 and GBM_
Sample_02_1176 samples. These genes were intersected 
with the expression matrix of the four cohorts, followed 
by Kaplan‐Meier (KM) analysis and Univariate Cox re-
gression analysis with survival (v3.3-1) and survminer 
(v0.4.9) R packages to screen SERGs correlated with OS. 
A cutoff p-value of 0.001 was used. The least absolute 
shrinkage and selection operator (LASSO) Cox regres-
sion analysis and stepwise variable selection procedure 
were conducted using glmnet (v4.1-8) and My.stepwise 
(v0.1.0) R packages respectively. Finally, the multivariate 
Cox regression analysis was used to construct the SERGs 
risk model using TCGA data set, and the remaining three 
cohorts were used as validation data sets.

2.3. Time-dependent receiver operating characteristic 
(ROC)

The timeROC (v0.4) R package was utilized to esti-
mate the 1-, 3-, and 5-year outcome of patients by using 
the timeROC function to calculate the area under curve 
(AUC) and draw time-dependent ROC curves.

2.4. Gene set enrichment analysis
The Gene Ontology (GO) biological processes and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pa-
thways were downloaded from C2: curated gene sets of 
the Molecular Signatures Database (MSigDB) by using 
the msigdbr (v7.5.1) R package, and scored using the 
GSVA (v1.46.0) R package. Remarkably different GO 
terms and KEGG pathways between high- and low-risk 
glioma patients were shown in heat map with pheatmap 
(v1.0.12) R package.

2.5. Immune subtype analysis
According to previously published study, tumor samples 

were sub-grouped into six subtypes: C1~C6 (Wound Hea-
ling, IFN‐γ Dominant, Inflammatory, Lymphocyte Deple-

ted, Immunologically Quiet, and TGF‐β Dominant res-
pectively)[14]. The ImmuneSubtypeClassifier (v0.1.0) R 
package was applied to divide tumor samples into immune 
subgroups. 

2.6. Nomogram and Decline Curve Analysis (DCA)
The rms (v6.6-0) R package was used to assess the to-

tal risk considering risk score, IDH mutation, age, gender, 
grade, MTMG promoter methylation, and 1p/19q-code-
letion status. The ggDCA (v1.2) R package was used to 
assess the benefit of nomogram compared with other risk 
factors via DCA.

2.7. Figure and plot generation
jvenn (http://jvenn.toulouse.inra.fr/app/example.html), 

an interactive Venn diagram viewer, was used to drawn the 
venn plot[15]. The survminer (v0.4.9) R package was used 
for forest plot and survival KM plot. The ggbeeswarm 
(v0.7.2) R package was used for beeswarm plot. The other 
plots were drawn by pheatmap (v1.0.12) and ggplot2 
(v3.4.3) R packages.

3. Results
3.1. Construction of SERGs risk model

The work workflow of this study is shown in Figure 1. 
A total of 1,126 SERGs were extracted from the data sets 
of two glioma patients in the SE database SEdb. These 
SERGs were intersected with the expression matrix of four 
independent cohorts, and the correlation between intersec-
ted SERGs and survival of glioma patients was analyzed 
using KM analysis and Univariate Cox regression analysis 
to screen SERGs correlated with OS. A total of 109 pro-
gnosis-related SERGs were further processed by LASSO 
Cox regression analysis and stepwise variable selection 
procedure (Figure 2A-C), and 13 SERGs were eventually 
selected to construct risk model using multivariate Cox 
regression analysis (Figure 2D).

3.2. Evaluation of SERGs risk signature
The SERGs risk score was calculated as following: 

risk score = (0.5346596 × CD58) + (-1.0720239 × 
ARHGAP12) + (0.2988874 × EPHB2) + (0.2807450 
× P2RX7) + (-0.5792164 × HDDC2) + (0.8381438 × 
TGIF1) + (-0.4469411 × MKNK2) + (-0.3374566 × 
NOL4) + (0.3447619 × RNF112) + (0.2395863 × CTSB) 
+ (0.6181895 × ATP6V0A1) + (-0.3495064 × MYH9) + 
(0.4345116 × FNDC3B). The time-dependent ROC curves 

Fig. 1. Workflow of this study.
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Since IDH mutation, MGMT promoter methylation, 
and 1p/19q-codeletion are correlated with the prognosis 
of glioma patients, we also explored their correlation with 
SERGs risk scores. Wild-type IDH, unmethylated MGMT 
promoter, and 1p19q non-codeletion patients had higher 
SERGs risk scores in TCGA cohort (Figure 7A), and simi-
lar results were observed in CGGA cohort (Figure 7B). 
These results suggest that the SERGs signature was remar-
kably associated with the clinicopathological features of 
glioma patients.

were drawn for all four cohorts, and the results showed 
that the SERGs risk model had good performance in the 
prediction of 3-year survival across all four cohorts with 
AUC >0.8 (Figure 3A). According to the median risk 
score, glioma patients were grouped into high- and low-
risk groups. The KM plots showed that low-risk patients 
had better prognosis than high-risk patients across all four 
cohorts (Fig. 3B).

