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Abstract
Drug resistance is one of the major obstacles in the treatment of various cancers. Since chemotherapy serves as a most beneficial method for the repression of 
tumor progression and due to its desirable cell death potency in tumors which reducing metastasis, failure of such a pivotal treatment lead to tumor recurrence and 
consequent mortality. Multidrug resistance, the principal mechanism by which many cancers develop resistance to chemotherapy drugs, is a major factor in the fai-
lure of many forms of chemotherapy. MDR1 overexpression is one form of the multidrug resistance (MDR) phenotype, which can be acquired by patients initially 
responsive to chemotherapy. In this review, we briefly look inside the recent mechanisms of chemotherapeutic resistance, the MDR1 gene expression in tumors and 
some novel inhibition-based approaches.
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Introduction

Multidrug resistance protein 1 (MDR1) is one of the 
well-known transporter of ATP-Binding Cassette (ABC) 
transporter protein family. Although, MDR1 gene is ex-
pressed in normal tissues, its overexpression has been 
linked to drug resistance in cancerous cells. The acti-
vity of drug efflux pumps (p-Glycoprotein or P-gp-AB-
CB1) in plasma membrane increases, once MDR1gene 
is overexpressed in neoplastic tissues. P-gp is found in 
epithelial surface of normal tissues such as small intes-
tine and pancreas. Recently, many researches have been 
done to overcome difficulties caused by MDR1 gene 
overexpression. One of the promising strategies for pro-
moting drug delivery is applying small interfering RNA 
(siRNA) in order to silence drug resistant genes. In this 
review, we provide some insights into drug resistance 
mechanisms and discuss recent advances in case of P-gp 
inhibition approaches.

Surprisingly, P-gp, as an energy-dependent efflux 
pump or transporter, plays a central role in multidrug 
resistance cancer cells (1, 2).

P-gp is one of the first members of ATP-binding cas-
sette (ABC) transporter by extruding toxins and xeno-
biotics out of the cells. This unique transporter is ex-
pressed by two different linked genes in mouse, MDR1a 
and MDR1b, while in human MDR1 gene is responsible 
for P-gp production (3).

In 1976, new type of drug resistance modulator has 
been found by Juliano research team. They discovered a 
close link between the amount of 170 kDa surface gly-
coproteins and intensity of drug resistance in Chinese 
hamster ovary cells (1).

Multidrug resistance (MDR) is a process in which 
tumor cells show a cross-resistant nature against cyto-
toxic anticancer drugs that have a multiple molecular 
targets and are functionally or structurally different. 

The most extensively characterized MDR mechanisms 
are drug efflux transporters including ABC membrane 
transporter. Among MDR genes, P-gp plays a key role 
(4). In addition, there are some other members of MDR-
ABC transporter like DrrB, MsbA, LmrA, LmrCD, 
Sav1866 and recently identified VcaM and BmrA that 
regulate multiple drug transportation in bacterial mem-
brane. Significant homology of these efflux proteins to 
human P-gp has provided an appropriate p-gp studying 
model and improved the understanding of MDR mecha-
nisms (5-7).

Cancer cells elude chemotherapy

Potential of a patient’s cancer for responding to 
a specific therapy can result from one of two general 
causes: Specific genetically changes in tumor cells and 
host susceptibility;

Elderly patients have rapid drug metabolism and 
insufficient uptake that overall lead to limited drug deli-
very to the tumor site.  It could as same as what happe-
ned in bulky tumors due to taking too much space or 
high molecular weight biological agents such as immu-
notoxins (8), and different factors related to host tumor 
microenvironment characterize its responses including 
specific monoclonal antibody and drug metabolism by 
non-tumor cells which could affect drug transition wit-
hin both host and tumor cells interacting to each other 
(9).

