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1. Introduction 
Rheumatoid arthritis (RA) is a chronic autoimmune 

disease characterized by inflammation of the joints, lea-
ding to progressive joint damage and disability [1]. The 
pathogenesis of RA involves a complex interplay of gene-
tic, environmental, and immunological factors, resulting in 
the dysregulation of immune responses and the breakdown 
of self-tolerance. Key molecular mechanisms implicated 
in RA include the aberrant activation of T and B lympho-
cytes, the production of pro-inflammatory cytokines such 
as TNF-α, IL-6, and IL-1β, and the dysregulated activity 
of intracellular signaling pathways like the JAK-STAT 
pathway. Post-translational modifications, such as citrulli-
nation, play a significant role in the pathogenesis of RA by 
generating neo-antigens that drive autoantibody produc-
tion [2, 3].

Conventional treatments for RA, including disease-
modifying antirheumatic drugs (DMARDs) and biologic 
agents, aim to suppress inflammation and alleviate symp-
toms. However, many patients do not achieve sustained 

remission or experience adverse effects from these thera-
pies. Therefore, innovative therapeutic strategies are nee-
ded to target the underlying molecular mechanisms of RA 
and restore immune homeostasis [4].

Chimeric antigen receptor (CAR)-T cell therapy has 
emerged as a promising approach for treating hematolo-
gical malignancies and is now being explored for autoim-
mune diseases, including RA. CAR-T therapy involves 
genetically engineering a patient's T cells to express a 
synthetic receptor that redirects their cytotoxic activity 
towards specific target cells. The CAR molecule typi-
cally consists of an extracellular antigen-binding domain 
(usually a single-chain variable fragment, scFv), a hinge 
region, a transmembrane domain, and intracellular signa-
ling domains. First-generation CARs contained only the 
CD3ζ signaling domain, while second-generation CARs 
incorporate additional costimulatory domains such as 
CD28 or 4-1BB to enhance T cell activation, prolifera-
tion, and persistence. Third-generation CARs combine 
multiple costimulatory domains, and fourth-generation 
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CARs (also known as TRUCKs) are engineered to secrete 
cytokines or express other effector molecules to enhance 
their therapeutic efficacy. Recent advances in CAR-T cell 
engineering include the development of dual-targeting 
CARs, which recognize multiple antigens simultaneously, 
and regulatory CAR-T cells (CAR-Tregs), which suppress 
immune responses and promote tolerance. The manufac-
turing of CAR-T cells involves several steps, including T 
cell isolation, activation, transduction with a viral vector 
encoding the CAR gene, expansion, and infusion back into 
the patient. Techniques such as flow cytometry, quantita-
tive PCR, and ELISA are used to monitor CAR-T cell phe-
notype, expression, and function during the manufacturing 
process and after infusion [5, 6].

The underlying causes and mechanisms of the disease 
are not entirely clear, but research suggests that the process 
of citrullination may play a role. The presence of anti-ci-
trullinated protein antibodies in the blood is highly specific 
for RA and is associated with the severity and progression 
of the disease [7, 8]. RA is a gradually progressive disease, 
and without proper treatment, it can lead to irreversible 
joint damage, affecting physical and emotional well-being, 
as well as increased mortality due to complications and 
comorbidities [9-11].

Advances in pharmaceuticals have led to new therapeu-
tic approaches for the treatment of RA, but the lack of un-
derstanding of the molecular mechanisms is a challenge in 
finding a cure. Conventional synthetic disease-modifying 
antirheumatic drugs (DMARDs), biologic DMARDs, and 
targeted synthetic DMARDs are available to maintain joint 
function, but their use is associated with many significant 
side effects and requires careful monitoring [12]. Targeted 
synthetic DMARDs, such as JAK inhibitors, have shown 
promise as a new class of drugs. Non-steroidal anti-in-
flammatory drugs (NSAIDs) and glucocorticoids are also 
used as adjunctive therapies to relieve inflammation and 
pain. The goal of RA therapy is to achieve a state of remis-
sion and minimize any potential harmful side effects [13].