The risk score and outcome distribution of glioma pa-
tients showed that alive patients were mainly enriched in 
low-risk group, and the expression of the selected thirteen 
SERGs was consistent across all four cohorts (Figure 4), 
indicating an accurate prediction potential of SERGs risk 
signature for glioma.

3.3. Correlation between SERGs signature and clinical 
features

Since the SERGs signature had remarkable correlation 
with prognosis of glioma patients and showed accurate 
prediction potential, we further investigated the associa-
tion between the SERGs signature and clinical features. 
GBM patients had higher risk scores than LGG patients 
(Figure 5A), indicating that SERGs score correlated with 
grade of glioma. Low-risk LGG patients had better pro-
gnosis than high-risk LGG patients in most cohorts, while 
this was not significant in GBM patients (Figure 5B), sug-
gesting that the SERGs signature may have more accurate 
prediction potential in LGG than GBM patients. 

However, the SERGs risk score showed no signifi-
cant difference between males and females (Figure 6A). 
Patients aged less than 60 years old had lower risk scores 
than patients older than 60 years old (Figure 6B). We fur-
ther explored the prognostic potential of the SERGs signa-
ture in glioma patients aged less than 60 years old, and 
the results showed that low-risk glioma patients had better 
prognosis than high-risk glioma patients in patients aged 
less than 60 years old across all four cohorts (Figure 6C).

Fig. 2. Construction of risk model using thirteen SERGs. (A) Inter-
sected SERGs correlated with OS of glioma patients analyzed using 
KM survival analysis and univariable Cox regression analysis from 
four independent cohorts. (B, C) The LASSO coefficient profiles were 
generated by 109 prognostic SERGs. A total of 24 SERGs were selec-
ted using the log(λ).min as cutoff value, for stepwise variable selec-
tion process with My.stepwise (v0.1.0) R package to achieve the best 
candidates. (D) Multivariate Cox regression analysis of the thirteen 
SERGs of glioma patients in TCGA cohort.

Fig. 3. Evaluation of SERGs risk signature. (A) The time-dependent 
ROC curves of SERGs risk signature were drawn with the timeROC 
R package. (B) The KM plots of glioma patients were grouped into 
high- and low-risk groups.

Fig. 4. Risk score and outcome distribution of glioma patients.

Fig. 5. Correlation between the SERGs signature and grade. (A) 
The beeswarm plot showed GMB patients had higher risk score than 
LGG patients. (B) The KM survival plots showed that low-risk LGG 
patients had better prognosis than high-risk LGG patients.
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3.4. Gene set variation in different patients grouped by 
SERGs risk score

Gene set variation sometimes provides more com-
prehensive information than single gene differences. 
GSVA was utilized to compare the functional differences 
between low- and high-risk glioma patients concerning 
the KEGG and GO terms from the Msigdb database. The 
high-risk patients enriched KEGG pathways included base 
excision repair, mismatch repair, DNA replication, and 
cell cycle (Figure 8A). The high-risk patients enriched GO 
terms included mitotic spindle midzone assembly, chro-
matin organization, programmed cell death, and dTMP 
metabolic process (Figure 8B). These results suggest that 
the SERGs signature may correlated with the expression 
of genes involved in cell cycle.

3.5. Correlation between the SERGs signature and im-
mune features

We further explored the correlation between the SERGs 
signature and immune features in glioma patients. The im-
mune subtype distribution in all four cohorts as analyzed 
using the ImmuneSubtypeClassifier (v0.1.0) R package. 
The lymphocyte-depleted C4 subtype which represented 
a high M2 response, made the majority in high-risk group, 
while the immunologically quiet C5 subtype accounted for 
the majority in low-risk group in three out of four cohorts 
(Figure 9). These data indicate that high SERGs risk score 
represents immunosuppressive status in glioma patients.

