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TLR3 and its roles in the pathogenesis of type 2 diabetes
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Abstract
Type 2 diabetes (T2D) is the most prevalent non-infectious disease and leads to several complications including nephropathy and retinopathy. The mechanisms and 
signaling molecules responsible for the development and progression of T2D, as well as its associated complications are yet to be identified. It would appear that 
genetic backgrounds and immunological parameters of people susceptible to T2D may play important roles in induction of T2D.  TLRs participate in several cellular 
pathways which can induce activation of proliferation. However, in contradiction, these pathways can also be associated with apoptosis. The multiple roles of TLRs 
and their signaling molecules associated with T2D pathways makes them candidates for the induction of immune-regulated diseases like T2D.  TLR3 has been 
identified as an intracellular ligand and subsequently activates signaling molecules via the TRIF pathway. Therefore, the alteration of expression of TLR3 and their 
functions may lead to inappropriate induction of immune system functions that are related to T2D disease. The aim of this review was to collect recent data regarding 
the roles of TLR3 in the progression and pathogenesis of T2D.
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Introduction

The frequencies of type 2 diabetes (T2D) make it the 
most prevalent type of diabetes, and its incidence conti-
nues to increase globally (1). It is expected that T2D 
and its complications will affect 300 million people 
by 2025 (1). Recent investigations showed that gene-
tic, immunologic and environmental parameters play a 
major role in the pathogenesis of T2D and its complica-
tions (2, 3). It has been proposed that T2D is an immune 
system dependent disorder in which the expression or 
activation profiles of immune related molecules are 
altered (4). Toll like receptors (TLRs), are important 
intra/extra-innate immunity sensors and are involved in 
crucial cellular pathways via the activation of intracel-
lular signaling molecules (5).  TLRs are evolutionarily 
conserved proteins expressed in phagocytic cells such 
as macrophages, dendritic cells and neutrophils. TLRs 
consist of 14 members including TLR1, 2, 4, 5 and 6 
which are expressed on cytoplasmic membranes whe-
reas TLR3, 7, 8 and 9 are expressed inside the endo-
somes of human cells (6). At least 10 different TLRs 
are found in humans, while, other members are not 
expressed on/in human cells. TLRs recognize various 
pathogen associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs), which 
lead to activation of two important intracellular signa-
ling pathways including Toll/IL-1R-domain-containing 
adaptor inducing IFN-β (TRIF) and myeloid differen-

tiation primary response gene 88 (MYD88) dependent 
pathways (6). Activation of the signaling pathways can 
regulate several functions of human immune cells inclu-
ding expression of inflammatory cytokines, MHC and 
homing molecules (7). 

TLR3 is a unique intracellular TLR which recognizes 
several ligands such as dsRNA viruses and regulates 
cell functions in a TRIF dependent manner (8, 9). It has 
been documented that TLR3 can regulate the functions 
of immune cells, pancreatic β-cell, adipocytes and also 
glucose homeostasis (10, 11). So, altered expression 
or function of TLR3 may not only be associated with 
altered immune responses but it may also participate 
in β-cell function and glucose homeostasis which are 
associated with T2D. Based on research which identi-
fies T2D is an immune system related disease and the 
pivotal roles played by TLR3 in the function of immune 
cells and β-cells, it is hypothesized that the TLR3 may 
participate in the development of T2D and its complica-
tions. Therefore, the present review article was designed 
to review the recent data regarding the plausible mecha-
nisms that associate TLR3 and its signaling molecules 
in the development and pathogenesis of T2D and its 
complications. 

TLR3; introducing, ligands and intracellular signa-
ling

The TLR3 gene (also known as CD283) is located 
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on 4q35 (12) and is highly conserved in several species 
(13). TLR3 plays a key role in the recognition of PAMPs 
and DAMPs which leads to phosphorylation and acti-
vation of several transcription factors including inter-
feron regulatory factor 3 (IRF3), nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) and 
activator protein 1 (AP-1). These transcription factors 
participate in several cell functions including activation 
of signal transduction, proliferation and in some cases 
apoptosis (14-16). Like other TLRs, the structure of 
TLR3 consists of three sections including the extracellu-
lar N-terminal domains, a hydrophobic transmembrane 
domain and an intracellular Toll/interleukin-1 receptor 
(TIR) domain (17). TLR3 localizes to the endoplasmic 
reticulum (ER), the lysosome and the endosome (18). 
TLR3 is expressed in several immune cells, such as mo-
nocytes, dendritic cells and NK cells, however, it is also 
expressed in non-immune cells including epithelial cells 
and β cells of the pancreas (10, 19). 