All type of cancer expresses wide spectrum of drug-
resistance genes, which demonstrate large amount of 
diversity (10). Drugs usually transfer inward or export 
outward of cells in three distinct ways (Figure1). Each of 
these influx-efflux mechanisms has been determined to 
have physiological significance based on detailed case 
studies on the potential of resistant mutants in which 
defect in these pathways have been observed.
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The family of ABC transporters
  

ABC transporters, discovered after ATP binding cas-
sette domain, are conserved proteins that usually trans-
locate compounds across cellular membrane. These 
kinds of transporters mainly constitute of two trans-
membrane domains (TMDs) and two nucleotide bin-
ding domains (NBDs) (11).

Although several members of ABC superfamily have 
distinctive functions involving the transport of particu-
lar substrates, it is becoming increasingly clear that the 
complex physiological network of ABC transporters has 
a pivotal role in toxin elimination process of the body. 
This role is revealed by the tissue spread of ABC trans-
porters, which are substantially expressed in important 
pharmacological check point sites, such as the brush 
border membrane of intestinal cells, the apical surface 
of renal proximal convoluted tubules, blood-brain bar-
rier (BBB) associated epithelium and the biliary canali-
cular membrane of hepatocytes (12).

P-gp which is encoded as a transmembrane permea-
bility glycoprotein constitutes of 1280 amino acids. It 
is further subdivided into two uniform TMDs and two 
more uniform NBDs (13-15).

The TMDs are made up of twelve transmembrane 
helices or segments which with NBDs altogether placed 
in the cytoplasm, forming an active pore lead to expul-
sion of cytotoxic drugs out of the cells. Transmembrane 
segments 1, 4, 5, 6, 10, 11, and 12  play significant roles 
in binding of substrates to P-gp, make it possible to 
recognize variety of substrates and target specificity as 
well (16-19).

Modulation of P-gp drug binding cavities results in 
unique transport models for each drug. The major me-
chanism of MDR which interfere with cancer chemo-
therapy is related to well-studied ATP-dependent efflux 
transporters called P-gp (1, 2). 

The expression of P-gp has been detected in wide 
variety of cancer cells, such as colorectal and liver can-
cers, leukemia and myeloma cancers, ovary tumors and 
fibrosarcoma (20). P-gp mediated drug binding lead to 
activation of TMD helices which consequently go tho-
rough ATP hydrolysis process, giving conformational 
alterations to the P-gp. Eventually, this process end to 
release of cytotoxic agent into extracellular space. Hy-
drolysis of second ATP molecule is required for reset-
ting of efflux pump to its initial state, so that it can go 
back to square one (21, 22). 

Although, the exact mechanism of remaining ABC 

family transporters is not fully understood, it is thought 
that ABC would serve as a promoter for initiating trans-
port-mediated activity of the other members of this su-
perfamily.

After finding the P-gp and characterizing its exten-
sive expression in various human cancers, it has shown 
that many multidrug-resistant cancers, including gastric 
carcinoma, rarely encode P-gp gene.

Deely and colleagues cloned the other member of 
ABC family, termed as MRP1 (stands for Multidrug 
resistance associated protein 1) by utilizing lung cancer 
cell line as a MDR model (23). Unlike these two mem-
bers of ATP binding cassette family, there is an addi-
tional ABC half-transporter for anticancer drugs called 
Mitoxantrone resistance protein (also known as MXR, 
BCRP, ABC-P and ABCG2) which only has single NBD 
followed by one membrane-spanning domain (MSD) 
with six predicted TMD (see Figure 2) but is thought to 
function as a dimer (24).

ABC transporter family in addition to MXR family 
members have been implicated in cancer chemotherapy 
resistance and drug transportation into the human cells 
(Figure2) (25). 

Polymorphisms of MDR1 gene

Human P-gp is encoded by the multidrug resistance 
1 (MDR1) gene located on chromosome 7q21, and is hi-
ghly expressed on the Golgi membrane, cell membrane 
and transporting epithelia of different human normal 
tissues including, liver, kidney, colon, pancreas, uterus, 
placenta and also in specialized endothelial cells in the 
testis and brain (26-29). 