The expression of immune checkpoints was widely 
used as indicator of the response to immunotherapy. We 
further explored the expression of these genes in the two 
risk groups. Most immune checkpoints showed signifi-

Fig. 6. Correlation between the SERGs signature and gender and 
age. (A) The beeswarm plot showed no significant difference in risk 
score between male and female glioma patients. (B) The beeswarm 
plot showed that patients aged less than 60 years old had lower risk 
scores than those aged over 60 years old. (C) The KM plots showed 
that low-risk patients had better prognoses than high-risk patients in 
patients aged less than 60 years old.

Fig. 7. Correlation between SERGs risk scores and IDH muta-
tion, MGMT promoter methylation, and 1p/19q-codeletion. (A) 
The boxplot revealed the difference of the SERGs risk scores between 
wildtype IDH (WT) and mutant, unmethylated and methylated 
MGMT promoter, 1p19q codeletion and non-codeletion glioma pa-
tients in TCGA cohort. (D) The boxplot revealed the difference of the 
SERGs risk scores between wildtype IDH and mutant, 1p19q codele-
tion and non-codeletion glioma patients in CGGA cohort.

Fig. 8. Functional annotation of the SERGs signature. (A) The top 
20 KEGG pathways enriched in high‐risk glioma patients in TCGA 
cohort. (B) The top 20 GO terms enriched in high‐risk glioma patients 
in TCGA cohort.

Fig. 9. Correlation between the SERGs signature and immune fea-
tures. Distribution of immune subtypes across all four cohorts.
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cantly different expressions between the two risk groups 
(Figure 10A). The SERGs risk score was positively cor-
related with PDCD1 (PD-1) and CD274 (PD-L1) in three 
out of the four cohorts (Figure 10B). These results suggest 
that the SERGs risk signature may predict the immunothe-
rapy response of glioma patients.

3.6. Establishment of a predictive nomogram
Univariate and multivariate Cox regression analyses 

were used to select potential risk factors correlated with 
OS (Figure 11A, B). The SERGs risk score was remar-
kably correlated with OS in both univariate and multiva-
riate Cox regression analyses. To make the SERGs risk 
model useful in clinic, a nomogram was established inclu-
ding risk score, IDH mutation, age, gender, grade, MGMT 
methylation, and 1p19q co-deletion in the TCGA cohort 
(Figure 11C). The SERGs risk score had the most weight 
as depicted in the nomogram, followed by age. The cali-
bration plot showed consensus between predicted 1-, 3-, 
and 5-year OS and actual survival (Figure 11D). The DCA 
curves clarified that the nomogram predicted the OS with 
more sensitivity compared with other clinical factors (Fi-
gure 11E).

4. Discussion
SEs are cis-regulatory elements with strong transcrip-

tional activation capacity and play vital roles in defining 
cell identity. SEs have indispensable impact on tumorige-
nesis and progression by up-regulating the expression level 
of oncogenes. An increasing number of studies suggested 
that SERGs signature could be able to predict prognosis of 
numerous tumors, including breast cancer, hepatocellular 
carcinoma, and pancreatic cancer[10-12]. Therefore, we 
conjectured that SERGs might be a predicting factor for 
glioma. Furthermore, we also investigated the correlation 
between SERGs and immune features of glioma patients. 
In this study, a novel 13-gene risk model was construc-
ted to explore the predicting performance of SERGs in 
the prognosis, TME, and immune features in glioma. We 
comprehensively investigated the prediction potential of 
this risk model and highlighted the prospect of SEGGs for 
immunotherapy in glioma patients.

We extracted a total of 1126 SERGs from Sedb data-
base. Then, KM analysis and Univariate Cox regression 
analysis were applied to select 109 OS-related coexisting 
genes among TCGA, CGGA, CGGA-array and GSE16011 
date sets. Finally, we identified 13 SERGs according to 
Multivariate Cox regression analysis for the purpose of 
establishing a prognostic model. The SERGs signature 
was consisted of CD58, ARHGAP12, EPHB2, P2RX7, 
HDDC2, TGIF1, MKNK2, NOL4, RNF112, CTSB, AT-
P6V0A1, MYH9, and FNDC3B. Among them, CD58, 
EPHB2, P2RX7, TGIF1, RNF112, CTSB, ATP6V0A1, 
and FNDC3B were risky genes, which are relevant to ad-
verse prognosis for glioma patients in our study. Whereas 
ARHGAP12, HDDC2, MKNK2, NOL4, and MYH9 are 
associated with promising prognoses as protective factors. 