Despite the availability of treatment options, a signifi-
cant number of RA patients still do not respond to current 
therapies. Thus, the development of new treatments and 
the adoption of a more personalized treatment approach 
are becoming very important. CAR-T therapy involves 
genetically modifying a patient’s T cells to express chime-
ric antigen receptors (CARs) that target specific antigens. 
CD19 is the most studied target for CAR-based therapy. It 
is expressed in normal and neoplastic B cells and is main-
tained at high levels throughout all stages of B cell deve-
lopment [14]. CD19+ malignancies were the first cancers 
to be eliminated using CAR-engineered human T cells 
administered intravenously to mice. Various CD19 CARs 
successfully eliminated B cell tumors, leading to ongoing 
clinical trials and FDA approval. Similarly, B cell deple-
tion may also be a promising therapeutic strategy for the 
treatment of autoimmune diseases. Moreover, other strate-
gies such as limited B cell depletion by targeting self-an-
tigens, dual targeting and engineering of regulatory T cells 
(Tregs) are also being explored [15]. 

This review aims to analyze the current status of CAR-
T therapy in RA, focusing on the molecular mechanisms, 
clinical applications, and future directions of this innova-
tive therapeutic approach. We will discuss the different 
CAR-T cell strategies being developed for RA, including 
targeting B cells via CD19, simultaneously targeting B 

cells and plasma cells, and targeting specific autoantigens 
using chimeric autoantibody receptors (CAARs). Additio-
nally, we will explore the latest advances in CAR-T cell 
engineering and their potential to improve the efficacy and 
safety of CAR-T therapy for RA.

2. Mechanisms and advances in CAR-T therapy: From 
molecular design to clinical application

Chimeric antigen receptors (CARs) are modified recep-
tors that alter the specificity and activity of T lymphocytes 
and other immune cells by fusing the variable regions 
of high-affinity monoclonal antibodies with intracellular 
signaling components of the T cell receptor (TCR) com-
plex. Their modulatory structure consists of four domains: 
ligand-binding, spacer, transmembrane, and cytoplasmic 
domains [16]. CARs bind antigens through an extracel-
lular portion consisting of a ligand-binding domain and a 
spacer, typically constructed using single-chain variable 
fragments (scFv) derived from antibodies, library Fab 
fragments, or natural ligands. Most commonly used scFvs 
can function autonomously or as modular units for CAR T 
cell therapy, determining the ability of modified T cells to 
recognize and target desired antigens [17]. CAR-mediated 
recognition is independent of the major histocompatibility 
complex, allowing it to overcome tolerance to self-an-
tigens and target any chosen antigen expressed on the cell 
surface. CARs also control T cell growth and persistence, 
influencing both efficacy and safety. Linking CARs to co-
stimulatory ligands, chimeric co-stimulatory receptors, 
or cytokines can improve T cell efficacy, specificity, and 
safety [18].

T cells expressing first-generation CARs lacking a cos-
timulatory domain are insufficient for T cell activation and 
show limited efficacy in vivo. Second-generation CARs 
have been developed to address this issue by adding a cos-
timulatory domain, typically CD28 and 4-1BB (CD137). 
Costimulatory domains provide additional signals upon 
antigen recognition that are critical for enhancing T cell 
proliferation, cytokine release, cytotoxic activity, memo-
ry formation, and persistence [19]. CAR T cells with the 
intracellular CD28 costimulatory domain demonstrated 
significantly higher proliferation and persistence compa-
red to cells lacking a costimulatory domain. Moreover, 
CAR-T cells containing the CD28 domain showed better 
early growth and cytotoxic activity than cells containing 
the 41BB costimulatory domain, which showed better 
long-term survival [20]. Third-generation CARs include 
multiple costimulatory domains, while fourth-generation 
CARs are engineered to express additional inducible trans-
gene elements, typically for inducible cytokine secretion, 
to improve T cell function and reduce off-target toxicity 
[21].

Personalized clinical manufacturing of CAR-T cells 
involves several steps followed by quality control testing 
throughout the process. The first step is the collection of 
white blood cells from the patient (autologous) or donor 
(allogeneic) from peripheral blood using leukapheresis, 
where only white blood cells are extracted and the remai-
ning blood products are returned to the circulation [22]. 
Second, T cells are augmented, separated and washed with 
leukapheresis buffer [23]. Third, at the CD4/CD8 com-
position level, T cell subsets are separated using specific 
conjugates or markers with antibody-coated beads. The 
isolated cells are then cultured and activated with puri-
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utilized universal anti-fluorescein isothiocyanate (FITC) 
CAR T cells that were fused with FITC-labeled RA-im-
munodominant peptides. This study demonstrated that 
multiple hybridoma cell strains could be targeted and eli-
minated by anti-FITC CAR T cells via lysis, depending on 
the availability of the corresponding FITC-labeled antigen 
peptides, offering a solution to the diverse nature of RA 
treatment with CAR T cells. This approach aimed to speci-
fically eliminate different types of autoreactive B cell sub-
sets, providing a more selective and permanent treatment 
option for RA patients [29].