Among the early researches on the polymorphisms 

Figure1. Three distinct ways in which drugs cross the cell membrane in inward-facing or outward-facing conformations; In Diffusion, drugs 
moving from areas of high concentration to areas of low concentration. In Transport, substances move into or out of cells down their concentration 
gradient through protein channels in the cell membrane. Endocytosis is active transport which directly uses energy to transport molecules across 
a membrane.

Figure2. The family of ABC transporter.  
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encoded by 5, 21, and 24 exons. Exon 2 is placed in the 
first intracellular domain of P-gp and the other one lies 
downstream to the ATP-binding site (exon 11).

When we compared each of these polymorphisms 
and original-type of MDR1, we found no difference in 
expression levels or cell-surface localization, and no 
significant changes in the transport function of the P-gp 
with these polymorphisms (34). 

In humans, class I and III isoforms (MDR1 and 
MDR3) of P-gp with 80% amino acid homology have 
been identified (35). Either isoforms were found to be 
positioned on the chromosome 7 long arm and to be 
linked within 330 kb (36, 37). However, until now, no 
possible chemo-resistance function related to the human 
MDR3 gene and its consequent products have been ob-
served (38). 

The MDR1 gene expression in normal tissues

Fojo et al. (1987b) has reported overexpression of 
MDR1 gene in normal liver, kidney, jejunal, rectal, 
adrenal tissues and occasional lung, using slot blot 
quantitation. Other organs and tissues (heart, skin, sub-
cutaneous tissue, skeletal muscle, spleen, bone marrow, 
ovary, lymphocytes, esophagus, stomach, and spinal 
cord) have little or no obvious expression levels (39).

P-gp was identified on the small biliary ductules and 
biliary surface of liver hepatocytes, in the apical sur-
face of renal proximal tubules, in the luminal surface of 
pancreatic small ductules epithelial cells. High levels of 
P-gp were also found on the epithelial surfaces of both 
the colon and jejunum.

Moreover, P-gp is expressed in the capillary endo-
thelial cells of the human brain, indicating its pivotal 
role in the blood-brain barrier (40, 41). 

The MDR1 gene expression in tumors

Based on previous studies, the bulk techniques (Nor-
thern-, Western- or dot blotting, and RNase protection 

of MDR1 gene in human beings, Roninson et al have 
designated two new distinct genomic clones of MDR, 
named MDR1 and MDR2, using genomic DNA cross-
hybridization. Extensive researches has been done on 
the pharmacodynamics and kinetics of MDR1, but only 
recent studies have identified several different single-
nucleotide polymorphisms (SNPs), which are defined as 
a single base-pair variation in the human MDR1 coding 
region.

There are several reasons why gathering information 
on MDR1 SNPs is of a great importance, and among 
them the focus of many recent studies are: (1) defining 
the relationship between the MDR1 activity and SNPs 
positions will promote our knowledge about conforma-
tion-function interaction (2) if altered pharmacokinetics 
and any correlations between polymorphisms are dis-
covered, the same approach will add to our knowledge 
about the role of P-gp in chemotherapy-resistant cancer 
cells; (3) since MDR1 is a very well-conserved gene 
(30), studying its SNPs will improve our understanding 
about the evolutionary development of this gene; (4) 
evidence of a connection between specific pharmaco-
logical changes and MDR1 gene polymorphisms may 
make it possible to predict individual sensitivity to the 
many drugs which are substrates of MDR1.

The MDR1 gene mainly composed of 28 exons ran-
ging in size from 49 to 587 bp, and the cDNA spans 
4.5 kb (31), three insertion/deletion variants and more 
than 50 SNPs have been mapped in the MDR1 gene. 
The schematic location of aforementioned SNPs which 
affect the MDR1 coding sequence (exon) has been illus-
trated in figure 3.

