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Abstract
It is known, for a long time, that angiotensin II (Ang II) could contribute to atherogenesis (AS) and plaque vulnerability, however the underlying mechanisms are 
poorly understood. Dendritic cells (DCs) are critical for the development of both inflammation and atherogenesis. In the present study, we tried to investigate the 
influence of AngII on the expression of connexin43 (Cx43) in DCs, as well as the effect of AngII on AS. After mouse bone marrow-derived dendritic cells (BMDCs) 
were treated by Ang II with or without Valsartan, the expression of Cx43 was quantified by Western Blots. The expression of Cx43 and CD40 (one marker of DCs) of 
DCs derived from AS plaques of ApoE-/- mice was detected by immunohistochemistry double staining. The morphology of atherosclerotic plaque was indicated by 
immunohistochemistry staining of smooth muscle cells. The expression of Cx43 (P < 0.05) was increased significantly in mouse BMDCs after treatment with AngII. 
In atherosclerotic plaques from ApoE-/- mice expressing high levels of endogenous AngII, upregulation of Cx43 (P < 0.01) and CD40 (P < 0.01) was observed. The 
upregulation and pro-atherogenesis effect of Cx43 could be blocked by the AngII type 1 receptor blocker Valsartan, both in vitro and in vivo. AngII may promote 
atherosclerosis and plaque vulnerability by increasing the expression of Cx43 in DCs and inducing the maturation of DCs through the angiotensin II type 1 receptor.
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Introduction

It is well known that atherosclerosis (AS) is a chro-
nic inflammatory disease. For the past several years, 
dendritic cells (DCs), one kind of the most powerful 
antigen presenting cells, have drawn much attention for 
its irreplaceable role in the pathogenesis of AS. DCs 
reside in the intima, acting as a constituent of vascular-
associated lymphoid tissues (VALT), and play a critical 
role in the initiation, progression and rupture process of 
AS (1-10). After activation of atherogenic risk factors 
such as low-density lipoprotein (LDL), oxidized LDL 
(oxLDL), glycosylation end product and shear stress, 
DCs can present antigen to naïve T lymphocytes and 
activate them by acting with co-stimulatory molecules, 
such as CD40, CD80 and CD86, thus initiating the 
immuno-inflammatory reaction, which ultimately trig-
ger and accelerate AS course (11, 12) Recently, it was 
reported that patients with acute coronary syndrome 
(ACS) or angiogrophically documented coronary artery 
disease (CAD) showed reduced circulating blood-de-
rived DCs precursors and plasmacytoid DCs, compared 
to healthy controls, which might be as a result of exces-
sive accumulation of DCs around plaque (13). 

Among the connexin (Cx) family, Cx43 is very 
important for gap junction which mediates intercellu-
lar communication in DCs. During the maturation and 
activation of DCs, the expression of Cx43 is signifi-
cantly up-regulated; when the expression of Cx43 is 
downregulated, the maturation and activation of DCs 
are blocked (14, 15). Moreover, DCs are regulated by 
renin angiotensin system (RAS). Angiotensin-conver-
ting enzyme (ACE)-AngII-angiotensin receptor 1 
(AT1) axis and angiotensin-converting enzyme-related 

carboxypeptidase (ACE2)-Ang-(1-7)-receptor Mas axis 
have been shown to influence the functions of DCs (16). 
AngII, the key point of ACE-AT1 axis, has been proved 
to be important for the differentiation and maturation 
process of DCs (17-19). Rresearchers also revealed that 
AngII could regulate the expression of Cx43 in cardio-
myocytes and vascular smooth muscle cells (20-23), 
however whether AngII could regulate the expression 
of Cx43 in DCs remains largely unknown. We presented 
here that overexpression of AngII could upregulate the 
expression of Cx43 in DCs, both in vitro and in vivo, 
and then promote atherosclerosis and plaque vulnera-
bility.

Materials and methods

This study was approved by the First Affiliated Hos-
pital Committee of Medical College, Zhejiang Uni-
versity on Ethics and Administration of Animal Expe-
riments. All procedures used in this study are strictly 
in accordance with the guidelines of the First Affiliated 
Hospital Committee of Medical College, Zhejiang Uni-
versity on Ethics and Administration of Animal Expe-
riments. Animals were housed in the Pathogen-Free 
Laboratory Animal Center of the First Affiliated Hospi-
tal of Medical College, Zhejiang University. All surgery 
was performed under sodium pentobarbital anesthesia, 
and all efforts were made to minimize suffering.