Moreover, this study also tested the off-target effects of 
anti-FITC CAR T cells and found no significant toxicity 
to FcγR+Raw264.7 cells unless excess specific antibody 
was added. These results suggest that off-target toxicity is 
unlikely and is primarily caused by low-avidity antibodies 
alone, which constitute a small fraction of total immuno-
globulin G. Moreover, no significant cytotoxic activity 
was observed for the control groups, demonstrating the 
high selectivity of this approach and suggesting its poten-
tial to target pathogenic autoimmune cells without affec-
ting protective immunity [29].

The main limitation of the study is that it demonstrated 
the elimination of autoreactive B cells only in vitro and 
had no evidence of therapeutic effects of the approach in 
vivo . Another concern is the stability of the peptide me-
diator [29]. This proof-of-concept study still represents a 
significant step forward in the field of targeted treatment of 
systemic autoimmune diseases and opens up opportunities 
for additional research and development in this area.

3.2. CD4+ targeted CAR T cell therapy
One study used an approach to treating autoimmune 

diseases that targets only the pathogenic CD4+ T cells res-
ponsible for autoimmune disease pathology by incorpora-
ting HLA-DRB1×01:01 (DR1) and a model autoantigen 
as part of the CAR molecular structure. The resulting DR1 
CAR T cells lyse CD4+ T cells in an antigen-specific man-
ner, targeting only cells expressing a DR1-restricted TCR 
specific for an antigen peptide. Studies in a humanized 
mouse model of RA using DR1-collagen type II (CII) T 
cells showed that they effectively identify and lyse CII-
specific CD4+ T cells and reduce the T cell autoimmune 
response and RA severity in vivo. DR1 CAR T cells also 
reduce the severity of RA as well as the B cell autoantibody 
response [30]. The specificity of CAR T cells can be repro-

fied allogeneic or autologous APCs or by administration 
of beads coated with anti-CD3 or anti-CD28 monoclonal 
antibodies (or both together with feeder cells and interleu-
kins) [24]. IL-2 is the most common growth factor used 
to induce rapid T cell expansion . A recent study reported 
that a cytokine cocktail of IL-2, IL-7 and IL-15 induced 
better expansion of CD4 and CD8 CAR-T cells [25]. 
Fourth, various methods have been considered to deliver 
nucleic acids into the derived T cells. Generally, delivery 
of foreign genetic material (RNA or DNA) into human 
cells can be accomplished using viral or non-viral vectors 
[26]. The fifth step is to expand the CAR-T cells using bio-
reactors that help the cells divide and express the CAR on 
the cell surface. Finally, when the cells reach the clinically 
required volume, they are reintroduced into the patient as 
a therapeutic agent [27].

2.1. Comparison of CAR-T cell generations
The evolution of CAR-T cell therapy is marked by 

distinct generations, each designed to address limitations 
in efficacy and safety. As shown in Table 1, first-genera-
tion CARs lacked costimulatory domains, leading to li-
mited persistence and efficacy. Second-generation CARs 
incorporated single costimulatory domains like CD28 or 
4-1BB, enhancing T cell activation and survival. Third-ge-
neration CARs combined multiple costimulatory domains 
to further improve T cell function, while fourth-generation 
CARs, known as TRUCKs, were engineered to express in-
ducible cytokines, enhancing their therapeutic impact [5].

2.2. Molecular mechanisms and signaling pathways
The efficacy of CAR-T cell therapy is rooted in its mo-

lecular mechanisms. Table 2 outlines the key components 
involved in CAR-T cell signaling, including the CD3ζ do-
main for TCR-like activation and costimulatory domains 
such as CD28 and 4-1BB. These domains enhance T cell 
proliferation, survival, and cytotoxic activity through pa-
thways like PI3K-AKT and NF-κB. Understanding these 
mechanisms is crucial for optimizing CAR design and 
improving therapeutic outcomes [28].