The main ligand for TLR3 is endogenous dsRNA, 
however, TLR3 can also be activated by polyriboinosi-
nic polyribocytidylic acid (poly I:C), which is a stable 
synthetic dsRNA analogue (20, 21). Interestingly, it 
has been demonstrated that TLR3 preferentially binds 
synthetic poly I:C compared to viral dsRNA, leading to 
the proposal that TLR3 recognizes unique dsRNA struc-
tures (22).  Furthermore, TLR3 detects cell-associated 
poly I:C more efficiently than soluble dsRNA. Leading 
to a further hypothesis that TLR3 detects dsRNA from 
dying cells preferentially to that of live cells (23). 

In contrast to other TLRs, TLR3 uses TRIF as the 
unique adaptor factor, thereby activating transcription 
factors via the TRIF pathway (24). The association of 
TLR3 with its ligand leads to interactions between the 

TIR domain of TLR3 and TRIF (25) and subsequent 
activation of downstream intracellular signaling mole-
cules such as TNF receptor associated factor 6 (TRAF6), 
receptor-interaction protein 1 (RIP-1) and tank-binding 
kinase 1 (TBK1) (26). These events lead to activation of 
IRF3, AP-1 and NF-κB, which are transcription factors 
that regulate inflammation (27, 28) and are responsible 
for transcription from several genes which are involved 
in cell activation, proliferation and apoptosis (Figure 1) 
(29). 

TLR3 and type 2 diabetes

There is some controversy in the literature regarding 
the potential functions of TLR3 and its intracellular 
signaling in the progression and pathogenesis of T2D. 
There is some evidence which demonstrates that TLR3 
acts directly on the function and replication of pancrea-
tic β-cells. For instance, Wang and colleagues (2013) 
revealed that TLR3 and its related signaling molecules 
like TRIF and p38 play a negative role in the prolife-
ration of pancreatic β-cell lines (30). Accordingly, they 
have stimulated TLR3, using poly I:C, and found that 
cyclin D1/2 protein levels were decreased in pancreatic 
β-cell lines which led to inhibited proliferation of these 
cells (30). They also reported that MG132, a proteasome 
inhibitor, resolved the inhibitory function of poly I:C 
(30). Leading to the speculation that TLR3 inhibits pan-
creatic β-cell line proliferation by regulating the degra-
dation of cyclin D in a ubiquitin/proteasome-dependent 
manner.  More evidence for the role of TLR3 was shown 
in, RIP-B7.1 transgenic mice that express B7.1, which 
is an important costimulatory molecule, in pancreatic is-
lets. These mice developed diabetes after treatment with 

Figure 1. TLR3 intracellular signaling. The figure demonstrated that TLR3 activate pro-inflammatory transcription factors (IRF3, AP-1 and NF-
κB) via TRIF signaling pathway. 
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approach for the treatment of metabolic diseases inclu-
ding T2D.

It has been documented that T2D is associated with 
several complications such as nephropathy (40), reti-
nopathy (41), periodontitis (42), cognitive dysfunction 
and dementia (43), cystic fibrosis (44) and hypertension 
(45). The main mechanisms which lead to the develop-
ment of these complications during T2D are yet to be 
fully comprehended. However, one immerging theme is 
that inflammation is a common factor in these compli-
cations and that this may be induced by TLRs including 
TLR3. For example, it has been documented that serum 
levels of downstream molecules of the TLR3 pathway, 
including pro-inflammatory cytokines increased in 
patients with T2D complications such as periodontitis 
(42), nephropathy (40) and cardiovascular diseases (46). 

It has been documented that inflammation is strongly 
associated with T2D and its complications (40). For ins-
tance, previous studies demonstrated that expressions 
of pro-inflammatory cytokines are elevated during T2D 
(40). Additionally, as mentioned in previous sections 
and also figure 1, TLR3 plays significant roles in induc-
tion of inflammation, hence, it seems that the expres-
sion status, genetic variations and the molecular roles 
of TLR3 in the development and pathogenesis of T2D 
complications should be explored further.

Conclusion remarks

According to the all data presented in this review, 
some hypothesizes may be proposed; firstly, TLR3 po-
tentially participates in proliferation, function and apop-
tosis of pancreatic β-cells. Secondly, TLR3 and its mo-
lecular signaling may induce inflammation which leads 
to progression and deterioration of T2D and its related 
complications. Thirdly, TLR3 and the expression of its 
signaling molecules are altered in immune cells and/
or pancreatic β-cells of T2D patients which may be in-
duced by several factors including environmental, host 
genetic and epigenetic factors.  However, further studies 
are required to confirm these hypotheses and improve 
our knowledge regarding the roles of TLR3 in the deve-
lopment and pathogenesis of T2D. Potentially, agonists/
antagonists of TLR3 may be considered as leads for the 
treatment of T2D and its complications.
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