Wu et al. demonstrated that CD58 was one of the sur-
vival-related immunosuppressive factors in LGG patients, 
significantly correlated with inhibitory checkpoint genes 
responsible for the immune escape in LGG[16]. EPHB2 
was an oncogenic receptor, and overexpressing EPHB2 
promoted the invasion potential of glioma cells, while 
EPHB2 antibody significantly declined the migration and 

invasion of glioblastomas[17]. P2RX7 contributed to glu-
cose metabolism, thereby facilitating the cell proliferation, 
migration, invasion and development of tumors, such as 
osteosarcoma[18]. However, the biological functions of 
P2RX7 in glioma progression were seldom reported. The 
expression level of TGIF1 was positively correlated with 
proliferation and invasion of glioma cells, and TGIF1 

Fig. 10. Correlation between the SERGs signature and immune 
checkpoints. (A) Heat map showed the expression of immune check-
points between two groups. (B) Correlation between SERGs risk score 
and expression of PDCD1 and CD274. ***p<0.001, ****p<0.0001.

Fig. 11. Establishment of a predictive nomogram. (A, B) Univariate 
and multivariate Cox regression analyses of the SERGs risk score and 
clinical factors in predicting the prognosis of glioma patients. (C) A 
nomogram was constructed based on the SERGs risk scores and cli-
nical factors in TCGA cohort. (D) Calibration plot of the nomogram 
in TCGA cohort. (E) DCA curve of the nomogram, IDH, age, gender, 
grade, MGMT methylation, and 1p19q co-deletion for glioma patients 
in TCGA cohort.
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overexpression indicated shorter OS time in glioma pa-
tients[19]. RNF112 was a member of RING finger protein 
family and enriched in brain. RNF112 not only sustained 
the structure and functions of brain, but also decreased 
the brain injury which was derived from intracerebral 
hemorrhage[20, 21]. CTSB was remarkably upregulated 
in HGG and positively related to the levels of glioma-in-
filtrating immune cells (tumor-associated macrophages, 
myeloid-derived suppressor cells, regulatory T cells ), 
leading to immunosuppression and therapeutic resistance 
of gliomas, revealing CTSB may be a promising biomar-
ker and potential target for gliomas[22]. ATP6V0A1 was 
a subunit in the V-ATPase and controlled the pathway of 
proton translocation. ATP6V0A1 mutations caused lyso-
somal and autophagic dysfunction in neurodevelopmen-
tal disorders, suggesting the essential role of ATP6V0A1 
in brain development[23]. The FNDC3B expression was 
significantly correlated with immune checkpoint genes, 
especially B7-H3, which acted as a suppressive factor 
for T-cell activities. Down-regulating the expression of 
FNDC3B may be served as an immune-related treatment 
for gliomas[24]. Although ARHGAP12 was a protective 
factor in our research, it was over-expressed and stimu-
lated the tumor migration in Gastric Cancer[25] and Na-
sopharyngeal carcinoma[26]. HDDC2 was related to the 
maintenance of pluripotency in human cells and interfered 
with the process of neural differentiation[27]. MKNK2 
was one of the downstream effectors in MAPK-signaling 
pathway and regulated the protein synthesis process. The 
higher MKNK2 expression was reported in glioblastoma 
multiforme compared with other subtypes of glioma, and 
MKNK2 inhibition presented an antiproliferative effect in 
glioblastoma cells[28]. NOL4 has played tumor suppres-
sive function and signaled a favourable prognosis in hepa-
tocellular carcinoma according to a recent study[29]. By 
contrast, NOL4 exhibited positive correlation with poor 
prognosis of Endometrial cancer as an immune-infiltrating 
related gene[30]. Several studies argued that MYH9 was a 
risk gene, increasing the proliferation and chemoradiothe-
rapy resistance of glioma cells, leading to an unfavorable 
prognosis for patients with glioma[31]. This was contrary 
to our exploration, and further research was required to 
verify the role of MYH9 in glioma.

The above-mentioned studies supported that majority 
of 13 genes may affect the occurrence, progression and 
immunological condition of tumor cells. Subsequently, we 
established a SERGs risk model using the 13 genes, which 
successfully differentiated the immune subtypes and mole-
cular subtypes of glioma. The time-dependent ROC ana-
lysis indicated that SERGs signature had the best perfor-
mance in 3-year survival prediction for glioma patients in 
TCGA cohort with the largest AUC value of 0.94. Additio-
nally, the glioma patients in four databases were divided 
into two risk groups on the basis of median risk score, and 
KM analysis illustrated that the risk score was negatively 
correlated with favorable OS.