3. The most promising developments in the field of 
CAR - T therapy today
3.1. Anti-fluorescein isothiocyanate (FITC) CAR T-cell 
therapy

In 2020, a proof-of-concept study was published that 

Table 1. Comparison of CAR-T cell generations [5].

Generation Structural Features Advantages Limitations
First-Gen CD3ζ signaling domain Simple design Limited efficacy, poor persistence
Second-Gen CD3ζ + CD28 or 4-1BB Enhanced proliferation and persistence Potential for excessive cytokine release

Third-Gen Multiple costimulatory 
domains (e.g., CD28 + 4-1BB) Improved T cell activation and survival Increased complexity, potential for toxicity

Fourth-Gen 
(TRUCKs) Inducible cytokine secretion Enhanced tumor microenvironment 

modulation Complexity in design and regulation

Table 2. Molecular mechanisms and signaling pathways [28].

Component Function Signaling Pathway
CD3ζ Domain TCR-like signaling activation PI3K-AKT, NF-κB
CD28 Costimulation Enhanced T cell activation and proliferation PI3K-AKT, NF-κB, mTOR
4-1BB Costimulation Long-term survival and persistence NF-κB, PI3K-AKT
CAR-T Cell Exhaustion Reduced functionality due to chronic antigen exposure PD-1/PD-L1 interaction, TGF-β signaling
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grammed by altering the antigen peptide sequence, which 
is an advantage for its use in autoimmune diseases. These 
results suggest that CAR T cells based on Antibodies reco-
gnizing major histocompatibility complex (MHC) class II 
may have potential for treating autoimmune diseases in an 
antigen-specific manner [31].

DR1 CAR T cells were found to retain their cytoly-
tic function for 90 days in culture, even when expressing 
markers associated with CD8 T cell exhaustion. Howe-
ver, although they showed function in vivo, they failed to 
persist as a memory phenotype due to the low frequency 
of target cells and the lower affinity of DR1 CAR for the 
target TCR. The frequency of antigen-stimulated CD4+ T 
cells was found to be low and the MHC class II binding af-
finity of the TCR was lower than that of antibodies. Conti-
nuous stimulation of DR1 CAR T cells via DR1 CAR was 
insufficient to maintain the cells in culture for a long time. 
Thus, novel signaling domains for CARs have been deve-
loped to improve clinical efficacy, which may be beneficial 
for DR1 CAR function [29].

3.3. Dual targeting for optimal treatment of autoim-
mune diseases

Early in the disease course, CD19-based therapy can 
prevent the accumulation of autoreactive plasma cells, 
but later memory plasma cells can accumulate and lead to 
persistent autoantibody production despite B cell deple-
tion [32]. CD19, one of the earliest and most specific B-
lineage cell markers, may not be expressed on all plasma 
cells. Plasma cells express CD19 heterogeneously, and 
memory plasma cells are part of the CD19-negative plas-
ma cell population [33]. In addition, the cytokine B-cell 
activating factor (BAFF), a member of the TNF superfa-
mily, plays a critical role in promoting the survival and 
function of B cells and memory plasma cells [34]. BAFF 
can bind to the BAFF receptor (BAFFR), the B-cell trans-
membrane activator and maturation antigen (BCMA), and 
these receptors play a distinctive role in regulating B-cell 
function [35]. Overexpression of BAFF leads to the deve-
lopment of autoreactive B cells and exhibits autoimmune-
like symptoms in mice, highlighting the significance of 
impaired BAFF expression in autoimmunity [36]. Moreo-
ver, autoimmune diseases are associated with persistently 
high BAFF levels, making inhibition of BAFF signaling a 
promising therapeutic approach. Furthermore, BCMA has 
been shown to be essential for the survival of plasma cells 
and memory plasma cells. Therefore, targeting both B cells 
and memory plasma cells may be more effective, leading 
to complete clearance of autoantibodies. By combining 
different types of CD19 CARs, such as BAFF, BCMA or 
BAFFR, the efficacy of CAR-T cells can be improved. This 
can be achieved by engineering two pools of T cells, each 
expressing different CARs, or by incorporating multiple 
antigen recognition domains into a single CAR construct, 
called a composite CAR (cCAR) [37]. An early phase 1 
clinical trial has recently begun to evaluate the efficacy of 
CD19-BAFF CAR-T cell therapy in autoimmune diseases. 
However, several clinical trials have begun to investigate 
the safety and efficacy of CD19-BCMA CAR-T cell infu-
sion in various autoimmune conditions.