The data assembled in Figure 3 are based on the SNPs 
reviewed here, on the published intron/exon boundaries 
(32), and on the predicted 2-D structural model of P-gp, 
according to studies from our lab (33). 

As shown in Figure  3, some of those distinct poly-
morphisms resulted in amino-acid changes are loca-
ted in exons 2, 5, 11, 21, and 24. Interestingly, amino 
acids which positioned in transmembrane domains are 

Figure3. Schematic representation showing the MDR 1 SNPs distribution, which affects the coding sequence of P-gp on the predicted 2-D struc-
tural model; At the bottom, 28 exons of the MDR 1 gene has been illustrated, and the P-gp region that encoded by a given exon is also highlighted 
in a same color on the predicted 2-D P-gp structure. The location of the reported SNPs has been shown with black-filled circles. P-glycoprotein: 
from genomics to mechanism, 2003 Nature Publishing Group.
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assay) are the most employed methods for measuring 
the expression levels of the MDRl gene in human tu-
mors. In present study, we have randomly categorized 
expression levels of solid tumors into three groups.

There have been several controversial reports on 
MDRl expression of all three groups, which partly could 
result from methodology (42-46). 

Group I introduces tumors that arise from tissues 
normally expressing moderate to high MDRl levels 
such as colon kidney, liver, colon pancreas and adrenal.

Those tumors that occasionally have high mostly 
moderate MDR1 expression levels and also quite often 
lack expression fall into group II. This group includes 
the neuroblastomas, breast tumors, soft tissue sarcomas 
and the haematological malignancies.

Generally, drug response of group II tumors is much 
greater than first one, therefore achieving a proper res-
ponse would be reachable.

The MDR1 expression levels were mostly undetec-
table or quite low in group III tumors. Remarkable re-
sults are obtained with ovarian tumors, which belong to 
this group. The first report on P-gp expression in human 
tumor cell line is related to ovarian cancer (47). In case 
of group III tumors, Chemotherapy would be effective, 
but acquired chemoresistance is the rule rather than the 
exception.

The MDRl expression levels can involve wide range 
from low to high and even in untreated tumors are occa-
sionally high levels are observed (20, 48, 49). 

In 1/3 of the patients with acute myeloid leukemia 
and about half of patients at first relapse stage, expres-
sion of MDR1 gene has been observed; the MDR1 ex-
pression level solely can explain resistance based on in 
vitro assays of P-gp transporting function and also be 
related to the possibility of relapse (50). 

Although chemotherapy has a pivotal role for the 
treatment of breast cancer, the drug resistance still is 
one of the unsolved growing concerns. There is a great 
numbers of P-gp in the intestine (51, 52) which trans-
ports various substrates to the intestinal lumen (53). 
Hence, act as a strong gastrointestinal barrier that pro-
tects the lining cells against toxic agents and possible 
carcinogens.

Regardless of therapy plans, the chance of early che-
motherapies for treating metastatic breast cancer is rela-
tively high and the recovery process often last only a 
few months following treatment (54). 

The correlation between ABC transporters and drug 
resistance in breast cancer has been investigated by 
measuring expression and protein levels using different 
molecular and probe-based techniques. The expression 
levels have been scored and linked to treatment res-
ponse and outcome.

MDR regulation pathway is mediated by vast variety 
of proteins which consequently means that there is a 
high redundancy in this case. 

The effects of chemotherapy drugs on gene expres-
sion of single ABC transporters also have been as-
sessed, alongside functional assays of ABC-mediated 
drug transport (55). 

Due to complexity of the mechanisms involved, 
the exact role of the ABC transporters in breast cancer 
MDR is not fully established yet. Although a number of 
clinical studies have claimed that high levels of tumor 

ABC transporters are associated with tumor progres-
sion, there is no obvious evidence indicating any rela-
tionship between expression levels and tumor sensiti-
vity to drugs or patient response (56). 