Immune subtypes were closely linked to prognosis, 
immune-modulatory, and tumor immune environment in 
malignant tumors. We conducted immune analysis in dif-
ferent groups and found that the largest proportion of glio-
ma samples were C4 subtypes in high-risk group. In the 
meanwhile, the most of samples in low-risk group were 
C5 subtypes. The C4 subtype means the unfavorable pro-
gnosis in glioma[32]. This confirmed the prediction poten-

tial of SERGs signature in immune features and prognosis 
for glioma patients. Moreover, we also found that immune 
checkpoint genes were differentially expressed in two risk 
groups. PDCD1 and CD274 were up-regulated in high-
risk group and exhibited positive correlation with SERGs 
risk score. These results suggest that SERGs might serve 
as novel immunotherapy targets for glioma.

We further constructed a predictive nomogram in com-
bination of risk score, IDH mutation, age, gender, grade, 
MTMG promoter methylation, and 1p/19q-codeletion sta-
tus. The results demonstrated that SERGs risk score was 
the most sensitive factor relating to OS. Therefore, the 
SERGs signature could accurately predict the prognosis 
of glioma patients.

Our current work provided evidence for targeting 
SERGs in immunotherapy and prognosis for gliomas. 
However, several limitations still needed to be resolved in 
this study. Firstly, we analyzed the functions of SERGs si-
gnature utilizing publicly available databases, subsequent 
validation experiments based on silencing the 13-gene 
should be conducted to confirm the specific mechanism of 
SERGs in gliomas. Secondly, the correlations of 13 genes 
with each other need further investigation. Thirdly, the 
accuracy of this risk model in GBM patients remains to 
be improved.

In this study, we systematically identified and validated 
a novel super-enhancer-related gene (SERGs) signature 
that robustly predicts prognosis and immune microen-
vironment features in glioma patients. By integrating 
transcriptomic and clinical data from four large, inde-
pendent cohorts encompassing 1,557 glioma patients, we 
constructed a 13-gene SERGs-based risk model with high 
predictive accuracy for overall survival. The model was 
consistently validated across all cohorts, demonstrating 
its reliability and generalizability. Our findings reveal that 
the SERGs signature is significantly associated with key 
clinicopathological features, including tumor grade, age, 
IDH mutation status, MGMT promoter methylation, and 
1p/19q co-deletion. Importantly, the risk score derived 
from the SERGs model stratified patients into high- and 
low-risk groups with distinct survival outcomes, parti-
cularly among lower-grade glioma patients. Functional 
enrichment analyses indicated that high-risk patients exhi-
bit upregulation of cell cycle and DNA repair pathways, 
suggesting a link between super-enhancer activity and 
proliferative tumor phenotypes. Furthermore, the SERGs 
signature was closely correlated with immune subtypes 
and the expression of immune checkpoint genes, implying 
a role in shaping the tumor immune microenvironment 
and potentially influencing immunotherapy responses. We 
also developed a clinically applicable nomogram incor-
porating the SERGs risk score and established prognostic 
factors, which outperformed traditional clinical variables 
in predicting patient outcomes. Collectively, our study 
highlights the prognostic and immunological relevance of 
SERGs in glioma and provides a robust molecular tool for 
risk stratification and personalized clinical management. 
These results also suggest that SERGs may serve as pro-
mising biomarkers and therapeutic targets, paving the way 
for improved prognostic assessment and the development 
of novel immunotherapeutic strategies in glioma.

Abbreviations
CNS (central nervous system); GBM (glioblastoma); 



108

Super-enhancer gene signature in glioma prognosis.                                                                                                                                                                        Cell. Mol. Biol. 2025, 71(6): 102-109

LGG (lower-grade glioma); OS (overall survival); IDH 
(isocitrate dehydrogenase); MGMT (methylguanine-DNA 
methyltransferase); SE (super-enhancer); SERGs (SE 
related genes); TME (tumor microenvironment); TCGA 
(The Cancer Genomic Atlas); CGGA (The Chinese Glio-
ma Genome Atlas); GEO (Gene Expression Omnibus); 
KM analysis (Kaplan‐Meier analysis); LASSO (the least 
absolute shrinkage and selection operator); ROC (receiver 
operating characteristic); AUC (the area under curve); GO 
(Gene Ontology); KEGG (Kyoto Encyclopedia of Genes 
and Genomes); DCA (Decline Curve Analysis). 