3.4. Engineering of chimeric autoantibody receptors
The use of chimeric autoantibody receptors (CAAR) 

T cells to precisely target B cell subsets specific for an 

autoantigen and overcome complete B cell depletion is 
an emerging area of research. For autoimmune diseases 
caused by specific autoantibodies produced by individual 
B cell clones, these therapeutic T cells can be genetically 
engineered with a CAR targeting a specific autoantibody 
antigen on the autoreactive cells to suppress or modulate 
the immune response without affecting healthy tissue. 
CAAR-Ts provide a more targeted and personalized ap-
proach compared to traditional immunosuppressive the-
rapy. Similar to CD19-specific CAR-T cells, CAAR-Ts 
function similarly by specifically targeting autoantigens, 
resulting in the destruction of pathological immune cells. 
Furthermore, natural killer (NK) cells expressing CAAR 
can also specifically remove pathological B cells in vitro 
and could potentially be investigated in future clinical 
trials [38]. Preclinical data have shown encouraging po-
tential for CAAR-T cells in the treatment of a number of 
autoimmune diseases [39].

3.5. Engineered Tregs (CAR-Tregs)
Regulatory T lymphocytes (Tregs) are a small hete-

rogeneous subset of T lymphocytes that play a vital role 
in maintaining immunological balance. Tregs suppress 
the immune response by limiting the ability of antigen-
presenting cells to initiate an adaptive immune response, 
inducing apoptosis of effector T cells, disrupting metabo-
lic pathways, and releasing anti-inflammatory cytokines 
[40]. Dysregulation of these processes can lead to Treg 
dysfunction, which can also manifest as activation defects. 
This creates an imbalance in the ratio between resting and 
activated Tregs, promoting autoimmunity. Moreover, Treg 
levels or functional changes are associated with many 
autoimmune disorders, and decreased Treg frequency has 
been identified in several autoimmune diseases, which 
may be associated with disease severity [41]. Modification 
of low frequency or dysfunction of Tregs is considered a 
new approach to the treatment of autoimmune diseases, 
with the main goal of reducing inflammation, facilitating 
tissue repair and restoring immune tolerance. Phase 1 cli-
nical trials have shown that infusion of autologous ex vivo 
-expanded Tregs is safe and well tolerated, without signi-
ficant side effects. Antigen-specific Tregs have demonstra-
ted greater efficacy and reduced risk of general immuno-
suppression compared to polyclonal Tregs in preclinical 
trials, indicating a potential therapeutic strategy for the fu-
ture [42]. Tregs have been found to have impaired function 
or numbers in RA patients and may therefore be used as 
a promising therapeutic target [43]. A phase I clinical trial 
is currently underway to evaluate the safety and efficacy 
of autologous CAR-Treg cell-based therapy for the treat-
ment of RA. This therapy specifically targets citrullinated 
proteins accumulated in disease-related inflamed tissue to 
reduce inflammation and restore immune tolerance. Ove-
rall, further studies are needed to investigate the efficacy 
of CAR-Tregs, identify disease-specific targets, improve 
the manufacturing process by identifying suitable sources 
for Treg isolation, and improve marker selection and pro-
liferative capacity [44].