Cancer stem cells (CSCs) also express transmem-
brane ABC transporters, such as ABCG2 and MDR1,(57) 
which render them drug resistant (58). Based on pre-
vious findings, the levels of carcinoembryonic antigen 
(CEA) in drug-resistant human colorectal adenocarci-
noma cells was two times higher than normal (59). 

Tumor heterogeneity of drug-resistant colon can-
cer cells results in developing both P-gp and non P-gp 
mediated mechanisms of resistance. Colon or kidney 
tumor cells which expressing high levels of P-gp, resist 
to drugs that are not exposed to P-gp mediated trans-
port, suggesting that ‘intrinsically resistant’ cancer is 
also protected by non-Pgp mediated mechanisms (60). 

P-gp expression has been observed in more than half 
of pre-treated soft tissue sarcoma (STS); therapy with 
doxorubicin achieved even more expression levels (61). 

Pharmacological inhibition of P-gp with a variety of 
drugs e.g. verapamil (a calcium channel blocker agent) 
(62, 63), and tyrosine kinase inhibitors was used (64). 
Thyroid hormones, T3 and T4, are known to induce P-gp 
gene transcript and its function (65-67). Tetrac is ano-
ther therapeutic agent which antagonizes the effects 
of thyroid hormones on the cell surface integrin αvβ3. 
Maintaining time of chemotherapeutic agent, which 
also known as P-gp substrate, desirably increased, once 
cancer cells subjected to Tetrac (68). Therefore, ‘intra-
cellular retention time’ of anticancer drugs in response 
to Tetrac reflected in decreased P-gp efflux or likely 
increased influx transporters (69). 

P-gp inhibitors to overcome MDR
 

Clinical trials have been designed to attenuate P-gp 
function also highlighted its significance as a unique 
transporter (70).

First-generation of P-gp inhibitors, such as quinine, 
cyclosporine and verapamil which were already licen-
sed for other therapeutic indications, exploited in early 
trials. In general, these compounds were toxic or ineffi-
cient at doses required to suppress P-gp function. It was 
shown that quinine can promote remission and survival 
rate in P-gp positive Myelodysplastic syndrome (MDS) 
patients with high-dose chemotherapy (71), indicating 
that successful modulation of P-gp is achievable.

The second generation of inhibitors, including vals-
podar (non-immunosuppressive analogue of cyclospo-
rine A), biricodar, dexverapamil (D-isomer of verapa-
mil), dexniguldipine and dofequidar fumarate (MS-209) 
was devoid of side effects related to the primary toxi-
city of constituents(72). On the other hand, their ability 
to inhibit P-gp function has been markedly improved. 
However, since these P-gp modulators significantly in-
teract with other ABC transporters such as MRP-1 and 
also are substrates for cytochrome P450 34A enzyme, 
their clinical uses have been faced with restriction (73, 
74). 

The recent-generation of inhibitors are designed 
specifically for low pharmacokinetic interaction and 
high transporter affinity. Blocking of cytochrome P450, 
which is main cause of many adverse effects related 
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found that MAPK/extracellular signal-regulated kinase 
(MEK) and a heat shock protein 90 (HSP90) inhibitors 
down-regulate p-gp expression (89).

Mitogen-activated protein kinase (MAPK) pathways 
are comprised of a three families: namely the extracel-
lular signal-regulated kinase (ERK), the c-Jun N-termi-
nal kinase (JNK) and p38 kinase. The ERK pathway is 
the well-studied of the human MAPK pathway, and its 
altered regulation has been clearly observed, particu-
larly in cancer cells, whereas the other two pathways 
involve in stress-activated signaling (90, 91). This pa-
thway triggers multistep activation of receptor tyrosine 
kinases, Ras, Raf, MEK and P90 ribosomal S6 kinase 
(P90RSK). Activated ERK regulates fundamental cel-
lular processes, including proliferation, differentiation, 
and apoptosis, by the direct activation of downstream 
transcription factors or through p90RSK(90). HSP90 
is an energy-dependent chaperone protein, regulating 
those cells exposed to extreme stresses and stabilizes 
wide variety of client proteins (92). The activity of Raf 
and MEK proteins are straighten by HSP90 and there-
fore allows their kinase functions. These findings indi-
cate that inhibitors of HSP90 and MAPK block the ERK 
pathway, which lead to the downregulation of P-gp ex-
pression.