Availability of data and materials
The datasets used during this study can be downloaded 
from public databases including TCGA, CGGA, and GEO. 
TCGA-LGG: https://portal.gdc.cancer.gov/projects/TC-
GA-LGG
TCGA-GBM: https://portal.gdc.cancer.gov/projects/TC-
GA-GBM
CGGA (mRNAseq_325): http://www.cgga.org.cn/
download?file=download/20220620/CGGA.mR-
NAseq_325.Read_Counts -genes .20220620. tx t .
zip&type=mRNAseq_325_counts&time=20220620
CGGA_array (mRNA-array_301): http://www.cgga.org.
cn/download?file=download/20200506/CGGA.mRNA_
array_301_gene_level.20200506.txt.zip&type=mRNA_
array_301_gene_level&time=20200506
GSE16011: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE16011

Funding
This study was supported by the Natural Science Founda-
tion of Hubei Province (2022CFB150 to Huijun Li).

Contributions
Daoyuan Yue: Investigation. Xiong Wang: Writing – ori-
ginal draft, Visualization, Validation, Investigation. Bin 
Luo: Investigation, Conceptualization. Huijun Li: Data 
curation, Methodology. Yibadaiti Tulufu: Data curation, 
Methodology.

Ethics declarations
Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

References 

1. Schaff LR, Mellinghoff IK (2023) Glioblastoma and Other Pri-
mary Brain Malignancies in Adults: A Review. JAMA 329 (7): 
574-587. doi: 10.1001/jama.2023.0023

2. Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, 
Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA, 
Cloughesy TF, DeGroot JF, Galanis E, Gilbert MR, Hegi ME, 
Horbinski C, Huang RY, Lassman AB, Le Rhun E, Lim M, Mehta 
MP, Mellinghoff IK, Minniti G, Nathanson D, Platten M, Preusser 
M, Roth P, Sanson M, Schiff D, Short SC, Taphoorn MJB, Tonn 
JC, Tsang J, Verhaak RGW, von Deimling A, Wick W, Zadeh G, 
Reardon DA, Aldape KD, van den Bent MJ (2020) Glioblastoma 
in adults: a Society for Neuro-Oncology (SNO) and European So-
ciety of Neuro-Oncology (EANO) consensus review on current 
management and future directions. Neuro Oncol 22 (8): 1073-

1113. doi: 10.1093/neuonc/noaa106
3. Pinson H, Silversmit G, Vanhauwaert D, Vanschoenbeek K, Okito 

JK, De Vleeschouwer S, Boterberg T, De Gendt C (2023) Epi-
demiology and survival of adult-type diffuse glioma in Belgium 
during the molecular era. Neuro Oncol. doi: 10.1093/neuonc/
noad158

4. Kinslow CJ, Rae AI, Taparra K, Kumar P, Siegelin MD, Grinband 
J, Gill BJA, McKhann GM, Sisti MB, Bruce JN, Canoll PD, Iwa-
moto FM, Horowitz DP, Kachnic LA, Neugut AI, Yu JB, Cheng 
SK, Wang TJC (2023) MGMT Promoter Methylation Predicts 
Overall Survival after Chemotherapy for 1p/19q-Codeleted Glio-
mas. Clin Cancer Res 29 (21): 4399-4407. doi: 10.1158/1078-
0432.CCR-23-1295

5. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, 
Hoke HA, Young RA (2013) Super-enhancers in the control of 
cell identity and disease. Cell 155 (4): 934-947. doi: 10.1016/j.
cell.2013.09.053

6. Chen S, Pu J, Bai J, Yin Y, Wu K, Wang J, Shuai X, Gao J, Tao K, 
Wang G, Li H (2018) EZH2 promotes hepatocellular carcinoma 
progression through modulating miR-22/galectin-9 axis. J Exp 
Clin Cancer Res 37 (1): 3. doi: 10.1186/s13046-017-0670-6

7. Liu SX, Wang C, Lin RB, Ding WY, Roy G, Wang HB, Yang T, 
Liu Q, Luo YL, Jin SL, Zeng MS, Zhao B, Zhong Q (2023) Super-
enhancer driven SOX2 promotes tumor formation by chromatin 
re-organization in nasopharyngeal carcinoma. EBioMedicine 98: 
104870. doi: 10.1016/j.ebiom.2023.104870

8. Bian E, Chen X, Cheng L, Cheng M, Chen Z, Yue X, Zhang Z, 
Chen J, Sun L, Huang K, Huang C, Fang Z, Zhao B, Li J (2021) 
Super-enhancer-associated TMEM44-AS1 aggravated glioma 
progression by forming a positive feedback loop with Myc. J Exp 
Clin Cancer Res 40 (1): 337. doi: 10.1186/s13046-021-02129-9