4. Problems of the effectiveness and safety of current 
CAR - T therapy and ways to solve them
4.1. Immunosuppression

The duration of optimal CAR-T cell activity in the 
treatment of autoimmune diseases is a matter of debate. In 
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cancer treatment, long-term maintenance of CAR-T cells 
is beneficial to maintain ongoing immune monitoring. 
However, in autoimmune diseases, prolonged CAR-T cell 
activity may lead to immunosuppression or organ damage 
due to excessive elimination of normal immune cells. The-
refore, it may be preferable to have limited or controlled 
expression of CAR-T cells in the treatment of autoimmune 
diseases to minimize potential long-term toxicity [45]. 
Future strategies should therefore introduce molecular 
switches or CAR constructs with shorter half-lives that are 
expressed transiently or degraded after a certain period to 
reduce long-term immune suppression. The introduction 
of molecular switches may help manage immune-media-
ted toxicities such as cytokine release syndrome (CRS) 
and immune effector cell-associated neurotoxicity syn-
drome (ICANS). CRS is the most common and potentially 
life-threatening inflammatory reaction caused by rapid 
activation and expansion of CAR-T cells. This can lead to 
excessive cytokine release, resulting in symptoms such as 
high fever, hypotension, and in rare cases, multiple organ 
failure. ICANS is related to CRS but presents with dis-
tinct symptoms such as confusion, seizures, and cerebral 
edema. CRS often precedes neurotoxic events, sugges-
ting a temporal and mechanistic link [46]. Suicide swit-
ches provide a way to rapidly kill CAR-T cells in cases 
of severe toxicity, ensuring safety. On/off switches offer 
external control by activating CAR expression only in the 
presence of a specific drug, allowing precise titration of 
therapy based on patient response. Additionally, logic sys-
tems such as AND and NOT improve targeting specificity 
by activating CAR-T cells only when specific conditions 
are met, thereby minimizing damage to healthy tissue. 
These innovations improve safety and efficacy, making 
CAR-T therapy more adaptable to complex diseases such 
as autoimmunity [47].

Shorter half-life CAR constructs, such as messenger 
RNA (mRNA)-based CAR T cells, offer an alternative 
strategy to achieve transient and limited CAR expression, 
providing a more controlled treatment. Moreover, this also 
allows for in vivo reprogramming of T cells , which favors 
this approach due to faster production and lower cost [48].

4.2. Secondary malignancy
So far, CAR T cell therapy has shown encouraging re-

sults, demonstrating feasibility, tolerability, and efficacy in 
the treatment of autoimmune diseases. However, longer-
term evaluations are needed before they are adopted for 
widespread clinical use. The FDA recently reported T cell 
malignancies in patients treated with autologous CAR T 
cell targeting BCMA or CD19. The risk of secondary mali-
gnancy is a concern for all approved products in this cate-
gory. Although the benefits of these products still outweigh 
the potential drawbacks of their approved use, the FDA is 
investigating the potential for serious consequences such 
as hospitalization and death and is considering regulatory 
actions [49]. Therefore, the safety of autoimmune trials 
should be at a higher level. The choice of an adequate 
cell engineering strategy for the treatment of autoimmune 
diseases depends on the pathogenesis of the underlying di-
sease, its severity and duration, and associated conditions. 
Furthermore, given the complex and heterogeneous nature 
of autoimmune diseases, further study of other targets as 
well as the efficacy and safety of multi-target interventions 
is needed [50].

4.3. Production and cost
One factor contributing to the high cost of CAR T cell 

therapy is the expense associated with its production and 
administration. The cost does not cover the costs associa-
ted with manufacturing the drug, managing potential long-
term side effects, or continuing other lines of treatment 
after relapse. Leukapheresis is the first step in a multi-step 
process to create CAR T cells. T cells are then produced 
through genetic engineering, which involves the use of 
viral vectors or non-viral methods to add CAR expression. 
Finally, the transformed T cells are expanded in a control-
led environment [51]. Each of these procedures may re-
quire specialized instruments, knowledgeable personnel, 
and rigorous quality assurance protocols. Local cell manu-
facturing facilities that produce experimental items face 
higher production costs due to the continuing high cost 
of reagents and lentiviral vectors that are often associa-
ted with individual items or product groups. This contrasts 
with commercial manufacturers that produce cell therapies 
on a large scale. The individualized nature of autologous 
CAR-T cell therapy increases manufacturing costs. Addi-
tional logistical costs for the apheresis procedure, cryopre-
servation, transportation of patient-derived cells to specia-
lized manufacturing facilities, and return of the finished 
therapeutic product to the clinical site are also imposed 
by patient-specific characteristics [52]. Therefore, alterna-
tive strategies are being explored to address these issues. 
Decentralized or on-site manufacturing using a fully auto-
mated closed system can significantly shorten the manu-
facturing process and reduce the cost of therapy [53].

5. Discussion
Rheumatoid arthritis (RA) is a chronic autoimmune 

disorder characterized by synovial inflammation, autoanti-
body production, and progressive joint destruction. While 
current therapies, such as DMARDs and biologics, aim to 
suppress inflammation, they often fail to restore immune 
tolerance or address the root molecular drivers of disease. 
CAR-T cell therapy, initially pioneered in oncology, has 
emerged as a groundbreaking strategy to recalibrate im-
mune dysregulation in RA through precise targeting of 
pathogenic immune cells. This section explores the mole-
cular mechanisms, clinical implications, and future direc-
tions of CAR-T therapy in RA, contextualized within the 
framework of cellular and molecular biology [54, 55].