Animals
ApoE-/- mice (C57BL/6, 12- to 14-wk old, male) 

were purchased from the Laboratory Animal Center of 
Peking University. C57BL/6 mice (6- to 8-wk old, fe-
male) were obtained from the Laboratory Animal Cen-
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ter of Zhejiang University. All mice could get regular 
rodent chow and saline water ad libitum. ApoE-/- mice 
were divided into three groups: group 1, sham group 
without medication; group 2, 2K1C+ Valsartan (Val), 
Valsartan 4mg/kg.d-1, administered by lavage; group 3, 
2K1C, administered with the same amount of Valsartan 
solvent (0.25％sodium bicarbonate) by lavage once per 
day. Ten weeks later, ApoE-/- mice were sacrificed by 
cervical dislocation and tissue samples were collected 
for further investigation.

Preparation and culture of bone marrow-derived den-
dritic cells (BMDCs)

Bone marrow-derived dendritic cells were generated 
from C57BL/6 mice as described previously (24-26), 
with minor modifications. Briefly, bone marrow mono-
nuclear cells were prepared from mouse femur and tibia 
bone marrow suspensions after depletion of red cells. 
Cells were allowed to adhere for 2 hours in a density 
of 1×106/ml; later, the suspending cells were washed, 
while the adhered cells were cultured further in RPMI 
1640 supplemented with 2 mM L-glutamine (Invi-
trogen, USA), supplemented with 10% fetal bovine se-
rum (Invitrogen, USA), 1% of nonessential amino acids 
(Invitrogen), 20 ng/ml recombinant mouse GM-CSF 
(Peprotech, China) and 10 ng/ml recombinant mouse 
IL-4 (Peprotech, China). To isolate the DCs population, 
cells were collected, suspended in 3 ml complete media 
and 3ml 30% (v/v) iopamidol and then centrifuged at 
1200g for 20 min at room temperature. After centrifuga-
tion, cells in the interface were collected, washed with 
complete media three times and then subjected to phe-
notypic analysis by flow cytometry with phycoerythrin 
(PE)-labeled anti-CD11c antibody (eBioscience, USA). 
The population containing ≥ 90% CD11c+ cells was 
used on day 8–10 without additional purification.

Western Blot
DCs were incubated with either 10-6 mol/L Ang II 

(Sigma, China), 100ng/ml LPS (Sigma, China), Ang 
II (10-6 mol/L) + LPS (100ng/ml), or 10-5 mol/L val-
sartan (Novartis, China) pretreated for 30 min prior to 
application of Ang II (10-6 mol/L) + LPS (100ng/ml). 
The expression of Cx43 (Sigma, USA) was measured 
by Western blotting as described previously(14). The 
quantitative assay of the Western Blotting bands was 
accomplished by Kodak Digital Science 1D 2.0 Image 
software.

Mouse models expressing high-level AngII endoge-
nously

The model was generated using 2 kidney-1 
clip (2K1C) method as described previously (27). 
First，mice were anesthetized by Pentobarbital Sodium 
(2%, 40mg/kg Intraperitoneal Injections). The left kid-
ney was exposed through a small flank incision, exter-
nalized, and maintained carefully with an ophthalmic 
chalazion forceps. For clipping, the renal artery of the 
left kidney was individualized over a short segment by 
blunt dissection, and a clip was placed close to the aorta. 
The kidney was then gently pushed back into the retro-
peritoneal cavity. The muscle layer was sutured, and the 
skin incision was closed with surgical staples. A sham 
procedure, which included the entire surgery with the 

exception of artery clipping, was applied in sham group 
mice.

Invasive measurement of blood pressure
Mice were anesthetized by Pentobarbital Sodium. 

The left carotid artery was exposed through a cervical 
incision and isolated by blunt dissection. A 24G scalp 
remaining needle, connected with the RM6240B/C bio-
signal collection and processing system by a length of 
PE-10 tubing, was filled with a solution of physiolo-
gical saline and heparin (300 IU/mL) and inserted into 
the vessel. Lidocaine (1%) was used for one minute 
to prevent spasm. Then, a ligature was tied around the 
artery to fix the needle. When mice recovered from the 
anesthesia and emotionally stabled, Blood pressure 
(BP) and heart rate were recorded continuously for 15 
minutes with RM6240B/C bio-signal collection and 
processing system.

Plasma renin activity (PRA) concentration measure-
ment

PRA concentration were measured using the ra-
dioimmunodetection kit (Huaying, China) following the 
manufacturer`s instructions.

Immunohistostaining
Euthanized mice were perfused at physiological 

pressure with physiological saline and then with 10% 
neutral formalin via the arterial remaining needle. The 
thoraco-abdominal aorta was dissected, from left sub-
clavian artery until iliac bifurcation, fixed in formol and 
en face stained with Oil-red-O (Sigma, China). Pictures 
of stained aortas were taken with a digital camera and 
plaque area was analyzed by computerized planimetry 
using the Image Pro Plus software.