Several studies have reported the correlation of P-gp 
with p38 MAPK: MRP1 and MDR1 mRNA expression 
were reduced in 5-fluorouracil-resistant hepatocellular 
carcinoma cells, when p38 MAPK pathway switched on 
(93), whereas the MDR1 gene expression and activator 
protein-1 (AP-1) in vincristine-resistant gastric carci-
noma cells were decreased in response to p38 inhibition 
(94). 

Furthermore, the JNK pathway has been implicated 
in the regulation of the promoter of MDR1 gene. Se-
ven-in absentia homologue 1 (SIAH1), an E3 ubiquitin 
ligase that triggers the ubiquitin-proteasomal degrada-
tion, is responsible for JNK activation and downregula-
tion of MDR1 by increasing c-Jun binding to the AP-1 
site in the MDR1 promoter (95). 

A cyclosporine analog reduces the expression of 
MDR1 gene through inhibiting nuclear factor kappa B 
(NF-κB) and activating JNK/c-Jun/AP-1 (96). 

Hence, the JNK/c-Jun/AP-1 pathway serves as a 
negative regulator of MDR1 gene expression. However, 
a number of studies have claimed that AP-1 is the main 
activator of MDR1 gene (94-97). Thus, MDR1 promo-
ter is subjected to dual regulation in the AP-1 site.

Conversely, a bunch of researches have demons-
trated that downstream transcriptional factors are res-
ponsible for high expression of MDR1 gene in the ERK 
pathway (98-100). Therefore, ERK pathway is consi-
dered as main regulator of MDR1 expression at both 
posttranscriptional and transcriptional levels (89). Tar-
geting resistance genes is a recent therapeutic approach 
in order to tackle cancer cells. Although, the MDR1 
levels in cells are often reflective of its gene amplifi-
cation, the high expression of the protein can also be 
related to transcription step. Bartsevich and colleagues 
introduced transcriptional repressors that specifically 
bind to the MDR promoter, using combinatorial peptide 
libraries (Figure4).

Once repressor proteins are expressed in highly re-

to second-generation of inhibitors, has been removed 
in third-generation of inhibitors, consist of laniqui-
dar (R101933), oc144-093 (ONT-093), zosuquidar 
(LY335979), elacridar (GF-120918)(75) and tariquidar 
(XR9576) (76). Several later-generation act on mul-
tiple ABC transporters. Among them, Biricodar (VX-
710) and GF-120918, bind to Pgp as well as MRP1 and 
ABCG2, respectively (77). 

 Despite the promising above mentioned characte-
ristics, the studies were abolished early due to toxicities 
of drugs (78). Phase III trials using third-generation of 
inhibitors will be crucial in determining efficiency of 
this therapeutic strategy.

Post-transcriptional regulation of P-gp

Autophagy is the catabolic process that involves 
lysosomal degradation and as the ubiquitin-proteasome 
pathway plays a same role in protein degradation (79, 
80). Various membrane proteins, including plasma 
transporters and receptors, recycle back to the cell sur-
face through endocytic recycling system.

Discarded proteins into early and late endosomes 
which sort the cell membrane can easily fused with 
lysosome.