RA is a gradually progressive disease and without pro-
per treatment it can lead to irreversible joint damage, af-
fecting physical and emotional well-being, and increased 
mortality due to complications and comorbidities [56]. 
Despite the availability of treatments, a significant number 
of RA patients still do not respond to current medications. 
Thus, the development of new treatments and the adoption 
of a more personalized treatment approach are becoming 
very important [57]. The concept of chimeric antigen re-
ceptor (CAR) T-cell therapy originated from cancer immu-
notherapy and was quickly adapted and developed for the 
treatment of autoimmune diseases, including RA. CAR T 
cell therapy offers significant advantages over traditional 
treatments because it targets the root cause of the disease: 
autoreactive immune cells. Unlike traditional treatments 
that suppress the immune system in general, CAR T cell 
therapy has the potential to specifically target and elimi-
nate pathogenic immune cells that cause an autoimmune 
response. This precise approach helps preserve overall 
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immune function, reducing the risk of infections and other 
side effects. In addition, CAR T cells can be engineered 
with molecular switches that allow their activity to be 
controlled in real time, improving both safety and efficacy 
[31]. This strategy offers the potential for long-term remis-
sion by directly targeting the underlying drivers of autoim-
munity rather than simply managing symptoms. Undoub-
tedly, CAR T cell therapy is a compelling therapeutic 
approach for a variety of autoimmune diseases, although 
there are still unsolved issues that need to be addressed for 
widespread clinical use.

5.1. Molecular mechanisms of CAR-T action in RA
CAR-T cells are engineered to recognize specific 

antigens on autoreactive immune cells, bypassing MHC 
restrictions and enabling direct elimination of pathogenic 
B cells, plasma cells, or cytokine-producing T cells. Key 
molecular components include:

• Antigen-binding domains: Single-chain variable 
fragments (scFvs) derived from monoclonal antibodies 
enable CAR-T cells to bind surface antigens such as CD19 
(B cells), CD138 (plasma cells), or citrullinated peptides 
(RA-specific neoepitopes).

• Costimulatory signaling domains: Incorpora-
tion of CD28 or 4-1BB enhances T cell activation, pro-
liferation, and persistence. For instance, CD28 promotes 
rapid cytotoxic activity, while 4-1BB supports long-term 
survival via NF-κB and PI3K-AKT pathways.

• Regulatory CAR-T cells (CAR-Tregs): Engi-
neered to express immunosuppressive cytokines (e.g., IL-
10, TGF-β) or Fas-ligand, CAR-Tregs modulate inflam-
matory microenvironments and restore immune tolerance.

In preclinical RA models, CD19-targeted CAR-T cells 
deplete autoreactive B cells, reducing autoantibodies like 
rheumatoid factor (RF) and anti-cyclic citrullinated pep-
tide (anti-CCP). Similarly, chimeric autoantibody receptor 
T cells (CAAR-T) targeting autoantigens such as citrul-
linated vimentin or collagen demonstrate selective elimi-
nation of autoantibody-producing B cells without broad 
immunosuppression [29, 58].

5.2. Engineering innovations and clinical translation
Recent advances in CAR-T engineering address RA-

specific challenges:
• Dual-targeting CARs: Simultaneous targeting 

of CD19 and BCMA enhances efficacy against both B 
cells and long-lived plasma cells, critical drivers of RA 
pathogenesis.

• Inducible safety switches: Caspase-9 or HSV-
TK "suicide genes" enable controlled CAR-T cell deple-
tion to mitigate cytokine release syndrome (CRS) or off-
target effects.

• Armored CAR-T cells: Secretion of anti-inflam-
matory cytokines (e.g., IL-4, IL-35) counteracts synovial 

inflammation while preserving tissue homeostasis.
Clinical trials in refractory RA patients highlight sus-

tained remission and reduced Disease Activity Score-28 
(DAS-28) following CAR-T therapy. For example, early-
phase studies report >50% reduction in serum autoanti-
body titers and synovial inflammation within 3–6 months 
post-infusion. However, challenges persist, including 
CAR-T cell exhaustion due to chronic antigen exposure 
and limited trafficking to joint tissues [59].