9. Gartlgruber M, Sharma AK, Quintero A, Dreidax D, Jansky 
S, Park YG, Kreth S, Meder J, Doncevic D, Saary P, Toprak 
UH, Ishaque N, Afanasyeva E, Wecht E, Koster J, Versteeg R, 
Grunewald TGP, Jones DTW, Pfister SM, Henrich KO, van Nes J, 
Herrmann C, Westermann F (2021) Super enhancers define regu-
latory subtypes and cell identity in neuroblastoma. Nat Cancer 2 
(1): 114-128. doi: 10.1038/s43018-020-00145-w

10. Wu Q, Tao X, Luo Y, Zheng S, Lin N, Xie X (2023) A novel super-
enhancer-related gene signature predicts prognosis and immune 
microenvironment for breast cancer. BMC Cancer 23 (1): 776. 
doi: 10.1186/s12885-023-11241-2

11. Wei X, Zhou Z, Long M, Lin Q, Qiu M, Chen P, Huang Q, Qiu 
J, Jiang Y, Wen Q, Liu Y, Li R, Nong C, Guo Q, Yu H, Zhou 
X (2023) A novel signature constructed by super-enhancer-rela-
ted genes for the prediction of prognosis in hepatocellular carci-
noma and associated with immune infiltration. Front Oncol 13: 
1043203. doi: 10.3389/fonc.2023.1043203

12. Chen D, Cao Y, Tang H, Zang L, Yao N, Zhu Y, Jiang Y, Zhai S, 
Liu Y, Shi M, Zhao S, Wang W, Wen C, Peng C, Chen H, Deng X, 
Jiang L, Shen B (2023) Comprehensive machine learning-genera-
ted classifier identifies pro-metastatic characteristics and predicts 
individual treatment in pancreatic cancer: A multicenter cohort 
study based on super-enhancer profiling. Theranostics 13 (10): 
3290-3309. doi: 10.7150/thno.84978

13. Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs 
AP, Duijm JE, Daemen A, Bleeker FE, Bralten LB, Kloosterhof 
NK, De Moor B, Eilers PH, van der Spek PJ, Kros JM, Sillevis 
Smitt PA, van den Bent MJ, French PJ (2009) Intrinsic gene ex-
pression profiles of gliomas are a better predictor of survival than 
histology. Cancer Res 69 (23): 9065-9072. doi: 10.1158/0008-
5472.CAN-09-2307

14. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, 
Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer Immunoge-



109

Super-enhancer gene signature in glioma prognosis.                                                                                                                                                                        Cell. Mol. Biol. 2025, 71(6): 102-109

nomic Analyses Reveal Genotype-Immunophenotype Relation-
ships and Predictors of Response to Checkpoint Blockade. Cell 
Rep 18 (1): 248-262. doi: 10.1016/j.celrep.2016.12.019

15. Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C (2014) 
jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 
15 (1): 293. doi: 10.1186/1471-2105-15-293

16. Wu MW, Chen YY, Hua G, Liu CH (2023) The CD2-CD58 axis: 
A novel marker predicting poor prognosis in patients with low-
grade gliomas and potential therapeutic approaches. Immunity 
Inflammation and Disease 11 (10). doi: 10.1002/iid3.1022

17. Zhu BC, Li YF, Mao XJ (2022) A review on the role of different 
ephrins in glioma. European Journal of Pharmacology 917. doi: 
10.1016/j.ejphar.2021.174588

18. Sheng GH, Gao Y, Ding Q, Zhang RZ, Wang TQ, Jing SZ, Zhao 
HQ, Ma T, Wu H, Yang Y (2023) P2RX7 promotes osteosarcoma 
progression and glucose metabolism by enhancing c-Myc stabi-
lization. Journal of Translational Medicine 21 (1). doi: 10.1186/
s12967-023-03985-z

19. Wang BY, Ma Q, Wang XL, Guo KS, Liu ZD, Li G (2022) TGIF1 
overexpression promotes glioma progression and worsens patient 
prognosis. Cancer Medicine 11 (24): 5113-5128. doi: 10.1002/
cam4.4822

20. Tsou JH, Yang YC, Pao PC, Lin HC, Huang NK, Lin ST, Hsu KS, 
Yeh CM, Lee KH, Kuo CJ, Yang DM, Lin JH, Chang WC, Lee YC 
(2017) Important Roles of Ring Finger Protein 112 in Embryonic 
Vascular Development and Brain Functions. Molecular Neurobio-
logy 54 (3): 2286-2300. doi: 10.1007/s12035-016-9812-7

21. Zhang F, Zhang CH (2018) Rnf112 deletion protects brain against 
intracerebral hemorrhage (ICH) in mice by inhibiting TLR-4/NF-
κB pathway. Biochemical and Biophysical Research Communica-
tions 507 (1-4): 43-50. doi: 10.1016/j.bbrc.2018.10.141