Rab GTPases constitute the largest member of small 
GTPase superfamily and coordinate vesicular traffic-
king of different proteins involved in endocytosis. Re-
cent studies have showed that Rab4 and Rab5 are key 
regulators of P-gp trafficking, recycling and control 
the P-gp lysis placed on the cell membrane (81). Cell 
membrane P-gp expression is attenuated while original 
type or active mutant of Rab4 overexpressed, whereas 
negative mutant did not alter P-gp expression on the cell 
surface (82). Hence, ubiquitin-proteasomal degradation 
pathway could be present as rapid proteolysis process, 
and endocytic recycling system acts as slow system in 
P-gp homeostasis. 

The serine/threonine protein kinase Pim-1 was basi-
cally discovered as the proviral integration site in Molo-
ney murine leukemia virus lymphomagenesis (83, 84). 
Pim-1 gene is highly expressed in various human mali-
gnancies such as myeloid and lymphoblastic leukemia 
(85). It stabilizes 150 kDa P-gp which is underglycosi-
lated form, and encourages its glycosylation and sub-
sequent translocation to the cell surface. These results 
reveal that Pim-1 protects the 150 kDa form of P-gp 
from degradation, hence regulate P-gp expression on the 
cell surface and partially established previous findings 
which claimed that the ubiquitin-proteasome pathway is 
important in the degradation of P-gp (86). 

A number of studies have shown that specific serine 
residues in the P-gp are phosphorylated by protein ki-
nase A and C (PKA and PKC) (87, 88).

Modulation of P-gp expression by MAPK signaling 
pathway

There are several distinct pathways in the regulation 
of P-gp expression and among them post-transcriptional 
modifications, such as phosphorylation, glycosylation 
and ubiquitination play a central role. In this regard, we 
have reviewed different inhibitors that affect P-gp ex-
pression in Pg-p-positive colorectal cancer cell line and 
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enable the targeted regulation of aberrantly expressed 
genes, including small interfering RNA (si-RNA) and 
anti-sense oligonucleotide.

Currently, researchers exploit an indispensable 
bioinformatics tool to design specific siRNA for thou-
sands of target mRNAs. These synthetic oligonucleo-
tides employ similar mechanism to endogenous one to 
silence their interest gene (114). 

 At the moment, using RNAi as a robust therapeutic 
strategy has attracted considerable attention for treating 
several incurable diseases, especially cancer (115-119). 

The siRNA offers numerous advantages compared to 
other gene silencing approaches. First, siRNA can be 
precisely designed to recognize and knockdown almost 
any gene. Second, siRNA can be readily packaged and 
expressed into vectors, despite the time-laboring pro-
cess of negative mutant synthesis. Third, siRNA-based 
gene suppression is more selective and safer than the 
other nucleotide-based methods. Therefore, siRNA 
silencing strategy serves as a promising therapeutic 
method to knockdown defected genes, which are main-
ly responsible for malignant manner of tumors (120). 
Gene-silencing by siRNAs provide an alternative to 
conventional therapies for cancer which only alleviate 
the clinical signs without any effect on involving gene 
of cancer cells (121).

Development of RNA interference (RNAi) for cancer 
therapy could fundamentally change treatment of this 
uncontrollable disease (122). Despite the other diseases, 
cancer cells are faced with different challenges, such as 
choosing suitable targets, reducing toxicity and finding 
effective delivery system. Surprisingly, RNAi can also 
be utilized to switch resistance genes off and promote 
the effects of cancer chemotherapy (123). Thus, MDR1 
can be one of the potential candidate targets for RNAi 
gene silencing (124).

RNAi strategy, dissimilar to chemical inhibitors, 
may represent a more precise method, which specifi-
cally suppresses the expression of protein targets, e.g. 
P-gp. Synthetic analog of RNAi, siRNA, was used to 
explore the therapeutic potential of this pathway in can-
cer patients. 

The siRNAs are double strand RNA molecules pres-
ent in the cell which first cleaved by dicer enzyme into 
short 21-25 nucleotide fragments. These effector RNAs 
then joined to the RNA induced silencing complex 
(RISC) where the duplex RNA unwound and produce a 
guide sequence strand to target the breakdown of homo-
logous RNA (125). 