5.3. Challenges in cellular persistence and safety
While CAR-T therapy offers durable responses, mole-

cular hurdles remain:
• Tumor microenvironment (TME) resistance: 

Synovial hypoxia, TGF-β, and PD-L1 expression impair 
CAR-T cell infiltration and function. Strategies like engi-
neering hypoxia-resistant CAR-T cells or co-administe-
ring checkpoint inhibitors are under investigation.

• CRS and neurotoxicity: Excessive IFN-γ and 
IL-6 release can trigger systemic inflammation. Tocilizu-
mab (IL-6R antagonist) and anakinra (IL-1 blocker) are 
used prophylactically, while next-gen CARs incorporate 
self-limiting cytokine circuits.

Manufacturing complexity: Autologous CAR-T pro-
duction faces scalability issues. Allogeneic "off-the-shelf" 
CAR-T cells, generated via CRISPR-Cas9 editing to eli-
minate TCR and HLA expression, aim to reduce costs and 
delays [60].

5.4. Future directions in CAR-T cell biology
Emerging molecular strategies aim to optimize CAR-T 

therapy for RA:
1. CAR-Tregs for immune tolerance: Engineering 

Tregs to express CARs targeting synovial dendritic cells 
or citrullinated antigens could suppress localized inflam-
mation while preserving systemic immunity.

2. Gene-editing synergies: Combining CAR-T cells 
with CRISPR-mediated knockout of autoimmune-associa-
ted genes (e.g., PTPN22, HLA-DRB1) may enhance the-
rapeutic precision.

Biomaterial-assisted delivery: Hydrogel-based CAR-
T cell carriers improve retention in joint tissues, enabling 
localized action and reducing systemic toxicity [61].

5.4.1. Manufacturing process of CAR-T cells
The clinical application of CAR-T cell therapy involves 

a complex manufacturing process. As detailed in Table 3, 
this process begins with leukapheresis to collect periphe-
ral blood mononuclear cells (PBMCs), followed by T cell 
isolation and activation. Gene transfer using viral vectors 
introduces the CAR construct into T cells, which are then 
expanded in bioreactors. Quality control measures ensure 
the viability, potency, and CAR expression of the final pro-
duct before reinfusion into patients [62].

Table 3. Manufacturing process of CAR-T cells [62].

Step Description Techniques Used
1. Leukapheresis Collection of PBMCs Centrifugation, cell separation
2. T Cell Isolation Enrichment of T cells Magnetic bead separation, flow cytometry
3. Gene Transfer Introduction of CAR gene Viral vectors (lentivirus, retrovirus), electroporation
4. Expansion Cultivation and growth of CAR-T cells Bioreactors, IL-2 supplementation
5. Quality Control Testing for CAR expression, viability, and potency Flow cytometry, PCR, functional assays
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5.4.2. CAR-T therapy in autoimmune diseases
CAR-T cell therapy is being explored for various 

autoimmune diseases, offering a promising approach to 
selectively target pathogenic immune cells. Table 4 hi-
ghlights the application of CAR-T therapy in diseases such 
as rheumatoid arthritis, multiple sclerosis, and type 1 dia-
betes. For RA, targeting CD19-positive B cells has shown 
potential in reducing autoantibody production. In MS, 
suppressing autoreactive T cells aims to reduce disease 
activity. Similarly, in T1D, CAR-T cells are designed to 
prevent β-cell destruction, preserving insulin production 
[63].

6. Conclusion
In conclusion, CAR-T cell therapy offers a transfor-

mative approach for treating autoimmune diseases like 
rheumatoid arthritis by precisely targeting pathogenic 
immune cells and autoantigens. This strategy leverages 
the molecular engineering of T cells to restore immune 
balance, potentially overcoming the limitations of conven-
tional therapies. While preliminary studies demonstrate 
promising outcomes, further research is essential to eluci-
date the clinical efficacy, safety, and long-term effects of 
CAR-T therapy. Key challenges include optimizing CAR 
design, dosing regimens, and delivery methods, as well as 
addressing technical and economic barriers. By integra-
ting insights from cellular and molecular biology, CAR-
T therapy holds significant potential to revolutionize the 
management of autoimmune diseases, providing patients 
with targeted, durable, and safe therapeutic options.
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