22. Ma KM, Chen X, Liu WH, Chen SH, Yang CL, Yang J (2022) 
CTSB is a negative prognostic biomarker and therapeutic target 
associated with immune cells infiltration and immunosuppression 
in gliomas. Scientific Reports 12 (1). doi: 10.1038/s41598-022-
08346-2

23. Aoto K, Kato M, Akita T, Nakashima M, Mutoh H, Akasaka N, 
Tohyama J, Nomura Y, Hoshino K, Ago Y, Tanaka R, Epstein O, 
Ben-Haim R, Heyman E, Miyazaki T, Belal H, Takabayashi S, 
Ohba C, Takata A, Mizuguchi T, Miyatake S, Miyake N, Fukuda 
A, Matsumoto N, Saitsu H (2021) ATP6V0A1 encoding the a1-
subunit of the V0 domain of vacuolar H+-ATPases is essential for 
brain development in humans and mice. Nature Communications 
12 (1). doi: 10.1038/s41467-021-22389-5

24. Wang X, Huang YP, Li SS, Zhang H (2022) Integrated machine 
learning methods identify FNDC3B as a potential prognostic bio-

marker and correlated with immune infiltrates in glioma. Frontiers 
in Immunology 13. doi: 10.3389/fimmu.2022.1027154

25. Yue Q, Zhang Y, Bai J, Duan X, Wang H (2022) Identification 
of Five N6-Methylandenosine-Related ncRNA Signatures to Pre-
dict the Overall Survival of Patients with Gastric Cancer. Disease 
Markers 2022. doi: 10.1155/2022/7765900

26. Fan CM, Qu HK, Xiong F, Tang YY, Tang T, Zhang LS, Mo YZ, 
Li XY, Guo C, Zhang SS, Gong ZJ, Li Z, Xiang B, Deng H, Zhou 
M, Liao QJ, Zhou YJ, Li XL, Li Y, Li GY, Wang F, Zeng ZY 
(2021) CircARHGAP12 promotes nasopharyngeal carcinoma mi-
gration and invasion via ezrin-mediated cytoskeletal remodeling. 
Cancer Letters 496: 41-56. doi: 10.1016/j.canlet.2020.09.006

27. Hasegawa Y, Taylor D, Ovchinnikov DA, Wolvetang EJ, de Tor-
renté L, Mar JC (2015) Variability of Gene Expression Identifies 
Transcriptional Regulators of Early Human Embryonic Develop-
ment. Plos Genetics 11 (8). doi: 10.1371/journal.pgen.1005428

28. Chen C, Cheng CD, Wu H, Wang ZW, Wang L, Jiang ZR, Wang 
AL, Hu C, Dong YF, Niu WX (2021) Osimertinib successfully 
combats EGFR-negative glioblastoma cells by inhibiting the 
MAPK pathway. Acta Pharmacologica Sinica 42 (1): 108-114. 
doi: 10.1038/S41401-020-0418-2

29. Xu YY, Xu X, Ni XJ, Pan JM, Chen MP, Lin YP, Zhao ZY, Zhang 
L, Ge NL, Song GH, Zhang J (2023) Gene-based cancer-testis 
antigens as prognostic indicators in hepatocellular carcinoma. 
Heliyon 9 (3). doi: 10.1016/j.heliyon.2023.e13269

30. Li WX, Qin YJ, Chen XJ, Wang XL (2023) Mining of clinical and 
prognosis related genes in the tumor microenvironment of endo-
metrial cancer: A field synopsis of observational study. Medicine 
102 (25). doi: 10.1097/md.0000000000034047

31. Chen ZG, Yan X, Miao CF, Liu LY, Liu S, Xia Y, Fang WY, Zheng 
DD, Luo QS (2023) Targeting MYH9 represses USP14-mediated 
NAP1L1 deubiquitination and cell proliferation in glioma. Cancer 
Cell International 23 (1). doi: 10.1186/s12935-023-03050-1

32. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang 
THO, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, 
Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra 
R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu 
JF, Liu YX, Rader J, Dhankani V, Reynolds SM, Bowlby R, 
Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Rao 
A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Peda-
mallu CS, Bullman S, Ojesina AI, Lamb A, Zhou WD, Shen H, 
Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin 
CE, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, 
Shmulevich L, Canc Genome Atlas Res N (2018) The Immune 
Landscape of Cancer. Immunity 48 (4): 812-830. doi: 10.1016/j.
immuni.2018.03.023