Brachiocephalic artery was serially sectioned and 
used for evaluation after staining with anti-α-actin 
(Wuhan Boster, China), and the plaque was analyzed 
by light microscopy using the Image Pro Plus software. 

Figure 1. AngII enhances the expression of Cx43 induced by 
LPS. DCs were treated with either 10-6 mol/L Ang II, 100ng/ml LPS, 
Ang II (10-6 mol/L) +LPS (100ng/ml), or 10-5 mol/L valsartan pre-
treated for 30 min prior to application of Ang II (10-6 mol/L) + LPS 
(100ng/ml). Shown are effects on the expression of Cx43, Values are 
means ± SEM. *P<0.05 versus control (Con), **P<0.01 versus Con, 
***P<0.05 versus LPS, ****P<0.01 versus Ang II+LPS, n=6. 
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Endogenous high-level AngII induced plaque vulne-
rability

In the sham group, plaques had intact and integrated 
fibrous caps with almost intact media, whereas in the 
2K1C group, plaques showed vulnerable morphology 
manifested by thin and even ruptured fibrous caps, huge 
lipid cores and deteriorated media. Valsartan treatment 
could stabilize the plaque by keeping the integrity and 
thickness of fibrous caps (Fig.3, n=10).

Endogenous high-level AngII enhanced Cx43 expres-
sion of DCs in plaques

Immunohistochemisty double staining (anti-S100 
and anti-Cx43) was applied to detect the Cx43 expres-
sion of DCs in plaques. The double positive arears were 
quantified to indicate Cx43 expression in DCs. The 
expression of Cx43 was significantly increased in the 
2K1C group when compared to the sham group. Valsar-

Sections obtained between the appearance and disap-
pearance of the aortic valve, about 3 millimeters thick, 
were embedded in paraffin and serially sectioned. The 
sections were used for immunohistochemisty double 
staining of anti-S100, anti-CD40 and anti-Cx43 (Ab-
cam, USA), using the Immunohistochemistry double 
stain kits (ZSGB-BIO, China) following manufacturer`s 
instructions. Samples were observed with a photomi-
croscope and pictures were acquired with a high sensi-
tivity color digital camera. Staining positive areas were 
quantified in each sample by means of the Image Pro 
Plus software.

Statistical Analysis
Results are presented as means ± SEM. Statistical 

analysis was performed using GraphPad Prism 6.0. Dif-
ference between control and experimental groups was 
determined using one-way analysis of variance (ANO-
VA) for multiple groups. Difference between every two 
groups was determined using Bonferroni post-hoc test. 
P value<0.05 was considered statistically significant.

Results 

AngII enhanced the expression of Cx43 induced by 
LPS

Treatment with either 10-6 mol/L Ang II or 100ng/
ml LPS alone successfully induced expression of 
Cx43 in DCs (relative expression: AngII 0.68±0.04 
versus　Control (Con) 0.40±0.06, P＜0.05; LPS 
0.78±0.03 versus　Con 0.40±0.06，P＜0.01). Treat-
ment with both AngII and LPS further  upregulated 
the expression of Cx43 when compared to LPS treat-
ment alone (relative expression: 1.01±0.08 versus 
LPS 0.78±0.03，P＜0.05). Valsartan could attenuate 
the upregulating effect of Cx43 (relative expres-
sion: 0.69±0.09 versus　Ang II+LPS　1.01±0.08
，P＜0.01) (Fig.1, n=6). 

2K1C increased endogenous PRA and blood pressure
After treatment with 2K1C for ten weeks, the blood 

pressure and PRA were significantly higher than those 
in the sham group. Administration of Valsartan (4mg/
kg.d-1) had no effect on expression of PRA and BP. 
Besides, there is no difference in weight and heart rate 
among all three groups (Table 1, n=10).

Endogenous high-level AngII promoted atherogenesis
The plaque burden of thoracoabdominal aorta was 

detected by Oil-red O staining. Compared to the sham 
group, the plaque burden in the 2K1C group was signi-
ficantly higher. Valsartan treatment could relieve the 
plaque burden (Fig.2, n=10).

SBP (mmHg) DBP (mmHg) MBP (mmHg) HR (bpm) PRA (ng/ml per h) BW (g)

Sham

2K1C

2K1C+Val

117±4

165±7**

163±6**

74±3

102±6*

104±5*

88±3

122±6*

123±5**

492±13

525±17

519±14

2.97±0.05

3.69±0.20*

3.83±0.17*

31±0.5

31±0.8

31±1.2

Table 1. The effect of 2K1C on PRA of ApoE-/- mice.