 The best two advantages of siRNA are lower toxi-
city on nontarget cells and higher specificity on interest 
gene, as compared to the traditional MDR1 inhibitors 
(126, 127). 

Several reports have shown that an active siRNA 
normally contains 30-52% GC content. It was also 
found that the increased efficiency of siRNAs have been 
associated with the presence of A/U at the 5' end of the 
antisense strand (128, 129). Following the successful 
internalization and endosomal escape, siRNA has to de-
tach from its packaging carrier in order to interact with 
the RISC complex. This process eventually leads to 
specific binding of siRNA to a certain mRNA and sub-
sequent degradation of target mRNA. Targeted therapy 
with siRNA is expected to successfully downregulate 

sistant cancer cells, P-gp levels selectively reduce and 
considerable increase in chemosensitivity is observed 
(101-103).

Targeting of MDR gene in cancers

A binding site for various numbers of transcription 
factors (including NF-κB, AP-1, FKHRL1/FOXO3a 
and FKHR/FOXO1) has been discovered in the MDR1 
promoter region and has been proven to be involved 
in transcriptional activation of MDR1. Previous stu-
dies have demonstrated that NF-κB, FOXO3 and AP-1 
directly bind and activate the MDR1 promoter (86-89, 
103-105). 

It was also shown that heat shock protein (HSP) 27 
and heat shock factor (HSF) 1 attenuate MDR1 expres-
sion through blocking the NF-κB pathway in drug-resis-
tant breast cancer cells (106). Therefore, NF-κB is one 
the crucial signaling systems in the regulation of MDR1 
expression. Moreover, activation of PI3K-Akt signaling 
pathway is involved in the expression of MDR1 via 
NF-κB, a downstream target of Akt. The PI3K induces 
production of phosphatidylinositol-3,4,5-triphosphate 
(PIP3) which is essential for translocation of Akt to the 
cell membrane where it is phosphorylated by 3-phos-
phoinositide-dependent kinase 1 (PDK1) (107). 

The MDR1 gene expression is also modulated with 
Wnt/catenin pathway. More recently, several microR-
NAs (miRs) have been reported to implicate in the regu-
lation of MDR1 mRNA (108). As previously described, 
downregulation of MDR1 mRNA is correlated with the 
expression of subset of these microRNAs (MiR-137, 
miR-200c and miR-122) (109-112), whereas another 
groups of miRs (miR-19a/b, miR-221 and miR-222) 
are involved in upregulation of MDR1 transcription in 
various cancer cells. Although, miRs act as a double-
edged sword, they are becoming a novel therapeutic tar-
get, particularly in chemoresistant cancer therapy (113). 

There are wide varieties of mechanisms which 

Figure4. Schematic model representing regulations of MDR1 gene. 
HSP90 provides MEK and Raf proteins kinase activities by straigh-
tening their folding. MEK and Raf activate the ERK pathway, resul-
ting in the upregulation of P-gp expression but the expression of the 
MDR1 gene is downregulated by activating JNK/c-Jun/AP-1.
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the MDR1 gene and this could possibly lead to reduced 
number of P-gp transporter on plasma membrane, re-
duced pumping chemotherapeutic drugs out of the cells 
and improving accumulation of drugs in involved site, 
resulting in increased cellular cytotoxicity (Figure 5).

Chemical modifications to siRNA sequence are re-
quired, since 2'-OH end of molecule is not fully affec-
ted by siRNA-RISC complex. These changes, including 
2'-fluoro and 2'-OMe, are predicted to improve siRNA 
stability and increase its half-life compared with wild-
type siRNA (130).

Despite the promising findings in recent in vitro re-
searches with siRNAs, there are many adverse effects 
associated with inflammatory nature of these molecules 
which make it inappropriate for human use. Therefore, 
it is highly important to rule out these potential concerns 
before starting any clinical trial using siRNA for MDR1 
gene knockdown.
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