SBP: systolic blood pressure, DBP: diastolic blood pressure, MBP: mean blood pressure, HR: heart rate, PRA: plasma renin acti-
vity, BW: body weight. *P＜0.05 compared with sham, **P＜0.01 versus sham (n=10). 

Figure 2. Endogenous AngII promotes atherogenesis. The effect 
of endogenous AngII on atherogenesis was shown, with a represen-
tative Oil-red-O en face stain picture above respectively. Mice were 
treated for 10 weeks, atherosclerotic plaque burden was quantified 
by the plaque area/total vessel area×100%. Values were means ± 
SEM.  *P<0.01 versus sham and 2K1C+Val (n=10). 2K1C: 2kid-
ney-1clip, 2K1C+Val: 2K1C+ Valsartan 4mg/kg.d-1 administration. 
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Discussion

In the present study, we observed that overexpres-
sion of AngII could increase the expression of Cx43 
in mouse BMDCs and this effect could be attenuated 
by AT1 receptor antagonist Valsartan. Lots of investi-
gations have revealed the variable effect of AngII on 
the expression of Cx43, which depends on cell types 
and microenvironment. In vascular smooth muscle 
cells and ventricular myocytes, AngII upregulates Cx43 
expression through activating AT1 receptor, in which 
process p38 and ERK pathways are involved (23, 28-
31); while in normal cardiomyocytes, overexpression 
of AngII could downregulate Cx43 expression, which 
could then induce ventricular tachycardia (32, 33). Our 
study demonstrated that overexpression of AngII could 
upregulate Cx43 expression in mouse BMDCs partially 
through activating AT1 receptor.

Being the major role of connexons in DCs, Cx43 is 
essential for the gap junctional intercellular communi-
cation. The gap junctional intercellular communication 
(GJIC) is rare when the immunocyte is in quiescent 
condition (34, 35). When stimulated by pro-inflamma-
tory factors such as TNF-α, LPS or IFN-γ, the expres-
sion of Cx43 in DCs is significantly increased, accom-
panied by enhanced expression of the co-stimulatory 
molecules CD40, CD80, CD86, and antigen presenta-
tion molecule MHC-II. The maturation inducing effect 

tan treatment downregulated the expression of Cx43 in 
DCs (Fig.4, n=10).

Endogenous high-level AngII boosted the maturation 
of DCs in plaques

Two specific marker, S100 and CD40, were applied 
to determine matured DCs in plaques. The double posi-
tive area was significantly higher in the 2K1C group than 
that in the Sham group. Valsartan treatment downregu-
lated the number of matured DCs (Fig.5 n=10).

Figure 3. Endogenous AngII switches stable plaques to unstable 
plaques.  Shown was the representative picture of plaque morpho-
logy in different groups. In sham group, plaques showed stable phy-
notype with intact fibrous cap (black arrow) and media without big 
lipid core, whereas in 2K1C group, there was a typical vulnerable 
plaque: huge lipid core and ruptured even absent fibrous cap (black 
arrow) with deteriorated media (green arrow), and in 2K1C+Val 
group, plaque was still stable with thick and integrated fibrous cap 
(black arrow) though it had big lipid core and deteriorated media 
(green arrow). 2K1C: 2kidney-1clip, 2K1C+Val: 2K1C+ Valsartan 
4mg/kg.d-1 administration.

Figure 4. Endogenous AngII enhances Cx43 expression of DCs 
in plaques. The effect of endogenous AngII on Cx43 expression 
of DCs in plaques was shown, with a representative picture above 
respectively. Mice were treated for 10 weeks, the coexpression of 
S100 and Cx43 was investigated by immunohistochemical double 
stain. The orange area (black arrow) was the area of S100 and Cx43 
positive cells. The expression extent was quantified by coexpression 
area/plaque area×100%.Values are means ± SEM.*P<0.01 versus 
sham and 2K1C+Val (n=10). 2K1C: 2kidney-1clip, 2K1C+Val: 
2K1C+ Valsartan 4mg/kg.d-1 administration. 

Figure 5. Endogenous AngII boosts the maturation of DCs in 
plaques. The effect of endogenous AngII on CD40 expression of 
DCs in plaques was shown, with a representative picture above 
respectively. Mice were treated for 10 weeks, the coexpression of 
S100 and CD40 was investigated by immunohistochemical double 
stain. The orange area (black arrow) was the area of S100 and CD40 
positive cells. The maturation extent was quantified by coexpression 
area/plaque area×100%.Values are means ± SEM. *P<0.01 versus 
sham, **P<0.05 versus 2K1C+Val (n=10). 2K1C: 2kidney-1clip, 
2K1C+Val: 2K1C+ Valsartan 4mg/kg.d-1 administration.
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